Loading...
HomeMy WebLinkAboutNEWPORT N ROUGH GRADING_NEWPORTER NORTH111111111111111111111111111111111111111111111111 *NEW FILE* Newport N Rough Grading I I I I I I I I I 'I I 11 I ASSOCIATES, INC. Geotechnical and Environmental Engineering Consultants GEOTECHNICAL REVIEW OF ROUGH GRADING PLAN, TENTATIVE TRACT 15011, NEWPORTER NORTH PROPERTY, CITY OF NEWPORT BEACH, CALIFORNIA August 9, 1995 Project No. 1851578-04 Prepared for. Standard Pacific Corporation 1565 MacArthur Boulevard Costa Mesa, California 92626 1 17781 COWAN, IRVINE, CA 92714 1714) 250.1421 • (800) 253.4567 FAX (7141250.1114 [J r� 1 J I I I L� 11 I! Geotechnical and Environmental Engineering Consultants August 9, 1995 Project No.1851578-04 To: Standard Pacific Corporation 1565 MacArthur Boulevard Costa Mesa, California 92626 Attention: Mr. David Foell Subject: Geotechnical Review of Rough Grading Plan, Tentative Tract 15011, Newporter North Property, City of Newport Beach, California In accordance with your request and authorization, Leighton and Associates, Inc. (Leighton) has performed a geotechnical review of the rough grading plan for Tentative Tract 15011, known as the Newporter North property, in the City of Newport Beach, California. The purpose of our review was to compile the available geotechnical information concerning the site, to evaluate the anticipated geotechnical and hydrogeological conditions, and to provide recommendations for the proposed grading. Our review is based on the 40-scale Rough Grading Plan, Tentative Tract 15011, prepared by MDS Engineering, revised and transmitted on July 21, 1995. The scope of our review consisted of evaluation of e:dsting geotechnical reports, maps, and field conditions; preparation of representative cross -sections portraying our current understanding of geotechnical conditions; analysis of geotechnical data bearing on specific site conditions; performing a limited study of ground -water seepage potential, and preparation of the accompanying report presenting our findings, conclusions, and recommendations for rough grading of the subject site. Among the key findings of our review, we note the following: It is our opinion that the rough grading plan is acceptable from a geotechnical viewpoint, provided the recommendations in the report are implemented during design and subsequently during grading. • A shear key and stabilization _fill with a deep subdrain are needed for the slope above San Joaquin Flips Road in order to meet the generally accepted criterion of a safety factor for gross stability of 1.5 and specifically to reduce the water -table elevation. • For the bluff above Back Bay Drive, a setback zone for structures at the top of the bluff is incorporated into the grading plan. 17781 COWAN, IRVINE, CA 92714 (714) 250.1421 • (800) 253,4567 FAX (714) 2504114 l _l 1851578-04 I • The loose, compressible, and permeable Quaternary -age slope wash deposits, terrace deposits, and highly weathered bedrock that cover the top of the mesa should be removed and recompacted in order to provide adequate support for structures. This cap of engineered fill soils is also an important element in reducing the potential for infiltration of surface water and for future seepage from the exposed bluff faces above Back Bay Drive. • Diatomaceous soils pose a special condition on the specification for compaction criterion for fill soils at this site. Additional geotechnical constraints are described in the accompanying report. If you have any questions regarding our report, please do not hesitate to contact this office. We appreciate the opportunity to be of service. Respectfully submitted, ]LEIGHTON AND ASSOCIATES, INC _ Osman Pekin, Ph.D., RCE 49561 No.C4s5st Senior Project Engineer *� f1 _ A _ mil_ /96 CIVIL/ ' Rosalind Munro, CEG 1269 Principal Geologist BRC/OP/RM/elr Distribution: (4) (4) II II If I 1' Addressee MDS Engineering, Inc. Attention: Mr. Skip Schultz Bruce R. Clark, CEG 1073 Principal Geologist -2- LEIGNTDNAND ASSDCIATMA INL 1951578-04 TABLE OF CONTENTS Section Page 1.0 INTRODUCTION.................................................... i • 1.1 Purpose and Scope ............................................... 1 1.2 Site Location and Description ....................................... 2 • 13 Proposed Development ......•••••••••••• 2 ! 1.4 Limitations..................................................... 4 2.0 GEOTECHNICAL OBSERVATIONS AND FINDINGS ...................... 5 5 2.1 Geologic Setting ................................................. 2.2 Bedrock....................................................... 5 2.3 Surficial Deposits ....................... 1 2.4 Geologic Structure ... ..................................... . 6 2.5 Seismicity and Seismic Hazards ...................................... 7 2.6 Landslides ............................. 2.7 Ground Water and Seepage ........................................ 9 2.7.1 Ground -Water Seepage Model ............................... 10 2.8 Rippability and Oversized Materials 11 2.9 Slope Stability .................................................. 11 2.10 Expansive Soils . 12 ' 3.0 CONCLUSIONS AND RECOMMENDATIONS .............................. 14 ' 3.1 General Conclusion......................................... 14 3.2 Slope Stability .................................................. 14 ' 3.2.1 Cut Slopes ............... 14 3.2.2 Existing Slopes ........................................... 15 3.23 Fill Slopes . 16 I3.2.4 Temporary Cut Slopes ...................................... 17 3.3 Removal and Recompaction of Unsuitable Soils ......................... 17 3.4 Diatomaceous Soils............. 17 3.5 Lot Capping and Selective Grading ................................... 18 3.6 Subdrains . ................................................. 18 3.7 Surface Runoff and Ponding ...19 3.8 Expansive Soils . • • . •.. • ..... •• ...... • ... • .. • .. • . • ... 19 3.9 Reinforced Fill Slope Design ....................................... 21 ' 3.10 Maintenance of Graded Slopes............................21 3.11 Observation and•Testing During Rough Grading and Postgrading ..... • . • ... 21 3.12 Lateral Earth Pressures and Retaining Wall Design ...................... 22 ' 3.13 Areas Requiring Additional Geotechnical Input ......................... 23 1 -i- I INGNTOMAND ASSDCIATU INC 1851578-04 TABLE OF CONTENTS (Contd.) ' Appendices Appendix A - References '. Appendix B - Deterministic Seismic Hazard Analysis Appendix C - Geotechnical Logs of Borings, Trenches, and Test Pits Appendix D - Laboratory Test Results Appendix E - Results of Slope Stability Analyses Appendix F - Ground Water and Seepage Study Appendix G - General Earthwork and Grading Specifications List of Tables and Illustrations ITables Page Table 1 - Summary of Existing and Proposed Topographic Conditions 2 ' Table 2 - Summary of Slope Stability Analyses 16 Table 3 - Summary of Geotechnical Parameters for Post -Tensioned Slab Design 20 Figures Figure 1 - Site Location Map 3 Figure 2 - Typical Section Showing Setbacks from Bluff Edge and Trail 13, Figure 3 - Retaining Wall Backfill and Subdrain Detail 24 Plates ' Plates 1, 2, and 3 - Geotechnical Map In Pocket Plate 4 - Geotechnical Cross Section A -A' In Pocket Plate 5 - Geotechnical Cross Section B-B' In Pocket Plate 6 - Geotechnical Cross Section GC' In Pocket Plate 7 - Geotechnical Cross Section D-D' In Pocket Plate 8 - Geotechnical Cross Section E-E' In Pocket Plate 9 - Geotechnical Cross Section F-F In Pocket ' Plate 10 - Geotechnical Cross Section G-G' In Pocket Plate 11 - Geotechnical Cross Section H-H' In Pocket Plate 12 - Geotechnical Cross Section I -I' In Pocket ' -u- LEIGHTONANDASSOCIAM INC ' 1851578-04 ' 1.0 INTRODUCITON 1.1 Purpose and Scone ' This geotechnical review and the accompanying analyses were performed by Leighton and Associates, Inc. (Leighton) to evaluate the geotechnical conditions and to provide recommendations for earthwork construction at Tentative Tract 15011 in the City of Newport ' Beach, California. The Rough Grading Plan, Tentative Tract No.15011, was prepared by MDS Engineers, Inc. at a scale of i inch equal to 40 feet and delivered July 21, 1995 in three sheets. The Tentative Tract map was prepared for The Irvine Company by Van Dell and Associates, ' Inc. at a scale of 1 inch equal to 60 feet, dated October 1994. The 40-scale rough grading plan with topography was used as the base for the Geotechnical Map to illustrate the geotechnical conditions and proposed remedial earthwork (Plates 1, 2, and 3). Our work included the following tasks: • Review of pertinent published and unpublished maps and reports (see Appendix A for Ireferences); • Review of historical sets of stereoscopic aerial photographs (see Appendix A for list); • Drilling of four bucket -auger borings, and review of the logs of twelve bucket -auger borings drilled in 1986 by Geosoils, Inc. and eleven bucket -auger borings drilled in 1990 by Geosoils, Inc. (Appendix C); • Review of the logs of nine trenches excavated in 1990 by Geosoils, Inc. (Appendix C); ' • Preparation and analysis of nine geotechnical cross sections for slope stability (Appendix E); • Laboratory analysis of representative soil and bedrock samples, and review of previous analyses by Geosoils, Inc., for in -place moisture and density values, shear strength, consolidation characteristics, and permeability (Appendix D); ' • Performance of twelve packer tests from three air -rotary borings to a maximum depth of 60 feet, to test the in -situ permeability of bedrock in the vadose (unsaturated) and saturated zones; ' • Analysis of ground -water conditions and the effect of proposed development and mitigation measures on the potential for infiltration and related seepage at the bluff face; ' • Development of remedial earthwork measures to be implemented during grading and earthwork activity, • Preparation of this report, including the accompanying geotechnical maps and cross -sections (see Plates 1 through 12). ' 1EIGHIONAND ASSOCIATA INC 1851578-04 1.2 Site Location and Description Tract 15011 is situated on a nearly flat mesa above the eastern bluff of Upper Newport Bay, approximately 120 feet above mean sea level (Figure 1) . At the present time, the mesa is covered by wild grasses, except in a local area in the northern portion of the property, where a dammed swale downstream of a storm drain outlet has created an ephemeral pond surrounded by a wetland of low trees and shrubs (Plate 1). The site is bounded by Jamboree Road to the east, San Joaquin Hills Road to the north, Back ' Bay Drive to the west, and John Wayne Gulch to the south. The mesa top slopes gently to the west from Jamboree Road toward Back Bay Drive, but most of the 100+ feet of vertical relief across the property is localized in a steep bluff along the western margin of the property immediately adjacent to Back Bay Drive. Table 1 provides a summary of existing and proposed topographic conditions. ' TABLE 1 Summary of Existing and Proposed Topographic Conditions Feature Existing Condition Proposed Condition ' Lowest elevation 10 feet msl 10 feet msl Highest elevation 123 feet msl 141 feet msl ' Elevation difference across developed portion 15 feet 51 feet Highest natural bluff face 101 feet 101 feet Maximum structural fill thickness -- 30 feet internal finished slope height ---- 30 feet IMaximum 1.3 Proposed Development The proposed development will be at approximately the grade of Jamboree Road, 110 to 120 feet above sea level, with property lines set back from the bluff face above Back Bay Drive. ' The shallow dammed swale and its wetlands vegetation will remain undeveloped. Approximately 28 residential lots lie to the north of the swale, and approximately 140 lots are to the south of it. The setback between the top of the bluff and the edges of the perimeter lots is more than ' 65 feet, within which lies a bluff -top trail will be located A series of graded earthen mounds -is proposed to be landscaped in the strip between the residential lots and Jamboree Road The mounds will reach a maximum elevation of 141 feet msl, and in most places range from 10 to 20 feet above the adjacent lots. Along the southern margin of the property adjacent to John Wayne Gulch, the pads are proposed to be cut to a finished -grade elevation of approximately 25 feet below the existing grade. The pads across much of the rest of the site are to be filled to a height of 5 to 8 feet above current ground level. -2MW - Lr10HTONANDASSOCIATA INC • ::A ' a, "% ,• 4 � j:•�J '�' �� �,• !Canna del Ma ` m •Par ?; o r,�_?3 •y- •,I NAWN :9 ✓„^,y ;thy ..��P. ���:� <� •a-+`"�Iy � ' (�lH v ell *u; +,. _ sdh C �` 3 i=' 'I a w,J...BIg• ►� SUBJECT SITE' : A �'C?Sel' �' .! `;.` low'.• .V eY.� /•P� // O '_ _ rah 1naa;: i� � •.:• i • It••t sly. / ��`',•,,,.; .• �•J . (J�r\ \ �� ��.I. _�QO,� �� ___ 1 _ 101nOn rya �� i 7• � ��\•i • ^•�;, �\ � .'!.. "..:: _ ___`� —'—� � 73: � \ Count i ` arbor /.. = o I • •\ ^r : t }oflinsc �, .. W • 34.-._ .-'uen.— 17�R ;.. - �� �T`P e'�5; ' 1 \ �.� "•`'I — \etn 02 o •,14 3�^-. _gym SITE LOCATION MAP BASE MAP: U.S.G.S.71/2 Mlnute NEWPORT BEACH QUADRANGLE NEWPORTER NORTH PROPERTY Project No. • 1BSS78-04 TENTATIVE TRACT 15011 CITY OF NEWPORT BEACH, a/siss CALIFORNIA Date Figure No.1 -3- ' 1851578-04 ' The bluff face along Back Bay Drive and the westerly portion of the slope above San Joaquin Hills Road are to be left in their current state per the requirements of various jurisdictional agencies. The eastern portion of the slope along San Joaquin Hills Road is planned to be removed and recompacted as a stabilization fill in order to improve long-term stability of that portion of the slope, and to control the existing seepage of ground water from the slope face. ' A 1.5:1 reinforced (with geogrid) fill slope with a Loffei wall locally within the fill slope is proposed above the shallow slope along John Wayne Gulch, from an elevation of approximately 60 feet to approximately 75 to 88 feet. Also, portions of the next tier of slopes from approximate elevation 88 to 116 will be up to 1.5:1 geogrid-reinforced slopes. All other manufactured fill slopes are designed at a finish gradient of 2 horizontal to 1 vertical or shallower. ' IA Limitations ' This report was prepared for the sole use of the Standard Pacific Corporation for the purpose of implementing the specific grading plan referenced above. It was necessarily based in part upon data obtained from a limited number of soil and/or other samples, tests, analyses, histories ' of occurrence, spaced subsurface borings and trenches, and observations of others. Such information is understood to be incomplete; differing characteristics and conditions can be present within small distances and under various climatic conditions. This report is not authorized for use by, and is not to be relied upon by any party except the Standard Pacific Corporation. Use of or reliance on this report by any other party constitutes an agreement to defend and indemnify Leighton from and against any liability which may arise as a result of such use or reliance, regardless of any fault, negligence, or strict liability of Leighton. I I I I I i 1J 1 i 1851578-04 2.0 GEOTECHNICAL OBSERVATIONS AND FINDINGS 2.1 Geologic Setting Tentative Tract 15011 lies at the northwest end of the San Joaquin Bills geomorphic province, an uplifted fault block between the Newport -Inglewood Structural Zone to the southwest, and the Elsinore Fault to the northeast. The San Joaquin Hills block has been dissected by the Santa Ana River and its tributaries. The site itself occupies a nearly flat mesa on the east side of Upper Newport Bay, which was the principal mouth of the Santa Ana River in the early part of this century. Today the bay is the outlet only for San Diego Creek, which was originally a tributary to the Santa Ana River. The main Santa Ana River outlet is now a few miles to the northwest, on the west side of the mesa on which the City of Costa Mesa is now located. The site is underlain by folded and fractured beds of the Tertiary Monterey formation, capped by a thin veneer of sandy Quaternary terrace deposits. The base of the terrace deposits is a wave -cut platform created when this section of the San Joaquin Hills block was at sea level, approximately 120,000 years ago. The broad uplift of this entire section of the southern California coast during the past 250,000 years was probably accomplished primarily by accumulated movement on the bounding fault systems, especially the Newport Inglewood system, which passes at this location just offshore to the southwest 2.2 Bedrock Monterey Formation (Mal! Symbol: Tm): The Monterey Formation underlying this site is a sequence of marine sedimentary rocks of late Miocene age, which is well exposed on the steep bluff above Back Bay Drive. The rock types are predominantly siliceous and non -siliceous clayey siltstone, with abundant interbeds of clayey diatomaceous siltstone and fine sandstone. Local irregular lenses and thin beds of water -laid iufE; commonly altered to highly plastic clay, are also present. Beds range from less than 1/4 inch to approximately 3 feet in thickness, and bedding is commonly very pronounced. Joints are common and closely spaced; at least one set is oriented nearly vertically in the bluff face. They vary from slightly open to closed or filled, but appear to be the primary source of permeability in the bedrock at this site. Landslides in the Monterey Formation are generally common, and occur as rotational slumps or earthflows in highly weathered portions, or as block glide failures along bedding planes where adversely oriented, unsupported bedding is exposed in slopes. Monterey bedrock is generally rippable, but may generate some oversized blocks in the highly siliceous siltstone. The presence of diatomite in the finer grained beds produces very low density soils with very high natural water content. These materials may be difficult to compact at their existing moisture contents and may need special compaction criteria for use as engineered fills. A thin (1 to 2 feet) soil composed of highly weathered siltstone fragments, silt, and sand with plant roots locally covers the areas where the Monterey Formation is exposed at the surface. -5- UIGNrOMANDASSOCIATES, INC 1851578-04 2.3 Surficial Deposits ' Terrace Deposits (Map Symbol: Ot): Sandy beach and shallow marine sediments form a thin mantle on top of the Monterey Formation across nearly the entire site. The fine sands and silty sands that compose the terrace deposits are loose, compressible, and permeable. They commonly contain a basal gravel layer containing fragments of the underlying siltstone and sandstone of the Monterey Formation. Their maximum thickness on the site is approximately 7 feet. Bedding is generally approximately horizontal and indistinct to massive. Across most of the site, the top of the terrace deposits consists of a thin (1-2 feet) layer of topsoil (not mapped) that has developed on the terrace since it was uplifted and exposed The terrace materials are not satisfactory for supporting structures in their current condition, and they should be removed ' and recompacted during grading. Because the terraces in this area have been rising relative to sea level at a fairly constant rate, the age of the terrace deposits can be interpreted from their current elevation of approximately 110 feet msl. This corresponds to a position at sea level approximately 120,000 years ago. Tonsoil/Slopewash not mapped/MapSSvmbol• Osw): A layer of medium brown, loose, dry sand with plant roots comprises a topsoil layer over much of the mesa. The layer is primarily reworked (for agriculture) terrace deposits. On the slope adjacent to John Wayne gulch, the topsoil may have moved downslope as slopewash or colluvium deposits and is anticipated to be thicker. This material has been mapped as slopewash on the Geotechnical Map and on Geotechnicai Cross -Sections. Artificial Fill (Man Symbol: AD A thin slope cover of artificial fill was observed along the ' eastern part of the slope above San Joaquin Hills Road The fill was apparently placed during repair of the slope failure associated with the storm drain on the slope face. This fill is in the saturated and seeping portion of the slope face. A second deposit of artificial fill comprises the earthen dam in the wetlands area that is to be preserved The portions of the dam beyond the wetlands will be removed and recompacted during grading. 2.4 Geologic Structure ' Regional tectonic activity has uplifted the bedrock in the region into an elongated arched fold (anticlinorium) trending to the northwest beneath the San Joaquin Hills. The resultant exposures of the Monterey Formation reveal the bedding to be highly folded and locally faulted, ' producing exposures of bedrock with widely varying orientation at the ground surface. The small scale of folding in the Monterey has the effect of exposing different beds in horizontal cuts across the surface of the site, and layers with different orientations in exposed slope faces cut into the bedrock. Since some of these orientations will be adverse to the slope face (i.e., u J dipping out of slope at a shallower angle than the slope), the internal slopes in the project will be buttressed for support against sliding failures. -6- IEIGHTONANDASSOCIATES, INC ' 1851578-04 There are no known active faults in Tentative Tract 15011. Faults in this segment of the San Joaquin Hills generally strike northwest with nearly vertical dips, subparallel to the Newport - Inglewood Structural Zone faults offshore to the southwest. They may be former splays of that system which are no longer active. Inactive traces of the Newport -Inglewood faults have been mapped as close as 2,000 feet to the northeast and southwest of the site. A second set of faults, ' with a north -south to N10°E strike, was observed in grading of the Newport North property approximately three miles to the north of this site, at Jamboree Road and MacArthur Boulevard. These faults were interpreted to be part of a right step in the ancestral Newport -Inglewood Structural Zone, and they were also found to be inactive. The Monterey bedrock contains abundant closely spaced fractures which, along with local sand and diatomaceous sand layers, appear to be responsible for most of the permeability in the bedrock. The fracture sets vary from open to filled to closed, as observed in the steep bluffs adjacent to Back Bay Drive. 2.5 Seismicity and Seismic Hazards The two principal seismic considerations for most properties in southern California aie: a) surface rupturing due to the presence of active faults beneath the site, and b) damage to structures due to intense seismic ground shaking. In addition, large earthquakes may be accompanied by secondary hazards including liquefaction, earthquake -triggered landslides, subsidence or settlement of fill or loose soils, and tsunami and seiches. ' No active faults have been mapped crossing the subject site. Since the surface rupture hazard is limited to the surface traces of active faults, the likelihood of future fault rupture directly on the site is very low. The site is not located in an Alquist-Priolo Special Studies Zone. The locations of earthquakes of Magnitude 5.5 or greater that have occurred within 100 miles of the site since 1800 are shown in Figure B-1 and listed in Table B-1(Appendix B). Figure B-2 ' shows the frequency of recurrence of earthquakes of different magnitudes within that same 100 mile radius since that time. It shows that a Magnitude 4.5 event occurs on average about once a year, but a Magnitude 6 event occurs only about once every ten years. rl II 1 The Newport Inglewood fault system, approximately 2.5 miles (4 km) to the west of the site, is considered active and likely to generate the most damaging levels of ground shaking in the future. The March 1933 Long Beach earthquake resulted from movement on a segment of this fault system. Its epicenter was approximately 5 miles west of the Newporter North site, and it produced an estimated 0.33g peak horizontal ground acceleration, or PGA, at the site (Table B-1). Another earthquake in 1812, which severely damaged the mission at San Juan Capistrano, produced an estimated PGA of 0.40g at the site. During the past 195 years, these two earthquakes produced the most intense shaking at the site. Based on this historical data set only, the probability that PGA values will exceed O.1g in the next 50 years is approximately .53, and the probability of exceeding 0.2g is approximately .40 (Table B-2). However, the historical record of 195 years is generally believed to be too short a period of time to determine the probability values accurately. .L_L 1851578-04 In addition to the Newport Inglewood fault system, the Chino, Elsinore, Palos Verdes, and Whittier faults are capable of producing ground shaking levels of 0.15g or higher at the site, if a major earthquake occurred along any of these active faults (Table B-4). A deterministic analysis of the intensity of potential ground shaking from future earthquakes calculates the peak horizontal ground acceleration (PGA) to be expected if an earthquake were to occur on any of the known active faults at its closest point of approach to the site (Table B-4). The methods of estimating the largest earthquake for a specific fault are generally based on the length of the fault or of individual fault segments that are believed capable of rupturing during a single earthquake. The "maximum credible" earthquake is the largest that could be expected if the fault ruptured along its entire length in a single event. The "maximum probable" earthquake is the maximum earthquake that is likely to occur during a 100 year interval. The analysis shows that the most intense shaking at the Newporter North site would result from the maximum credible earthquake (M7.0) and the maximum probable earthquake (M5.75) occurring on the Newport -Inglewood fault system. Those earthquakes would produce PGA values of 0.50g and 0.18g, respectively (Table B-4). By comparison, the maximum credible earthquake on the San Andreas fault produces an expected PGA at this site of only about 0.1g. Although the maximum credible earthquake on the San Andreas would be much larger (M8.3), the nearest,point on that fault to the Newporter North site is more than 50 miles away (Table B-4). As the seismic waves propagate away from the earthquake source, they "attenuate" or diminish in amplitude. At a distance of 50 miles from the fault, they are approximately one tenth of their amplitude at the fault. Figure B-3 shows the attenuation of PGA with increasing distance from the source of the earthquake to the site. Beyond 50 miles from the site, earthquakes are not capable of generating ground accelerations much above 0.15g. The most active fault in historic times in southern California has been the San Jacinto fault (Table B-4, "Hot Springs -Buck Ridge"), approximately 57 miles to the east of the site. The San Jacinto fault has experienced several earthquakes greater than Magnitude 6 in historic times, but the ground shaking from a maximum credible earthquake along this fault (M7.0) is anticipated to be only 0.04g, because the fault is so far away from the site. The deterministic analysis does not consider how likely or unlikely an earthquake on a specific fault would be. It simply calculates the maximum acceleration that could be expected if the most severe earthquake actually occurred along each of the known fault systems in the area. The site lies within Seismic Zone 4 of the Uniform Building Code. 111GNrONAND ASSOC1AM, INC I 2.6 Undslid_es ' There are no landslides mapped on the property that affect the proposed development directly. The proposed development is confined to the nearly flat mesa top, with setbacks from the bluff faces of 65 feet or more. There is a suspected steep bluff failure at the southern edge of the ' steepest section of bluff facing Back Bay Drive, approximately 600 feet south of the intersection of Back Bay Drive and San Joaquin Hills Road (remainder is mapped as Qsw, Plate 2). Based on review of the aerial photographs from 1953 and 1980, the failure appears to be two adjacent ' features with a combined width of approximately 250 feet, and a maximum original horizontal thickness of a few tens of feet. The failure appears to have been modified extensively by erosion due to surface water flow over the head of the original scarp to the base of the bluffs ' below. An embankment of debris apparently derived from the failure is still present at the base of the bluff adjacent to Back Bay Drive, but the toe of the debris has been removed for construction of Back Bay Drive. ' 2.7 Ground Water and Seenaee Ground water was encountered in 24 of the 27 borings drilled at the site, at depths from 6 to more than 70 feet below ground surface (Plates 1, 2, and 3). The presence of ground water beneath the site currently, and the potential for future buildup of ground water due to landscape ' irrigation is a significant factor in the design of remediation measures for development. The ground -water conditions are described in more detail in Appendix F. In general, the shallowest ground -water levels are in the vicinity of the wetlands in the northeast portion of the site, and ' they decrease to the north, west, and south with distance away from the wetlands. Along the slope above San Joaquin Hills Road, the water table intersects the slope face, and seepage from that slope face has generated a thick stand of vegetation and runoff to the surface drainage ditch ' adjacent to the road. The primary source of water, and the current control on the elevation of the water table ' beneath the site is the ponded water in the dammed swale adjacent to Jamboree Road. The swale is located on approximately 5 feet of Quaternary terrace deposits, which are highly permeable. Water which ponds there infiltrates into the terrace sands and spreads laterally. ' The dammed swale creates a nearly continuous source of water to the property at an elevation of approximately 115 feet msl. Other sources of ground water include underflow onto the site from beneath Jamboree Road ' and the higher topography in Newport Center to the east, and seasonal rainfall infiltration through the highly permeable terrace deposits that cover the top of the mesa. In addition to seeping out onto the San Joaquin Hills slope, ground water exits the site into Upper Newport Bay beneath Back Bay Drive and John Wayne Gulch. In the borings, ground water was observed seeping from the thin sand and diatomaceous sand ' beds of the Monterey Formation, along the numerous fractures in the siliceous siltstone beds, and through the pervasive fractures that cut across bedding. Testing for in -situ permeability of the bedrock gave hydraulic conductivity values in the range of 0 to 5 feet per day (Appendix F). The loose terrace deposits are presumed to be more permeable, and appear to stone water -9- Ot ' LEIGHTONANDASSOCIATH, INC ' 1851578-04 briefly during the winter storm season. In fact, nearly all rainfall generally infiltrates into the site; evidence of recent surface runoff from the bluff top is rare. ' Ground Seepage Model 2.7.1 -Water ' The field conditions and conservative assumptions about the ground -water regime at the incorporated into an analytical model of the site, based on the mathematical site were solution of the Depuis equation for steady flow in an unconfined aquifer. The site was modeled as a series of three two-dimensional flow models along the three cross -sections (Cross -Sections 1-V, 2-2', and 3-3') shown on Figure F-1 in Appendix F. These cross -sections extended from the pond area through the bluffs to San Joaquin Hills Road, I'I Back Bay Drive, and John Wayne Gulch, respectively (Appendix F). ' The current ground -water conditions were established on the basis of the wells that encountered ground water during the exploration of the site. They demonstrated that the ' piezometric surface is controlled largely by the infiltration of water from the pond area, and its exit from the site through the San Joaquin Hills Road slope, through the bedrock beneath Back Bay Drive and into the bay, and through bedrock into John Wayne Gulch and thence to the bay. In addition, the model assumed that the present rainfall of ' approximately 12 inches per year onto the site was completely absorbed and infiltrated to the water table. Future ground -water conditions were postulated in two different ways. First, we assumed that the site would have 84 inches of combined rainfall and irrigation, and that the entire amount was available to infiltrate to the water table ("maximum irrigation"). Second, we ' assumed the presence of a thin cap of compacted fill, which had a hydraulic conductivity value one order of magnitude less than the bedrock, across the entire site. The 84 inches of rain and irrigation were applied to the surface of the cap, but only a small portion of ' that water seeped through the cap and into the ground -water system ("conservative irrigation"). We then evaluated the change in ground -water table as a result of these two assumptions. The details of the model and assumptions are given in Appendix R ' The first assumption, of 84 inches of infiltration per year (maximum frrigation case), produced a steady-state rise in the water table of several feet (Figures F-9, F-10, and F-11). It further showed that the water table would intersect the bluffs along both Back Bay Drive and John Wayne Gulch, and the seepage situation would worsen along San Joaquin Hills Road. It is this pattern that we believe has occurred at several other sites adjacent to ' Upper Newport Bay, where irrigation is widespread and the developed area sits atop permeable terrace deposits which absorb the irrigation water and conduct it to the bluff faces. The second assumption, of a low permeability fill cap of sufficient thickness that it is not penetrated by utility trenches or plant roots, produced a steady state water table level ' (conservative irrigation case) that was indistinguishable from the present condition (pond only), which is being driven primarily by the presence of the ponded water in the wetlands area. In the model, we used a fill cap that was eight feet thick, because some of the utility trenches, future swimming pools, and aggressive tree roots may extend that deep. However, M&W -10- ' IEIONrONAND ASSOCIATES. INC 1851578-04 ' the cap is effective even if it is very thin, provided it is not breached by an excavation that can become a major source of future ground -water infiltration. ' In summary, based on this model, it appears that a low -permeability soil cap will significantly help in controlling the effects of the expanded irrigation anticipated after the ' development has been completed. The presence of subdrains in conjunction with specific slopes further improves the conditions from the present case, even after the proposed development. Some areas, such as the more westerly parts of the San Joaquin Hills Road ' slope, are still likely to be impacted by the presence of the pond and related wetlands, which are proposed to remain, even after development. These areas cannot be remediated because habitat restrictions preclude any grading or earthwork on the slope (Plate 1). ' 2.8 Riouability and Oversized Materials ' Earth materials encountered during grading of the subject site are expected to be rippable using conventional earthmoving equipment. Oversize material may be generated locally in the siliceous siltstone beds in the Monterey formation, but these beds are highly fractured where they have been observed onsite, and oversized materials are expected to be of limited quantities. ' 2.9 Slope Stability Natural slopes are present on three sides of the proposed development. At the southwestem ' end of the property, a fill slope is proposed above a gentle natural slope into the bottom of John Wayne Gulch (Plate 3). The natural slope, to be left in place, has a maximum gradient of approximately 3:1 (horizontal -vertical), but most of the slope has a gradient of 4:1 or shallower. ' Beds dip into slope or are neutral along the eastern half of the slope (Cross -Sections A -A' and B-B', Plates 4 and 5, respectively) and they dip out of slope in the western half (Cross - Section C-C', Plate 6). Conditions are best illustrated in the logs for Borings BH-5, BH-4, BH- ' 11, and BH-3 by Geosoils (1991) reproduced in Appendix C. Stability analyses have been performed for Cross -Sections A A', B-B', and C-C', and are presented in Appendix E. ' The west -facing bluff above Back Bay Drive is underlain by siltstone, diatomaceous siltstone, claystone, and sandstone beds of the Monterey Formation which are folded and fractured. It is considered grossly stable with respect to bedding plane failures, since most bedding in the in - place bedrock is neutral or into slope. However, these bluffs are subject to shallow rock falls and slides. Specifically, the viewpoint at the top of the bluff near the corner of Back Bay Drive and San Joaquin Hills Road, is not acceptable for structures. Property line setbacks of at least 65 feet or more from the top of the bluff are being proposed. These are behind a 2:1 projection from the base of the bluffs, and are considered appropriate. The conditions are illustrated in Figure 2 and in Cross -Section D-D' (Plate 7). ' The north -facing slope above San Joaquin Hills Road has a gradient of approximately 3:1 (horizontal. -vertical) at its western end, and transitions to a 2.5:1 gradient to the east of the steep drainage channel cutting the slope face (Plate 1). This slope is also underlain by Monterey III ' siltstones and sandstones, with a thin cap of silty sands of the Quaternary Terrace deposits at ' 1EIGNTONAND ASSOCIATES, INC ' 1851578-04 the top. Folding in the Monterey bedrock produces into -slope bedding dips in the upper part of the slope, but local out -of -slope dips in the lower part. Several zones of seepage are also ' visible on this slope. Slope stability has been analyzed (Appendix E) for five cross -sections through this slope (Cross -Sections E-E' through I-1) and a shear -key buttress with subdrains has been designed for placement behind the slope face, to accommodate the requirement that vegetation on the western portion of the slope face be left untouched. A stabilization fill with subdrains is recommended for the remainder of the slope. Further details are discussed in Conclusions and Recommendations, Natural Slopes, Section 3.2.1 t Fill slopes within the proposed development are a maximum of 30 feet high and will be composed of engineered and geogrid reinforced fill constructed with a slope gradient of 1.5:1 (horizontal -vertical) or shallower. Engineered fill will be used for 2:1 or shallower slopes and geogrid reinforcement will be added for 1.5:1 slopes or transitions between 1.5:1 and 2:1 slopes. There will not be any slopes steeper than 1.5:1. ' There are two rows of such slopes at the southern end of the development, upslope from John Wayne Gulch. The lower of the two slopes is a fill -over -natural slope to be created by cutting a key into natural ground at approximately elevation 60 feet, and constructing a side -hill fill up to approximately elevation 85 feet. Segments of this slope are proposed with Loffel walls in the bottom of the fill slope. The upper level of slope is to key into a cut at approximately elevation 85 feet and ascend to approximate elevation 115 feet. Both fill slope levels are to contain subdrains along their entire lengths. ' Low fill slopes (less than 10 feet high) will be constructed as 2:1 slopes around the edges of the ' wetlands area. After overexcavation of the unsuitable soils in the area to receive fill, the slopes will be created to reach final grade. Along the southern margin of the entry road, and along the edges of the causeway that crosses the wetlands, the slopes grade into walls to limit the impact on the wetlands area. These walls will be constructed as Keystone walls or equivalent, in accordance with the plans. These walls will be partially submerged during periods of wet weather and high runoff from the ofEsite drain that replenishes the wetlands. The design of these walls and their backfill takes into. account the variable water levels that may exist in the ' adjacent pond from time to time. The details of the design are given in a separate report. There are no cut slopes on the site that will expose bedrock. All cuts shown on the grading plan ' will be overexcavated and backfilled with an engineered fill cap or will be buttressed by a replacement or stabilization fill. 2.10 E_px ansive Soils LI Fills created from the Monterey Formation bedrock may vary in expansion properties from low to high. Fills created from the Quaternary Terrace deposits will generally have a low expansion index. Foundation design recommendations should be based on testing of soils at or near the ground surface at the conclusion of rough grading. 301M LEIGHTON AND ASSDCIA74 INC m a m m a a a a m a a m to a 111a a is a s ,toe �o�ec 2 26.60 TraiMea Drain Inlet back x Whin ProoertY Setbackx xGreoW Distance of Two Cases WillApply P/L 1;.{�,/ EGrade 2' Typical Tao of Bluff NEWPORTER NORTH TYPICAL SECTION BLUFF EDGE AND TRAIL BLUFF SETBACK CRITERIA PER CRY OF IEWPORT BEACH GENERAL PLAN N.T.S. TYPICAL SECTION SHOWING SETBACKS FROM BLUFF EDGE AND TRAIL Project No. 1851578-04 Scale NOTTOOPIRWB C �W �I Eng./Geol. OP/RM/BRC �IILLJJ,'"'LLJJII� Drafted by LAH Date 8/9/95 _ Figure No. 2 1851578-04 3.0 CONCLUSIONS AND RECOMMENDATIONS ' 3.1 General Conclusion We conclude that the subject grading plan is geotechnically acceptable for the proposed development, provided the recommendations of this report are implemented. ' It is important to understand that the conclusions and recommendations of this report are based on preliminary subsurface conditions as interpreted from limited exploratory borings, trenches, and test pits at the site. They should be reviewed and verified during site grading, and revised accordingly if the exposed geotechnical conditions vary from our preliminary findings and interpretations. ' All grading should be performed in accordance with the General Earthwork and Grading Specifications (Appendix G) and in accordance with all applicable requirements of the City of Newport Beach, unless specifically revised or amended below. 3.2 Slope Stability 3.2.1 Cut Slopes Stabilization fills are recommended for the cut slopes proposed near the top of the ' existing natural slope above John Wayne Gulch, from approximately elevation 85 feet to elevation 115 feet. The stabilization fills have a design key width of 20 feet or greater, with a subdrain at the heel of the key. Areas of these slopes which are steeper than 2:1 (up to a maximum of 1.5:1) will be geogrid reinforced. Design specifications will be submitted in a supplemental report for these slopes. ' A replacement fill is recommended for the existing cut slopes for approximately 600 feet along the eastern portion of the slope above San Joaquin Hills Road, where seepage from the existing slope face is present (Plate 1). At this location the slope has an approximate 3:1 (horizontal vertical) existing grade, and will be reconstructed to approximately its current grade, except that the reconstructed slopes will contain terrace drains. The stabilization should contain subdrains at the heel of the key, and at 30-foot-vertical intervals, or more closely spaced if determined by the geotechnical consultant, along the ' backslope of the buttress excavation. The backcut is proposed to be cut at a 2.5:1 grade, or as specified by the geotechnical consultant in the field. ' A shallow cut along Jamboree Road for surface -drainage control is in an area where the near -surface soils will be overexcavated and recompacted to a depth greater than the design cut. Therefore, it is anticipated that the finished grade will be engineered fill. ' No cut slopes will expose bedrock on the site. All cuts shown on the grading plan will either be built with the engineered fill cap, or be buttressed by a replacement or ' stabilization fill. ' -14- ' LEIGHTONANDASSOCIATES, INC 1851578-04 3.2.2 Existing_ Slopes ' Based on the subsurface information available, the natural slope facing John Wayne Gulch is grossly stable. The slope stability analysis for Cross -Sections A -A', B-B', and GC' are attached in Appendix E. The fill to be placed above the natural slope should be keyed into competent bedrock, and subdrains should be installed in the key to control the presence of ground water. The natural bluff facing Back Bay Drive is subject to surficial rock falls or steep slides, due to the extremely steep local topography. Bedding surfaces generally dip into slope, but failures along joint surfaces can be anticipated A minimum property setback of 40 feet from the top of the bluff or 2:1 from the base of the bluff at Back Bay Drive has been conditioned by the City of Newport Beach for this bluff feature. Structure setback requires an additional 20 feet (minimum 60 feet total). We concur with this condition. The proposed plan meets or exceeds these criteria. The existing natural slope facing San Joaquin Hills Road exposes local, out -of -slope bedding conditions, in addition to seepage from the slope face. The slope is grossly stable for its total height, except at the most westerly end where a fold in the bedding produces a locally unstable condition at the location of Cross -Section E-E' (Plate 8). The stability analysis for that section, and for the adjacent Cross -Sections F-F (Plate 9) and G-G' (Plate 10) are included in Appendix E. A deep shear key is proposed at the top of slope behind this natural slope in order to control ground water and improve the gross stability of this portion of the slope. Along the trend of Cross -Sections F-F and G-G', the slope satisfies gross stability but it is not adequately stable for localized toe failures. This area cannot be further remediated due to the requirement that the existing vegetation be preserved. The remainder of the slope is preserved in front of the proposed shear key, which transitions to a stabilization fill east of Cross -Section G-G' (Cross -Sections H-IT and I -I', Plates 9 and 10, respectively). Results of stability analyses for Cross -Sections A -A' through I -I' are summarized in Table 2. -15- LfIGNIONAND MOCIATA INC u 1851578-04 I 1 1 11 t TABLE 2 Summary of Slope Stability Analyses Section Static FS Seismic FS Remarks A A' 1.51 1.47 B-B' 1.55 1.25 with 30' key C-C' 1.54 1.33 with 30' key D-D' 1.55 1.22 E-E' 1.68 1.16 with 30' key F-F 1.42 1.57 1.84 1.14 1.17 1.41 toe (habitat) mid -slope gross G-G' 1.20 1.43 1.77 1.05 1.17 1.44 toe (habitat) mid -slope (habitat) gross H-H' 1.65 1.55 IT 1.85 1.53 3.2.3 Fill Slopes Reinforced 1.5:1 (horizontal. -vertical) fill slopes are proposed along the existing natural slope above John Wayne Gulch, at the southern end of the tract (Plates 3, 4, 5, and 6). The base of the lower slope will be at approximately elevation 60 feet and rise to approximately elevation 85 feet. A toe key is recommended along the entire slope, with the key widening from 20 feet at the eastern end to 30 feet at the western end to accommodate the local Loffel wall backfill. Subdrains are proposed for the entire length of the key. Additional design considerations for the reinforced slope and Loffel wall are given in a separate report. ' In addition to the fill slopes created by the stabilization fills for slopes, shallow fill slopes are proposed along the western and northern margins of the site. Our analyses indicate that the proposed fill slopes will be grossly and surficially stable as designed. ' Fill slopes should be graded in accordance with the General Earthwork and Grading Specifications of this report (Appendix G), following typical toe -key excavation and benching procedures. During construction, conventional compaction procedures will be necessary so that the specified compaction can be achieved out to the slope face. These procedures may include sheepsfoot backrolling of the slope face at frequent intervals of ' 2 to 3 feet in fill elevation gain, overfilling and cutting back to the compacted core, 1 -16- ' LEIGHTON AND ASSOCIATES, INC 1951578-04 backrolling of slope faces after construction, and/or other proven methods. Oversize rock should not be placed within 10 feet vertically of the slope face. ' After compaction has been achieved to the slope face, the owner may wish to loosen the outer 2 feet for landscaping purposes (in particular, habitat restoration as recommended by the biologist), to 85 percent relative compaction. The loosening increases the risk of surficial failures on the slope face, and is not recommended for fill slopes with a 2:1 grade. ' 3.2.4 Temporary Girt Slopes ' The temporary cut slopes that will be created during construction of stabilization fills and keys have a potential for failure during grading. The likelihood that temporary cut slopes will fail may be reduced by: (1) keeping the time between cutting and filling operations ' to a minimum; (2) limiting the maximum length of a cut slope exposed at any one time; (3) cutting at no steeper than a 1.5:1 (horizontal vertical) inclination (and locally flatter where recommended) in locations of adverse geologic conditions and below structural areas, and a 1:1 inclination in other locations; and (4) for excavations below ground -water levels, providing an adequate dewatering system. All temporary cut slopes should be geologically mapped during grading before buttressing to identify unforeseen potential instability and/or seepage conditions. 3.3 Removal and Recomlaction of Unsuitable Soils Complete removal of collapsible/compressible materials such as topsoil, colluvium, terrace deposits, and highly weathered bedrock will be required prior to fill placement and/or construction of improvements. Our estimated depths of removals for unsuitable soil range from 4 to 8 feet below the existing ground surface. Overexcavation and/or stripping will be required over most of the areas which will receive additional fill. Actual depths and the extent of the required removals will be determined in the field based on grading observation and testing. Estimated depths of removal are shown on Plates 1, 2, and 3. Additional removals below those required for geotechnical suitability may be required to construct the low permeability soil cap with a minimum 8-foot thickness (see Section 3.4). 3.4 Diatomaceous Soils Fill soil created from the Monterey Formation bedrock may contain high percentages of diatomaceous silt. This material is much less dense than other soils, and commonly much higher ' in moisture content. As such, it may be extremely difficult to compact to 90 percent of maximum density, the standard criterion for engineered fill soils. Due to distinctly different characteristics of diatomaceous and non -diatomaceous materials on the site, grading operations ' should be carefully monitored. To the extent possible, selective grading should be performed -17-. ' LUGHTONANDASSOCIATES, INC 1851578-04 using terrace deposits around subdrains and in the bottom of keyways and less permeable materials for the cap. Thoroughly mixed blends of these materials can be used for the cap, provided their suitability is verified in the field by additional testing. The standard compaction ' criteria (90 percent of maximum per ASTM D1557) would apply to all but the predominantly diatomaceous materials. For predominantly diatomaceous fill materials, a modified compaction criterion would apply (95 percent of maximum achievable dry density at in -situ moisture content, where achievable dry density is in accordance with ASTM D1557), subject to fmal.approval by the geotechnical engineer based on field performance. 3.5 Lot Carmine and Selective Gradine A cap of low permeability soil is recommended for all residential lots and other areas which will receive landscape irrigation after development, including any areas to be irrigated outboard of the proposed bluff trail. The bluff -top turnaround area will not be capped since it is outside of ' the proposed irrigation area. The minimum thickness of the cap should be 8 feet, or a minimum 2 feet deeper than the deepest proposed postgrading excavations. Fill materials constructed of combinations of the Quaternary terrace deposits and Monterey bedrock in which the Monterey bedrock is no less than 25 percent by volume, are expected to form an appropriate low -permeability soil cap, when ' compacted to 90 percent relative compaction. The actual proportioning of the soil mix will be based on field conditions and testing during grading. The soil cap should have a laboratory hydraulic conductivity value of less than 0.01 feet/day. Diatomaceous soils (if compacted to a different criterion) or very clean fine sands should be tested in place, or in the laboratory, to confirm their acceptability for use as a lot cap at this site. The geotechnical consultant should evaluate the suitability of the capping materials during grading. ' After the low -permeability soil -cap requirement has been satisfied, fill materials in the upper 1 to 2 feet of the non-structural landscaped mound areas along Jamboree Road may be placed at 85 percent relative compaction, except in zones within a 1:1 projection to competent bedrock from the adjacent lot line or structure, where the fill to 90 percent compaction criterion will be required A low permeability soil cap should also be constructed beneath the desilting basin at ' the southeast comer of the site (Cross -Section A A', Plate 4). 3.6 Subdrains All slope stabilization or replacement fills should be provided with subdrains in accordance with the General Earthwork and Grading Specifications (Appendix G). Locations and elevations of the installed subdrains and outlets should be surveyed for line and grade by the civil engineer prior to burial. Additional subdrains may be needed; the specific locations of the subdrains should be determined during grading based on actual field conditions. Seepage areas ' encountered during grading should be mitigated with subdrains where outlets are practical. We recommend that a subdrain with outlets directly to the Back Bay be constructed along that ' portion of Back Bay Drive which is adjacent to the toe of the steep bluff of exposed bedrock -18- ' 1EIGNTONANDASSOCAM INC 1851578-04 ' (Plate 2). The subdrain is considered to be an important mechanism for improving the natural flow of ground water away from the vicinity of the bluff to the bay. The subdrain should be protected from damage during routine road maintenance, e.g. by placing a paved cap over the top of it to prevent damage from a grader blade. I3.7 Surface Runoff and Pondin Ground surface and landscaped areas should be designed and graded to promote effective runoff of excess surface water and to eliminate ponding. We recommend that all surfaces be finish graded with a minimum 2 percent grade to an approved storm drain or catchment device. All building structures should be fitted with gutters and downspouts to collect and conduct roof runoff through closed pipes to the approved storm -drain system. Ponding of water from the offsite storm -drain pipe entering the wetland areas should be minimized and a means should be provided to conduct excess water to an approved storm drain or catchment device. The storm drain inlet adjacent to the causeway which crosses the wetlands Ishould be placed such that it acts in that capacity. 3.8 Expansive Soils The soils which will comprise the near -surface soil cap exhibit a variety of expansion index values, from low to high. In general, fills composed primarily of former Monterey Formation bedrock have higher expansion potential than fills composed of Quaternary terrace deposits. The expansion potential of the near -surface soils cannot be predicted prior to grading. However, it is estimated that a medium to high expansion potential is likely to result for fills derived from onsite materials. Consequently, the owner has elected to use post -tensioned slabs. For design purposes, the recommended geotechnical parameters are as provided in Table 3. ' These need to be verified by testing of near -surface fill samples upon completion of rough grading. Precautionary notes are as included in Table 3. ,I I I I 1851578-04 LJI 11 it IF I TABLE 3 Summajy of Geotechnical Parameters for Post -Tensioned Slab Design ITEM TYPICAL VALUE(S) Allowable Bearing q = 1500 psf Subgrade Modulus k = 40 pci Soil Modulus of Elasticity E, = 1000 psi Soluble Sulfate Content <0.015 (Use Type H Cement) Plastic Limit PL = 36% to 40% Plasticity Index PI = 579o' to 619o' Percent Clay (21L/#20(Y) 49.4% to 52.2% Type of Clay Montmorillonite Edge Moisture Variation Distance for Edge Lift em = 2.9 ft Edge Moisture Variation Distance for Center Lift ern = 5.9 ft Soil Suction pf = 3.6 Depth to Constant Suction 7 ft Velocity of Moisture Flow 0.7 in/mo Estimated Differential Swell for Center Lift Condition Ym = 3.5 in Estimated Differential Swell for Edge Lift Condition Ym = 0.92 in Notes: 1. It is recommended to presoak the slab subgrade and to maintain reasonably consistent moisture levels during and after construction. 2. Excessive changes in ground moisture levels can create conditions beyond those assumed for design which can adversely affect the slab and the structure. t 1851578-04 3.9 Reinforced Fill Slope Design ' Geogrid-reinforced slopes are recommended in areas steeper than 2:1, up to a maximum of 1.5:1 slope. Grid spacing, length, and strength should be as provided in the separate report on wall designs. 3.10 Maintenance of Graded SIoues • Surface water should be directed away from slopes and toward the street, or directly to suitable catchment devices. Water should not be allowed to concentrate and run down slope 1 faces. • In order to reduce erosion and slumping potential of graded slopes, it is recommended that all manufactured slopes within the development be planted with ground cover vegetation (e.g., grasses) and deep-rooted vegetation (e.g., trees and shrubs) as soon as practical. Prior to planting, the finished slopes may be sprayed with a protective coating or covered with jute mesh to reduce the potential for erosion and slumping before landscaping has become ' established. Erosion damage should be repaired prior to planting, hydroseeding, or placement of jute mesh. • All subdrain outlets should be kept open and free of debris to allow proper drainage. • Oversteepening of slopes should be avoided during construction and landscaping. • A rodent -control program should be established and maintained, in order to retain the compaction level of the slopes behind the slope face. • Trenches excavated on a slope face for utility or irrigation lines or for any other purpose should be properly backfilled and compacted by a vibratory plate or its equivalent, in order to obtain a minimum of 90 percent relative compaction in the slope -face soils. 3.11 Observation and Testing During Rough Grading and PostUading Geotechnical observation and testing should be conducted during the following stages of the grading and postgrading operations: • Upon completion of clearing and grubbing; • During all phases of rough grading, including removals, benching and fill operations, key excavation, pad excavation, and cut slope excavation; • During construction of Loffel and Keystone walls and geogrid-reinforced slopes; • During subdrain construction; jig 4 ZROMMANDASSOCIAM, INC r- L 1851578-04 r r r I I I F-1 I 1 During all backfill and compaction operations including building areas, trenches, and impermeable cap areas; • When any unusual ground conditions are encountered during grading. A final report of rough grading accompanied by an as -graded geotechnical map should be submitted to the City of Newport Beach at the conclusion of the grading operations. 3.12 Lateral Earth Pressures and Retaining Wall Desien Our recommended lateral earth pressures are provided below as equivalent fluid unit weights, in psf/ft (or pcf). These values do not contain an appreciable factor of safety, so the structural engineer should apply the applicable factors of safety and/or load factors during design. A soil unit weight of 120 pcf may be assumed for calculating the actual weight of the soil over the wall footing. The recommended lateral earth pressures for the anticipated fill material with drained conditions, as shown on Figure 3, are as follows: F,4uivalent Fluid Pressure (ysf/ft) Condition Level 2:1 Sloae Active 43 75 At Rest 63 100 Passive 330 120 (sloping down) Coefficient of Friction 0.35 If a retaining wall is backfilled with clean sand having a sand equivalent of at least 30, in accordance with Figure 3, the equivalent fluid unit weights of 30 pcf (level) and 43 pcf (2H:1V) ' may be used for active conditions, and 48 pcf (level) and 73 pcf (2H:1V) may be used for at -rest conditions. All retaining structures should be provided with a subdrain system as shown on Figure 3. N proper drainage cannot be provided over the full height/length of the wall, additional lateral force, due to water accumulation behind the wall, should be taken into consideration for design of the wall portion retaining the undrained zone. For undrained native backfill, the equivalent fluid unit weight of 85 pcf (level) and 95 pcf (2H:IV slope) for active conditions, and 100 pcf (level) and 115 pcf (2H:iV slope) for at -rest conditions may be used. To design an unrestrained retaining wall, such as a cantilever wall, the active earth pressure may be used. For a restrained retaining wall, such as a basement wall or a cantilevered retaining wall with restrains such as being curved or continuing around comers, the at -rest pressure should be I used. If tilting of wall segments is acceptable, and construction joints are provided at all angle points, at 20 to 30 feet spacing along straight wall sections, and more frequently along curved wall segments, the active earth pressure may be used. r r . 22 - 1EIGNTONANDASSOCIATES, INC I' 1851578-04 In addition to the above lateral forces due to retained earth, surcharge due to improvements, such as an adjacent structure, should be considered for design of a retaining wall. Loads applied within a 1:1 projection behind the heel (or back) of the wall footing should be considered as lateral surcharge. We also recommend using at -rest pressures for design of walls supporting sensitive structures, such as a building. To minimize the surcharge load from an adjacent building, deepened building footings can be considered. Passive pressure is used to compute .lateral soil resistance developed against lateral structural movement. In combining the total lateral resistance, either the passive pressure or the frictional resistance should be reduced by 50 percent. In addition, the lateral passive resistance is taken into account only if it is ensured that the soil against embedded structures will remain intact with time, and the horizonal distance between multiple foundation elements providing passive resistance is at least three times the depth of the elements. ' Retaining wall footings should have a minimum width of 24 inches and a minimum embedment of 12 inches below the lowest adjacent grade. An allowable bearing pressure of 1,600 psf may be used for footings at the recommended minimum dimensions. The allowable bearing pressure may be increased (but not exceed 3,000 psf) by 400 psf per additional foot of foundation ' embedment or by 200 psf for additional foot of foundation width. All retaining wall designs should be reviewed by the project geotechnical consultant to confirm that the appropriate soil parameters are used. 3.13 Areas Requiring Additional Geotechnical Input The following geotechnical parameters and designs will be provided in a separate report: • Loffel wall and Keystone wall designs • Geogrid reinforced slope design '' u' I I r L I I� SUBDRAiN OPTIONS FOR NATIVE MATERIAL BACKFILL OPTION N2: Pipe Surrounded OPTION Ni: Gravel Wreooed in OPTION N3: Geolextile Drain whh Class 2 Materiel Fiher Fabric With Proper Surface With Proper Surfacer . With Proper Surface Drainage Drainage Drainage Sloe or Slop a or v Slope or Level 6t' to 1 1. R Level Level Fabric Fla -\\IM- i t' Waterproofing Membrane (Optional) Weep Hole-.., Level or� Slope rpm y 1-• p\ Native Behind Core `T Native Waterproofing Backfill �1� Waterproofing Backfill Membrane v Filler Fabric Membrane (Optional) •°, (Optional) 1• — Class 2 Filter V. to IV. inch Size Gravel Permeable Material Weep Hole — a.4 Wrapped in Filter Fabrie Weep Hole — Level or{' Slope , Level or� Slope' lope 4-Inch Diameter Perforated Pipe Class 2 Filler Permeable Material Grading Per Cattrans Specifications Sieve Size Percent Passing 1' 100 3/4' 90.100 3/8. 40.100 No, 4 2S4D No, 8 1833 No, 30 S-15 No, SO 0-7 No.200 03 With Proper Surface Drainage TH VaterproofinMembrane(Optional) Level c Slope 2' oc Heel ' Proper Outlet Should be Provided for Gravel Subdraln (See Noteb) Slope or Level • H/2 or teal Width, Wticbmw Is Greeter Clean sand baekfrll having sand equivalent of 30 or greater (can be denslfed by water jetting) Subdrain Ootion S1: 1 tLo/ft of Y. to 1 W size gravel wrapped in filler fabric (see notes for outlet) Wlachererla Greeter Backfrll Miradrain 6D00- J Drain 100, Hygrid Drain 1, or equivalent r Fabric 4-Inch Diameter Perforated Pipe Fabric Flap •. Behind Core 'Miradrain GOOD or J Drain 1DO for non -waterproofed walls' , Miradrain S200 or J Drain 200 for completed waterproofed walls **Peel back the bottom fabric flap, place pipe next to core, wrap febde around pipe and tuck behind core, Subdrain Option 52• 4' diameter perforated pipe surrounded with 1 tt3/fl. of Class 2 fitter materiel per Cahrans specifications as above Subdretn Option S3 ..• for Corrugated Pipes Oniy: 4' diameter corrugated perforated ;'; pipe wrapped In filter fabric (this option should not be used for non -corrugated, smooth pipes r because fine particle earth materials ` may accumulate at the perforated holes and reduce the flow of water Into the pipe) Notes: Pipe type should be ASTM DiS27 Acrylonhrile Butediene Styrene (ASS) SDR35 orASTM D1785 Polyvinyl Chloride plastic (PVC), Schedule 40, Armco A2000 PVC, or approved equNalent. Pipe should be installed with perforations down. • Fitter fabric should be Mirafi 140N, 140NS, Supae 4NP, Amoco 4545, Trevim 1114, or approved equivalenL • All drains should have a gradient of 1 percent minimum. • Outlet portion for gravel subdrain should have a 40•diameter pipe with the perforated portion inserted into the gravel npprozimalely 2' minimum and the norlperforated portion extending approximately 1' outside the gravel. Proper sealing should be provided at the pipe insertion enabling water to run from the gravel portion Into rather than -outside the pipe. • Waterproofing membrane may be required for a speck retaining wall such as a stucco or basement wail. • Weephole should be 2' minimum diameter and provided at PT minimum in length of wall. 9 exposure Is permitted, weephole should be located al it' above finished grade. it exposure is not permitted such as for awall adjacent to a sidewalk/curb, a pipe under the sidewalk I to discharge through the curb face or equivalent should be provided, or for a basement -type wall, a proper subdrain outlet system should be provided.. Open vertical masonry joints (.e., omtt mortarfrom joints of first course above finished grade) at32' maximum intervals may be substituted for weepholes. Screening such as with a filter fabric should be provided for weepholes/open joints to prevent earth materials from entering the holesloints. RETAINING WALL BACKFILL AND SUB -DRAIN DETAIL Figure No. 3 3D672sz _9n. ' 1851578-04 APPENDIX A References Geosoils, Inc.,1991 Preliminary Geotechnical Investigation, Newporter North Development Area (No Tract Number), City of Newport Beach, California, W.O.2152-A OC, dated February 4,1991. Leighton and Associates, Inc.,1994, Supplemental Geotechnicai Investigation and Remedial Design of North Facing Slope Adjacent to San Joaquin Hills Road, Newport North Property, Tentative Tract No. 15011, City of Newport Beach, California, Project No. 1951578-02, dated October 26, 1994. ' Morton, P.K, and Miler, R.V.,1981, Geologic Map of Orange County California, Showing Mines and Mineral Deposits: California Division of Mines and Geology, Bulletin 204, Plate 1. Morton, P.K., and Miller, R.V., and Evans, J.R., 1976, Environmental Geology of Orange County, California: California Division of Mines and Geology, Open File Report 79-8 LA. U.S. Department of the Interior Water and Power Resources Services, Ground Water Manual, John Wiley and Sons, New York, 1981. ' Aerial Photographs Reviewed Scale Source Date Flight No. Frame No. 1953 AXK-6K 4,5 1"=1667' USDA 1990 80033 213,214 1"=2000' Am. Aerial Surveys I I 1 I A-1 N fig DATE: Thursday, August 3, 1995 +++++++++++++++++++++++++++++++++++++++ + * E Q S E A R C H + * Ver. 2.01 + * * + +++++++++++++++++++++++++++++++++++++++ (Estimation of Peak Horizontal Acceleration From California Earthquake Catalogs) SEARCH PERFORMED FOR: STANDARD PACIFIC CORP. JOB NUMBER: 851578-004 JOB NAME: STANDARD PACIFIC TRACT 15011 SITE COORDINATES: LATITUDE: 33.622 N LONGITUDE: 117.883 W TYPE OF SEARCH: RADIUS SEARCH RADIUS: 100 mi SEARCH MAGNITUDES: 5.5 TO 9.0 SEARCH DATES: 1800 TO 1994 ATTENUATION RELATION: 1) Campbell (1993) Horiz. - O=Soil 1=Rock UNCERTAINTY (M=Mean, S=Mean+1-Sigma): M SCOND: 1 FAULT TYPE ASSUMED (DS=Reverse, SS=Strike-Slip): DS COMPUTE PEAK HORIZONTAL ACCELERATION EARTHQUAKE -DATA FILE USED: ALLQUAKE.DAT TIME PERIOD OF EXPOSURE FOR STATISTICAL COMPARISON: 50 years SOURCE OF DEPTH VALUES (A: --Attenuation File, E=Earthquake Catalog): A TABLE B-1. HISTORICAL EARTHQUAKES GREATER OF THE SITE SINCE 1800. THAN M5.5 OCCURRING WITHIN 100 MILES I I I I TIME I I I SITE ISITEI APPROX. FILEI LAT. I LONG. I DATE I (GMT) IDEPTHIQUAKE 1 ACC. I MM I DISTANCE CODEINORTH I WEST I I H M Secl I--------I----- ()an)I I MAG. ------ I g I------- IINT.1 I----I----------- mi [kml ---- DMG I------I-------I 133.000-1117.3001 ------------ 11/22/1800 12130 0.01 3.01 6.50 1 0.016 I IV 1 55 [ 88] DMG 133.7001117.9001 12/ 8/1812 115 0 0.01 3.01 6.90 1 0.402 1 X 1 5 [ 9] DMG 134.0001119.0001 9/24/1827 1 4 0 0.01 5.81 5.50 1 0.005 1 I 1 69 [ 1111 T-A 134.8301118.7501 11/27/1852 I 0 0 0.01 3.01 7.00 1 0.007 1 II 1 97 [ 1563 MGI 134.1001118.1001 7/11/1855 1 415 0.01 3.01 6.30 1 0.029 1 V 1 35 [ 57] MGI 134.0001117.5001 12/16/1858 110 0 0.01 3.01 7.00 1 0.051 1 VI 1 34 [ 55] DMG 132.7001117.2001 5/27/1862 120 0 0.01 4.01 5.90 1 0.005 1 II 1 75 [ 121] DMG 133.4001116.3001 2/ 9/1890 112 6 0.01 3.01 6.30 1 0.004 1 I 1 92 [ 1491 DMG 134.1001119.4001 5/19/1893 1 035 0.01 5.81 5.50 1 0.002 1 - 1 93 [ 150] DMG 134.3001117.6001 7/30/1894 1 512 0.01 4.01 5.90 1 0.012 1 IIII 50 [ 801 DMG 132.8001116.8001 10/23/1894 123 3 0.01 0.01 5.01 5.81 5.70 5.50 1 0.003 1 0.009 1 I 1 1 IIII 84 49 1 136] [ 781 DMG 134.2001117.4001 7/22/1899 1 046 DMG 134.3001117.5001 7/22/1899 12032 0.01 3.01 6.50 1 0.018 1 IV 1 52 [ 83] DMG 133.8001117.0001 12/25/1899 11225 0.01 3.01 6.60 1 0.019 1 IV 1 52 [ 841 DMG 134.2001117.1001 9/20/1907 1 154 0.01 3.51 6.00 1 0.009 1 III] 60 [ 971 DMG 133.7001117.4001 5/15/1910 11547 0.01 3.51 6.00 1 0.033 1 V 1 28 [ 461 MGI 134.0001119.0001 12/14/1912 I 0 0 0.01 5.01 5.70 1 0.005 1 II 1 69 [ 1111 DMG 134.7001119.0001 10/23/1916 1254 0.01 5.81 5.50 1 0.002 1 - 1 98 [ 1581 ' DMG 133.7501117.0001 4/21/1918 1223225.01 3.01 6.80 1 0.022 1 IV 1 51 [ 831 DMG 134.0001117.2501 7/23/1923 i 73026.01 3.01 6.25 1 0.019 1 IV 1 45 [ 721 DMG 133.6171117.9671 3/11/1933 1154 7.81 3.01 6.30 1 0.327 1 IX 1 5 [ 8] DMG 133.6831118.0501 3/11/1933 1 658 3.01 5.81 5.50 1 0.083 1 VIII 10 [ 17] ' DMG 133.4081116.2611 3/25/1937 11649 1.81 3.51 6.00 1 0.003 1 I 1 95 [ 152] DMG 133.6991117.5111 5/31/1938 1 83455.41 5.81 5.50 1 0.032 1 V 1 22 [ 351 DMG 134.2671116.9671 8/29/1943 1 34513.01 5.81 5.50 1 0.005 1 II 1 69 [ 1111 DMG 134.0171116.5001 7/24/1947 1221046.01 5.81 3.01 5.50 6.50 1 0.003 1 0.006 1 I 1 1 II 1 84 89 [ 1351 [ 1431 DMG 133.9331116.3831 12/ 4/1948 1234317.01 DMG 132.8171118.3501 12/26/1951 1 04654.01 4.01 5.90 1 0.008 1 II 1 62 ( 991 DMG 133.3431116.3461 4/28/1969 1232042.91 4.51 5.80 1 0.003 1 I 1 91 [ 1461 DMG 134.4111118.4011 2/ 9/1971 114 041.81 3.01 6.40 1 0.012 1 IIII 62 [ 1001 DMG 134.4111118.4011 2/ 9/1971 114 1 8.01 4.51 5.80 1 0.007 1 II 1 62 [ 1001 DMG 134.4111118.4011 2/ 9/1971 114 244.01 4.51 5.80 1 0.007 1 II 1 62 1 1001 DMG 134.0651119.0351 2/21/1973 1144557.31 4.01 5.90 1 0.006 1 II I 73 [ 1171 ' PAS 133.5011116.5131 2/25/1980 1104738.51 5.81 5.50 1 0.003 1 I 1 79 [ 1281 PAS 133.9981116.6061 7/ 8/1986 1 92044.51 5.41 5.60 1 0.004 1 I 1 78 [ 1251 PAS 134.0611118.0791 10/ 1/1987 1144220.01 4.01 5.90 1 0.025 1 V 1 32 [ 521 GSP 133.9611116.3181 4/23/1992 1045023.01 2.91 6.10 1 0.004 1 I I 93 [ 1491 GSN 134.2011116.4361 6/28/1992 1115734.11 3.01 7.60 1 0.013 1 IIII 92 [ 148) GSN 134.2031116.8271 6/28/1992 1150530.71 3.01 6.70 1 0.011 1 IIII 73 [ 1171 GSP 134.2131118.5371 1/17/1994 1123055.41 3.01 6.70 1 0.018 1 IV 1 55 [ 891 GSP 134.3261118.6981 1/17/1994 1233330.71 5.41 5.60 1 0.005 1 II 1 67 [ 1081 GSB 134.3791118.7111 1/19/1994 1210928.61 5.81 5.50 1 0.004 1 I 1 71 [ 1141 -END OF SEARCH- 42 RECORDS FOUND MAXIMUM SITE ACCELERATION DURING TIME PERIOD 1800 TO 1994: 0.402g ' MAXIMUM SITE INTENSITY (MM) DURING TIME PERIOD 1800 TO 1994: X MAXIMUM MAGNITUDE ENCOUNTERED IN SEARCH: 7.60 NEAREST HISTORICAL EARTHQUAKE WAS ABOUT 5 MILES AWAY FROM SITE. NUMBER OF YEARS REPRESENTED BY SEARCH: 195 years TABLE B-2. PROBABILITY OF EXCEEDANCE FOR ACCELERATION, BASED ON HISTORICAL EARTHQUAKE OCCURRENCES ONLY TIME PERIOD OF SEARCH: 1100 TO 1994 LENGTH OF SEARCH TIME: 195 years ATTENUATION RELATION: 1) Campbell (1993) Horiz. - 0=Soil 1=Rock *** TIME PERIOD OF EXPOSURE FOR PROBABILITY: 50 years INO.OFI AVE. IRECURR.1 COMPUTED PROBABILITY OF EXCEEDANCEI ACC.ITIMESIOCCUR.IINTERV.1 in 1 in I in I in I in I in I in ' g IEXCEDI #/yr I years 10.5 yrI 1 yr( 10 yrI 50 yrl 75 yr1100 yrI*** yr ------ 1------ 1------ I ------ I ------ I------ ---- I ----- 0.011 I 181 ------ I ------- 0.0921 I ------ I 10.83310.045110.088210.602710.990110.999010.999910.9901 0.021 91 0.0461 21.66710.022810.045110.369710.900510.968610.990110.9005 0.031 61 0.0311 32.50010.015310.0303►0.264910.785310.900510.953910.7853 0.041 41 0.0211 48.75010.010210.020310.18551'0.641410.785310.871410.6414 0.051 41 0.0211 48.75010.010210.020310.185510.641410.785310.871410.6414 0.061 31 0.0151 65.00010.007710.015310.142610.536610.684610.785310.5366 0.071 31 0.0151 65.00010.007710.015310.142610.536610.684610.785310.5366 ' 0.081 31 0.0151 65.00010.007710.015310.142610.536610.684610.785310.5366 0.091 21 0.0101 97.50010.005110.-010210.097510.401210.536610.641410.4012 0.101 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.111 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.121 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.131 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.141 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 ' 0.151 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.161 21 0.0101 97.50010.005110.010210.097510.401210.536610.64i410.4012 0.171 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.181 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 ' 0.191 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.201 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.211 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.221 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 ' 0.231 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.241 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.251 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 ' 0.261 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.271 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.281 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.291 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 ' 0.301 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.311 21 0.0101 97.50010.005110.010210.097510.401210.536610.641410.4012 0.321 21 0.0101 97.50010.005110.010210.097510.401210.5366I0.641410.4012 0.331 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262 0.341 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262 0.351 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262 0.361 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262 0.371 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262 0.381 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262 0.391 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262 0.401 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262 -------------------------------------------------------------------------- ' TABLE B-3. PROBABILITY OF EXCEEDANCE FOR MAGNITUDE OF EARTHQUAKES WITHIN 100 MILE RADIUS OF SITE, BASED ON HISTORICAL OCCURRENCES ONLY INO.OFI AVE. IRECURR.I COMPUTED PROBABILITY OF EXCEEDANCE MAG.ITIMESI000UR.IINTERV.I in I in I in I in I in I in I in IEXCEDI #/yr I years 10.5 yrl 1 yrl 10 yr1 50 yrl 75 yr.I100 yrl*** yr 5.501 421 0.2151 4.64310.102110.193810.884011.000011.000011.000011.0000 6.001 201 0.1031 9.75010.050010.097510.641410.994110.999511.000010.9941 6.501 111 0.0561 17.72710.027810.054810.431110.940410.985510.996510.9404 7.001 31 0.0151 65.00010.007710.015310.142610.536610.684610.785310.5366 7.50I 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262 ---------------------------------------- ' RICHTER RECURRENCE RELATIONSHIP: GUTENBERG a a -value= 2.878 b-value= 0.644 beta -value= 1.484 i I I 1 I DATE: Thursday, August 3, 1995 * * * E Q F A U L T * * Ver. 2.01 * * * (Estimation of Peak Horizontal Acceleration From Digitized California Faults) SEARCH PERFORMED FOR: STANDARD PACIFIC L.P. JOB NUMBER: 1851578-14 JOB NAME: STANDARD PACIFIC TRACT 15011 SITE COORDINATES: LATITUDE: 33.62 N LONGITUDE: 117.883 W SEARCH RADIUS: 100 mi ATTENUATION RELATION: 1) Campbell (1993) Horiz. - O=Soil 1=Rock UNCERTAINTY (M=Mean, S=Mean+1-Sigma): M SCOND: 1 COMPUTE PEAK HORIZONTAL ACCELERATION FAULT -DATA FILE USED: CALIFLT.DAT SOURCE OF DEPTH VALUES (A=Attenuation File, F=Fault Data File): A I TABLE B-4. DETERMINISTIC SITE PARAMETERS FOR FAULTS WITHIN 100 MILE RADIUS OF ' SITE ----------------------------------------------------------------------------- I I IMAX. CREDIBLE EVENTIIMAX. PROBABLE EVENTI ' I I APPROX. I -------------- ---- II-------------- ---- I ABBREVIATED IDISTANCE I MAXI PEAK I SITE II MAx.1 PEAK I SITE I I FAULT NAME I mi. ()an) ICRED.1 SITE IINTENSIIPROB.1 SITE IINTENSI i Ali I I I MAG.IACC. gI MM II MAG.IACC. 91 MM I I-------------------------- I IANACAPA 1 - --------- 56 I ( 90)I ----- I------ 7.001 1------ 0.0221 II IV II -----I------ 5.001 I ------I 0.0051 II 1 ---- IARROYO PARIDA - MORE RANCHI 91 --------- (147)1 I 7.501 ----- I 0.0131 ------ I ------ III II II 5.251 ----- I 0.0021 ------I------I - i I-------------------------- I (BLUE CUT 1 96 (154)1 7.001 0.0061 ------ II II II 6.001 ----- I 0.0021 ------I------I - I I-------------------------- I ICAMP ROCK-EMER.-COPPER MTNI --------- 99 I (159)1 ----- I 7.001 ----- I ------ I 0.0051 ------ I ------ 11 II II 5.751 ----- I 0.0021 ------ I ------ - I I I-------------------------- I ICASA LOMA-CLARK (S.Jacin.)I --------- 51 I ( 82)I 7.001 ----- I 0.0201 ------ I ------ IV 11 II 6.751 ----- I 0.0171 ------ I ------ IV I I I--------------------------I--------- ICATALINA ESCARPMENT I 32 I ( 52)1 7.001 ----- 0.0421 ------ I ------ VI II II 6.251 ----- I 0.0241 ------ I ------ V I I I -------------------------- I--------- ICHINO 123 I ( 37)1 I 7.001 ----- 0.0891 ------ I ------ VII II II 5.501 ----- I 0.0301 ------I------I V I I--------------------------I--------- [CLEARWATER 172 I (116)1 I I 7.001 ----- I 0.0141 ------ I ------ IV II 11 3.001 ----- I 0.0011 ...... I ------I - I I -------------------------- I--------- ICOYOTE CREEK (San Jacinto)I 79 (127)1 I 7.001 ----- I 0.0091 ------ I ------ III II 11 5.751 ----- I 0.0031 ------ I ------ I 1 I 1 -------------------------- I ICUCAMONGA 1 --------- 35 ( 56)I 7.001 ----- I 0.0491 ------ I ------ VI II 11 6.251 ----- I 0.0281 ------ I ------ V I I I--------------------------- I--------- IELSINORE 124 I ( 38)I 7.501 ----- 0.0941 ------ I ------ VII II II 6.751 ----- I 0.0561 ------ I ------ VI I I I--------------------------I--------- IELYSIAN PARK SEISMIC ZONE 132 I ( 51)I I 7.001 ----- I 0.0561 ------ I ------ VI 11 II 5.751 ----- I 0.0231 ------ I ------I IV I I--------------------------I--------- IFRAZIER MOUNTAIN 197 I (156)1 6.501 ----- I 0.0051 ------ I ------ II 11 II 3.001 ----- I 0.0001 ------ I ------I - I I--------------------------I--------- IGLN.HELEN-LYTLE CR-CLREMNTI 46 I ( 73)1 7.001 0.0241 ------ I ------ V 11 II 6.501 ----- I 0.0171 ------ I ------I IV i I--------------------------I--------- IHELENDALE 177 I (125)I I ----- I 7.301 ----- I 0.0111 ------ I ------ III II II 5.751 ----- I 0.0031 ------ I ------ I 1 I 1-------------------------- I--------- IHOLSER 167 (108)1 6.601 0.0121 III II 5.751 0.0061 II 1 ---------------- IHOMESTEAD VALLEYI 97 (156)1 7.501 ----- I 0.0081 ------ I ------ III 11 11 4.001 ----- I 0.0001 ------ I ------ - I I I-------------------------- I--------- IHOT S-BUCK RDG.(S.Jacinto)1 57 I ( 91)I 7•.001 0.0171 ------ IV 11 6.001 ----- I 0.0081 ------ I------i II I I-------------------------- I--------- [JOHNSON VALLEYI I-------------------------- I--------- 92 I (148)1 I ----- I 7.501 ----- I ------ I 0.0091 ------ I ------ 11 III 11 11 5.251 ----- I 0.0011 ------ I ------I - I I I 1 I 1 TABLE B-4, CONTINUED IMAX. CREDIBLE EVENTIIMAX. PROBABLE EVENTI I APPROX. I ------------------- II -------------------i ABBREVIATED IDISTANCE I MAXI PEAK I SITE 11 MAX.] PEAK I SITE I FAULT NAME 1 mi ()un) ICRED.1 SITE IINTENSIIPROB.I SITE IINTENSI I I MAG.IACC. gl MM II MAG.IACC. 91 MM I I-------------------------- I ILA NACION 1 --------- 69 I (111)1 I ----- I 6.501 ----- I ------ I 0.0101 ------ I ------ II III 11 ------ 11 ----- I 4.251 ----- I ------ I 0.0021 ...... I ------ I - I ------I I -------------------------- I--------- ILENWOOD-OLD WOMAN SPRINGS 186 (138)1 I 7.301 ----- I 0.0091 ------ I III II ------ II 5.251 ----- I 0.0021 ------ I - I ------I I--------------------------I--------- ILOCKHART 197 (156)1 I 7.301 ----- I 0.0071 ------ I II II ------ II 5.751 ----- I 0.0021 ------ I - I ------I I--------------------------I--------- IMALIBU COAST 148 ( 78)1 I 7.501 ----- I 0.0421 ------ I VI II ------ 11 6.501 ----- I 0.0201 ...... I IV I ------ I I -------------------------- I--------- IMID-CHANNEL 186 (138)1 I 7.501 ----- I 0.0141 ------ I IV 11 ------ II 5.501 ----- I 0.0031 ------ I I I ------ I 1-------------------------- I--------- INEWPORT-INGLEWOOD-OFFSHOREI 2 ( 4)1 I 7.001 ----- I 0.4981 ------ I X 11 ------ II 5.751 ----- I 0.2571 ------ I IX I ------ I I--------------------------I--------- INORTH FRONTAL FAULT ZONE 153 ( 85)1 I 7.701 ----- I 0.0321 ------ I V 11 ------ 11 5.751 ----- I 0.0071 ------ I 11 1 ------ I I -------------------------- I--------- INORTHRIDGE HILLS 154 ( 87)1 6.501 ----- I 0.0161 ------ I IV II ------ II 5.001 ----- I 0.0051 ------ I II I ------ I I -------------------------- I--------- IOAK RIDGE (Offshore) 185 I (136)1 7.201 0.0121 111 11 5.501 0.0031 I 1 ---------------- IOA.K RIDGE (Onshore) 172 (116)1 7.201 ----- I 0.0161 ------ I IV 11 ------ II 6.50I ----- I 0.0091 ------ I 111 I ------I I--------------------------I--------- IPALOS VERD-CORON.B.-A.BLANI 14 I ( 23)1 7.501 ----- I 0.1741 ------ I VIII II ------ II 6.751 ----- I 0.1081 ------ I VII I ------ I I ------------------ - -------I--------- IPINE MOUNTAIN 186 I (138)1 7.001 ----- I 0.0091 ------ I 111 II ------ II 4.251 ----- I 0.0011 ------ I - I ------I I--------------------------I--------- IPINTO MOUNTAIN - MORONGO 178 I (126)1 7.301 0.011I III 11 ------ 11 5.751 ----- I 0.0031 ------ I 1 I ------ I I-------------------------- i--------- IRAYMOND i 37 I ( 59)1 I ----- I 7.501 ----- I ------ I 0.0651 ------ I VI 11 ------ II 4.001 ----- I 0.0051 ------ I II 1 ------I I--------------------------I--------- IRED MOUNTAIN I 95 (153)1 7.301 ----- I 0.0101 ---- 111 II ------ 11 5.251 ----- I 0.0021 ------ I------i - I I-------------------------- I--------- ]ROSE CANYON i 43 I ( 69)1 7.001 --1 0.0271 V II 6.001 0.0131 III 1 ------------- -- ISAN ANDREAS (Coachella V.)I 80 (128)1 8.001 0.0191 IV II 7.00I 0.008I 111 1 --------------- ISAN ANDREAS (Mojave) 152 ( 83)1 8.30I ----- I 0.0521 ------ I VI II ------ ]1 8.00I ----- I 0.042I ...... I VI I ------I I -------------------------- I--------- ISAN ANDREAS (S. Bern.Mtn.)I 51 I ( 82)1 8.001 ----- I 0.043I ------ I VI II ------ II 6.751 ----- I 0.0171 ------ I IV I ------I I--------------------------I--------- ISAN CAYETANO 175 i--------------------------I--------- I (121)1 I 7.501 ----- I 0.0191 ------ I IV 11 ------ II 6.251 ----- I 0.0071 ------ I II 1 ------ I I ITABLE B-4 CONTINUED ' 1 ---------------1 ----- 1MAX. CREDIBLE EVENTIIMAX. PROBABLE EVENTI I I APPROX. I ----------- --- ---- - II----------- --- - -- - - 1 ABBREVIATED (DISTANCE I MAX.( PEAK I SITE 11 MAX.( PEAK I SITE I 1 FAULT NAME I mi (km) 1CRED.1 SITE IINTENSIIPROB.I SITE IINTENSI 1 I MAG.IACC. gi MM II MAG.IACC. gl MM I ------I i-------------------------- I--------- ISAN CLEMENTE - SAN ISIDRO 1 I ----- I ------ 55 ( 88)1 8.001 I 0.0381 ------ 11----- V 11 I------ 6.501 I 0.0121 III 1 ' --- -- --- ISAN DIEGO TRGH.-BAHIA SOL.1 --------- 44 ( 71)I 7.501 I ----- I ------ 0.0371 I V 11 ------ 11----- 6.251 I 0.0151 ...... I------i IV I I -------------------------- I ISAN GABRIEL 1 41 ( 65)1 7.001 0.0291 V 11 5.751 0.0121 III I --- - -- 1SAN GORGONIO - BANNING 147 ( 75)I 7.501 ------ 0.0441 I VI 11 ------ 11----- 7.001 I 0.0301 ------ I V I ------ i I --------------------------I --------- ISANTA CRUZ ISLAND 192 --------- I ----- I (148)1 7.401 1----- I ------ 0.0111 I III 11 ------ 11----- 4.751 I 0.0011 ------ I - I ------ I ' I --------------------------I ISANTA MONICA - HOLLYWOOD 1 40 ( 64)1 7.501 ----- I ------ 0.0581 I VI 11 ------ 11 ----- 5.251 I 0.0111 ------ I III 1 ------ I I-------------------------- I --------- 1SANTA SUSANA1 I 58 ( 94)1 7.001 I ----- I ------ 0.0211 I IV 11 ------ 11 ----- 6.001 I 0.0101 ------ I III 1 ------ I -------------------------- I --------- ISANTA ISANTA YNEZ (East) 1 88 (142)1 7.501 I ----- I ------ 0.0101 I III 11 ------ 11 ----- 5.251 I 0.0021 ------ I - I ------ I-------------------------- I --------- ISIERRA MADRE-SAN FERNANDO 1 36 ( 58)1 7.501 ----- I ------ 0.0671 I VI 11 ------ 11 ----- 6.001 I 0.0221 ------ I IV I ------ I I-------------------------- I --------- ISIMI - SANTA ROSA 1 I 65 (104)1 7.001 0.0171 IV 11 ------ 11----- 5.251 I 0.0041 ...... I I 1 ------ I ' 1-------------------------- I--------- [VENTURA - PITAS POINT 1 I ----- I ------ 88 (141)1 7.201 ----- I ------ I 0.0111 I III 11 ------ 11----- 5.751 I 0.0031 ------ I I 1 ------ I 1-------------------------- I--------- IVERDUGO 137 I ( 60)I 6.701 0.0351 V 11 4.501 0.0071 ...... I II 1 ------ I I -------------------------- I--------- IWHITTIER - NORTH ELSINORE 120 I ----- I ------ ( 33)1 7.501 I 0.1131 ------ 11----- VII 11 I 6.001 0.0401 V I I-------------------------- I--------- I -----I------ I ------ 11-----I...... I ------I ' -END OF SEARCH- 52 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS. THE NEWPORT-INGLEWOOD-OFFSHORE FAULT IS CLOSEST TO THE SITE. ' IT IS ABOUT 2.2 MILES AWAY. LARGEST MAXIMUM -CREDIBLE SITE ACCELERATION: 0.498 g ' LARGEST MAXIMUM -PROBABLE SITE ACCELERATION: 0.257 g I 1851578-04 I lJ ' ' ►Ir ►i0 Seismic Analysis References Blake, T. F., 1989a, EQFAULT, A computer Program for the Deterministic Prediction of Peak Horizontal Acceleration from Digitized California Faults, User's Manual, 79 pp. , 1989b, EQSEARCH A Computer Program for the Estimation of Peak Horizontal Acceleration From Southern California Historical Earthquake Catalogs, User's Manual, 94 pp. 1993, Procedures for Selecting Earthquake Ground Motions at Rock Sites, National Institute of Standards and Technology, NIST GCR 93-625, 9 pp. Ploessel, M.R. and Slosson, J.E., 1974, Repeatable High Ground Accelerations from Earthquakes, California Geology, vol. 27, no. 9, pp. 195-199. Real, C.R., Toppozada, T.R., and Parke, D.L., 1978, Earthquake Catalog of California, January 1, 1900 - December 31, 1974, First Edition, California Division of Mines an Geology Special Publication 52, 15 pp. ' Seeburger, D.A. ar Prepared for Berkeley. n H 1 7 i 1 I Bolt, B.A., 1976, Earthquakes in California, 1769-1927, Seismicity Listing National Oceanic and Atmospheric Administration, University of California Sherburne, R.W., Boylan, R.T., and Parke, D.L., 1985, "Seismicity of California, April 1979 through October 1982," California Geology, vol. 38, no. 4, pp. 75-80. Toppozada, T.R., Real, C.R., and Parke, D.L., 1981, Preparation of Isoseismal Maps and Summaries of Reported Effects for Pre-1900 California Earthquakes, California Division of Mines and Geology Open -File Report 81-11 SAC, 182 pp. Wells, D.L., and Coppersmith, KJ., 1992, Analysis of Empirical Relationships Among Magnitude, Rupture Length, and Surface Displacement, [Abstract], Seismological Research Letters, vol. 63, p. 73. Wesnousky, S.G., 1986, Earthquakes, Quaternary Faults, an Seismic Hazard in California, Journal of Geophysical Research, vol. 91, no. B12, pp. 12,587-12,631. Working Group on California Earthquake Probabilities (Agnew, D.C., Allen, C.R., Cluff, L.S., Dieterich, J.H., Ellsworth, W.L., Keeney, R.L., Lindh, A.G., Nishenko, S.P., Schwartz, D.P., Sieh, K.E., Thatcher, W., and Wesson, R.L.), 1988, Probabilities of Large Earthquakes Occurring in California on the San Andreas Fault, U.S. Geological Survey Open -File Report 88-398, 62 pp. Ziony, J.I. and Yerkes, R.F., 1985, Evaluating Earthquake and Surface -Faulting Potential, in Ziony, J.I., ed., Evaluating Earthquake Hazards in the Los Angeles Region - An Earth -Science Perspective, U.S. Geological Survey Professional Paper 1360, pp. 43-91. 11 [1 CT�J GEOTECHNICAL BORING LOG H 1 F 1 I I I II I I Date T4qJ94 Drill Hole No. L8-1 Sheet I of I - Projeet lkogorler n/or ffi Job No. 185'1518-02 Drilling Co. Bi�Jo4+,n 's 1rit9,` Type of Rig euc.R....E- A�a!' Hole Diameter A4-` Drive Weight 4soo Ibo . Drop 12 in. LIYI YY�V.• Vi/ • .. "e GEOTECHNICAL DESCRIPTION c tic o z oo ie rov +y+ ++ °' a a sH . w G .• u u 4) 4.3 w ' .d -1 •4 o As In d M a • N Logged by Q '. O U. 0 •+ F cL m M .. I •4Ja c y Sampled by ae- w 0 G a A m ;` loG.O B•s �r� 2 ., b.0 1.0 1 S4 :: ;;�:' � 3 Z roa.� Y•1 yL;c�G••t•fy dtnw� Porowo� ro°+e'.t' -tv &t 6%,u t. 5 animu.l i.w'ro.d'a . Ct% �j.0, . �i 11 � nC SA^J bro om , Jtis 66 porost** . -%tom dcPt h : 4 {eeh hiv $ro wed 4a eauln9 . SooA (2/77) I I 1 1 GEOTECHNICAL BORING LOG Date g129J44 Drill Hole No. "-2 Shoot/of 2- Project 4eragerler Nord'+ __ Job No. 185/578-02 Drilling Co. "Sia l� j(=r{,q, - Type of Rig BucKeJ- Am_gic Hole Diameter 24" Drive Weight AS'00 A4 . Drops/ a in. r,^I n_C ns�,.w el L L_ i Ao_I%LD PA" x v GEOTECHNICAL DESCRIPTION X w+ .+ 0.0 O, s rd 7 «+ zo 0 .o u y-y� y o 2 0 o V. r. W N u ow 41 u a oU .-. c� v Logged Y Lo edb Q% 0 W $4 I Ham a a ro Sampled by Q1G O ; � /* : •:i $aid @ 0.1 / : Si 1� �•nr Bard -ho ,.•: • . ) 3 GG.'3 HS ci st f b i ftw � -Fo 31 deep � - po•roun . RE — — — T•$r ����� 2 2 N4.y 91.3 'grilmce- Mon .E'or,,.,G,{•r'tin-('im� 0 3. WGaiitrecQ Si l{�� e`�R t�'' g: NSWr -4o -6rorwn, ,,,P, ^-� JAM cn4er•bt,4 AAJ } ie - • _n-_- 3 3 30.1 q5.1, u,f LGd wt•I?, 4ewr XA ete_postba 1 SIa' d porous, clwi o`yu °`a O P Mor:at iv 15 _— — = 15.21 $ N2 r r1Gcu-vuiiaa<Q dr� t 'ch++t.Q � •8: Sk�4, io r.o lof '� oKt.l.o — _ bN£ S'f:iti rv.a uti'f'p� v�.�,•� a^d rj awpQ. recou+,rd . tF.rIA AritA.'.�-mrt.Q _-_ IS! --_ 1b Iv. er S•uiP. Wry '20 15,9 ': Ctrrvr,•Fed 2vv t S /r ..}{,a'efc waeA• nor•tfi —_ li41: �OP'�' rr� noriKnanb wacJ2 Fa!' o.� i"-d.ta..t4r*' ,.r`•rY"�'` ,.Iwwred out .26 ao 500A (2/77) Leighton & Associates GEOTECHNICAL BORING LOG Date Drill Hole No. L6^2 Sheet 2 of 2- Project Ne.4pornFu nlor4f, Job No. 18515-78-O2- Drilling Co. 64� .Jo4,^n!4 *hriQL,4 __Type of Rig �waktF 1 Hole Diameter L,e Drive Weight ASoo Ib. Drop t2 in. ci...a.;..., T.... nF u,.t. irni Ref_ or Datum Snn. 6Qo4eel..u:ca.0 t-i" . 1 1, 1 1 1 I J I 1 C 1 I '11 i 1 1 H a x GEOTECHNICAL DESCRIPTION �o 0 H e t o th q W 41 u ++ ♦+ a vs .•, U U 04 d N ., .O 0 O w Ac a h u 4 • Logged by 4K e a. :2 Sampled by 6?K. I o y 3p 'De�•K.: Tpta.P 3O• DnwnF.oPt Rord�cf 'ib 24� • ��„d u)af•cr ec � G� h� o fAut`v� f3ark.�+t2ed 500A (2/77) IGEOTECHNICAL BORING LOG Date W2 10- Hole No. L -3 Sheet I of 2-- Project McWgr•er -Drill t4or•IA Job No, 1851578-02- Drilling Co. 13iq JoA^^;rS •b#- III`na Type of Rig eucicet Hole Diameter 24// Drive Weight P5 o16. Drop 12 in. c•_ m__ _O 1IQ 1;:6 D-R n" nntnm C.. NiGn I I I I I I LJ I I I I II I n I .,1 d o N 4 IVx I, GEOTECHNICAL DESCRIPTION .0 44 4+ x COn O W pp 3 'O O Z O O i O W In C W d U Ir • 7 4J 44 C '1 N .r U U a d d O 14 451 ,i .O 6/ o •, O •+ a 0 %n O Logged by QK_ I a a c 'o Sampled by Qk W E `y/ Tcrrarr 'Dcpoa,''�, - (Qb� y^�• `, �� • da-.rp � s-1''t�+`•F�j 51'� i ••Pnrocw � c.,etf oco�o ,�P ) Abu .AA+t C='BD .., .e •'y V sa.v�d ..,a'M'x . ri.'M'x h ._P..`�h+= 6ro,+++ / = '`� da..�..p , ca•�A,+� ot,•M.a � p cry u.o . Z 3 (r`•`i y�•R 3.�i-/: ^x•li� f;•N SaneQ -Fo �'..e sa.,d� Oi [{-/ medtur� {d da.rk brow+ ¢/ ; $.'I•h� .�i',v Sa,.d! � •C.'�irt a,^a.,.� -brown / to q 4/ Ll�, roC: - Menlu�� Fi ' 8:�4Nw� 3 2 64.1 u(.•� � ¢,�r: tJCa.�a sPlkalvr.m� t,�;�lt �.c.Fo,.h SB1 a`g1 brow»o n oi�t� sh'd�(� pnro��tL-y. �, O-' •1YY,L� 1 13.3/ tvi f2 TuraU 3�po ti makn' `� p;N5oH7/ ta+ / 11r+Nreal�t/ccP lb+Vne / d '1', ue^J 54-' j. 605 59.E .Q +o cry+ 6`d.lcd st5'j � jd 1. J•�•r^'•"a'Q '�:� • N3lui 8. / �cd. Si If�trn2 ' gL0.{iGrGiQ 51 �U. �. (a 8.9 ; s2 �E t uopa$e c n ��. C� 10.8/:rrl.tare4f eQay ;,o \�•;1 t? f1.4/: SI carEd day �• P At ' / , ed LQu� /J4° 4t%er k � l3.G : 5-t+�0. (` 18.S1: gjQ:u+rsl g.rl}>-Ftrn< (?alyr 3" •tkx'cic. , 25 A1.5/: ieep&-v W" W40 We..l.! 5 5 b6 •Ii St(•�' 25.b1: Cemen•kd Zane. 8// 30 SooA (2/77) Leighton & Associates F GEOTECHNICAL BORING LOG i J i 11 I I 1 I 11 I I I Date 8JA9J94 Drill Hole No. 1-6 3 Sheet 2 of 2- Project 1Jra.3vor4er 1Jortk Job No. 1961649—DA Drilling Co. Biq�_n;s ' r; CU.,;.-Type of Rig 6M.akx-1- Au -A sLr Hole Diameter R4" Drive Weight ISDOlb,*. Drop 1,A in. _c n_._ 1141i' UDC n� M,t D .u+ 0 o a+ u x vyi GEOTECHNICAL DESCRIPTION .0 u ,� .0 b0 G. 'O 7 Z L A O z O V) 044 � � 4+ M y . C1. d d ld s H 4+ M .o 0 o ., O U. .r u u o a u a d U U • Logged by QK �' a. C) I a+ e p. tL to N a o .r .+ io .. N y Sampled by 0 30 ►� DFfA ; TotrP �}C.: 35� Do.✓n1w2 ?.oad iro SL4V. u341*r Cz s2 S. S , rJo co.�.'n9 35 b to (R.8 S79 gack,FitAisl 91'29 9¢ 500A (2/77) Leiqhton & Associates 1, I 1 I 1- I I 1 1 I I`1 r I GEOTECHNICAL BORING LOG Date 8/ag194 Drill Hole No. L8-4 Sheet 1 of 3- Project Mewger-4u Mor-If. Job No. 18615:F8-o2. Drilling Co. 18,'gr_n� -D;•l/fi�+� Type of Rig gAc*_et Auk Hole Diameter cA4-" Drive Weight NA Drop.] 2- in. ri aa u..i- halt Rwf- nr ❑atum n eek'Itea.Q M" ._r-- 0 i. ,4 �, _ ro GEOTECHNICAL DESCRIPTION c J 4J .e eo g :3 M z° d a H o o O U. u u wa 4dJ a to .+ . .r a .z1 m N ca H N .. v� Logged by Ge- I ,F e � a c 4 Sampled by Qk W c°e' In 0 Tarracc '�t,PoF+''la (cztt) .�:�ii . ;/ ei Oi: zinc S&rA3 sil{ l dark �rs� t9 Lrnwn, OAPorotxoL, wi K. roo+ . b°poo e vt�aa4 y @ 2.1 Abutidaai fra D� t u''Zf - - 'oPti Tn L•t mA+fe !x . ra✓GQ y�py e7.41 (li 4.,5' ENE eet,:4SArock - Mo^ �. lJGtc'l•P��cQ 4i l�irA -enB /-r.,oah't+ 10 ^ l"' G .�•�{ _L.,.G{.,.vK� 5+-.•new 1j;, 'l )"�ifP. iur�u al NO �� n rootlel> / no Jn4il.•Q-�- fi+ �i Poro Cn'G{ . .}..rl.•eltd•c°l U; li•.•1+++� �10%' Spa `c"'a°y .g,•A�•�• , -to I" fi iG `QAae�Q and 3s+aincd oxide A-14 -> ✓� R' � l t •-•"�, brslcEa• Si tjw_e. 0 iani.W.k�l S � i bm, brown @2o.4� N eq-0 Ca 4.x 1•. Sitic {tcA sili�ix4 ao.� / •Ilu`ck . �rne ��•� V. INN rt. o.v rs �_�a -_J GfW�^ L, \` \ 1. ID .�I: I�O�f 1 - W"�•+y' T✓ M°�� " s� (y la'-Iss ,�rytci•w•e� 11dJ1 3a.y °p.a.riL. @ l5. I / : Sheared ctatl i, S • � ,20. ¢ l : S.i,Gare..Q a¢ay scicrn , dark ray , `!a"'P , A4�-ASI: S-hGa.ed 4^4 l.rore—n. \�� a.G.S r : M.iaa.ouo ri !•h4•r.e Qa�er, '�.3"-Yi�ie.IC . 3p ��ti SODA (2/77) Leighton & Associates GEOTECHNICAL BORING LOG Date $.1a9'9+ Drill Hole No. 1-6-4 Sheet A of 3- Project ►.ler+e. Job No. I$515S-o2- Drilling Co. 'Girl Jokft^4 .s ype of Rig SUCJCa.i• I�r Hole Diameter Z4-" Drive Weight ►JA Drop 1a in. T7l.vnr4nn Tnn of Nnl. itsr -t Ref_ or Datum See UeoieehM%edt M" I I 11 I 1 I I I I I I H 41 H x GEOTECHNICAL DESCRIPTION ♦+ a+ :C b z a o 544 41 cc y r L eN ro34a , a d � o U. .4 V 4w C N e U U ti Logged QK by, I u 6 EN. a m= le+ a c 4W y Sampled by QIL 30 " 50.9 Sheared eb%j t+ca.m dark.. &rw J � ` \ •B'•NQSIJ clay s,ea�� �/4"-Fhiek.. 33'-341': S;e+u cd Si Ik�t++ 55 � •��. '� 36' 141t $t5/� � @ 36': SRew.recP � seasy Jn•1'y+i�• `? . g�.l 3G.4': s►xa'ed elnf wt^+i /Z " fhtak :1J84£� 39.91; �F.careA cQa�r+� +0 ` 41.4: sheared e141 ata'. Y4-11 fyibK 4A.6-43.41: $df:ei fled `i --T 4S =_ 4}.2' S: NaaE NLJ tp %-' (cJsl � 55': AbLt.ula.nt St�c:.�•ieA, b�tis'f+'^4' r s bece.ry+ unox'.li�eel @55.'fi Si I�a•Fen ./yam• .a` dark- tr t Act,., p -M me ist 1 st+' i S:uSI45 49NtJ r" . Ca 55•�'F:ncsar d Rgpr,tr aR rm..��L(-br,w n� SODA (2/77) Leiqhton & Associates iGEOTECHNICAL BORING LOG Date 812R 1 R4 Drill Hole No. Le, - Sheet 3 of 3 - Project t ewPorlu ► 0r4-A Job No, t8515'*S -Da Drilling Co, 3144nh^47 1>rqat,2v Type of Rig 84.eke.f At!e Hole Diameter 24" Drive Weight WA Drop i2- in. ci _...,w:- •r.... ..a u..t- 11311 Rwf_ nr nafum Q,. Gi rl7..l.ner aD Ht I I I I 1, u II 11 II I If `J !. • _ GEOTECHNICAL DESCRIPTION 4N ✓ W o o 7 z 0 H o 2 O C W {e� ,tee vi 1.L a1 ea .i 4r ? a o U. d U ,.+ C o a, U U Logged by lQK IT a a c MQ +N Sampled by QK W E to 60 �� 60.1 S wt! 601 CFa sea.., ^ o trL� sf,�i P p ey }�•e� s Htry e \�\$:N 1P31 II,N, zA)z i„_tick. Ng7.IJ b].21: Sheared CI&S se.1m d�ac 13 N1 ^_ 8 IEN / 64 9�: Si.eared etas un.*+� '�It,�-tfi�cfc . 6S = ;•` 1. showed ice. GG.S . �� 1 - s.jcrt acep�aa e+ Sochi waQl . ►.. _. Q L�•q 1J65/� $•13NE �12 � L9.31: Shooed c� bt�+� . ''ua'v. . I � (cfi.5� : Shta,red � do•frs_ TotaP clePtf+ : '�21 1 7>ownha{t �5�d -to ✓'O8 , Mo 'Baek.�lD�.ed S/Zq�R4- SODA (2/77) Leiqhton & Associates G Ca. BORING LOG E44-1 CLIENT .TRyfNP_ TActFic. W.O. -pr•DATE DRILLEb Z- D LOGGED BY )-n:-562 PROJECTNEwppgr-Ek .UDQ7+ SURFACE ELEV. //5'* DRIVING WT. O-Z::' 277 or- DRILL RIG gurXEr tuyF'x�, BORING DIAMETER 24 3 W _ W c a. O GEOLOGIC/ENGINEERING DESCRIPTION as �vF- N O. p v �WW �3 am O< cam iwCa=Cv W " G a c W 'W m l^ TE44ACE aEP2s/,::s -0 S/LTJ FINE SANG + AAW-4FIV5E. L7'.-BZN/- DC-7 d73'.dEco07,5-S oisT mLr CONG^GU 6rEK.iTlL LA`JER. MO�VTE.eE9 %'p,�MAT/oN�fi+•i) : CLAJE= SrL r_7bNE' r YAlE- 011 YF 7t) LT (!Ay r 71 MaD. lfA.CD , rrrvrs T, w Er17N . DlaT'O nr� . CEOUS. LAM1N6T'C7) c -7—4rOMC:, MOD. P144D . L.ESS 4)Og7HE2i=:u Lb to ' FEW -RIN -'WA&Y LAJEQ , BCca...c s �c7D-i._ rwLT GLlq,SCA^ , Morl�. ?LA STic . oUvE-W/� Gib SCEPN l�6 Mlbk' 14AaA SlUCL- aaS LAyF,2 a 19 V. mof s7 TU wE r M2,o' 6 0. SM GM 4 c '11D 5 '� IS '' ID IS zo TD = zl r 30 Tma lop a 8 fvOrGI MAllon of subsurface conditions at the time and pi puupe 01 time Of at any other Iocatlon then may he consequential I CLIENT=Rv/NEP/tc'c'c W.O.z'lz2-A-^"^^ATE DRILLEDLZ=L- O LOGGED BY-22 FA15b PROJECTMEWAOR-gMge7w SURFACE ELEV. 1121+ DRIVING WT.0-25 Z7ba* DRILL Rig puCKFT =yA-Ex tIWMIMU IJIAMC f CK f -7 io— w H w S O 6. 0 -� co GEOLOGIC/ENGINEERING DESCRIPTION co yV O.� CD H Wu. W ' z3a am W O4 ism z W "' O n c f. ' W N N W Sf}NDYS/LT, L,G,tTP.12OiJM-lcfc'AY L''Ynu.)N.L111SE, PrY, PO,L'OUS. VVj9AJ-T-gSreEV1- RM4 7MI: D/RTOMRGf=OI.L . � 1P27L£. OGF-WN/7�, SOFTi DAY TO SG/L<rr�Vr/n/.:T,Pun/KY,H/6NL5/ INEA;�•/6,eLD TO 7' 51h�1e.°, Mt;O/LLM. � �Y-6iCFf/ B/`OeJ,J, Mc9F�ATf1�/ NAt^A rGlW /TZY HD/�T- Alz> @/s'BEOD/,��;N�aw,2ovE @ /S' YEt?'/ S'Af2D, fJoDct14Q W .aG , Alo uA ., 2W.001 CLAY6?DMC, OL,VE RAOWAJ, MoDeeATELY hWMI, MO/Sf LA1lWATE jore-.RAED51LIGFbut 4AYEtc @22'BBDD/A,-NEE, ls"er- ce 30'BEDo/e.U; A/ 5, /o-,r— '0?3 , A'A' C r1 me £0us lRYBR 3 z rJJ /0b•9 , 39' 50.0 5 G IO /5 c 25 This log Is a faPfOantalll passage of time of at art I, • BORING LOG 961-2. CLIENTZRUIUEPAGIFu- W.02161-A-ac.DATE DRILLED/2M-90 LOGGED BYSP 14-5B PRWECT/VF-wPcteTF-R %VtIIZ'1'4 SURFACE ELEV. IIZ't DRIVING WT. I A . DRILL Rig +-�V-C�T n"'bF-K tVNINU UlAhttItti 0. W 0 o GEOLOGIC/ENGINEERING DESCRIPTION @�fCi33eG.57ti�'D'r.J6, FcEOra�Da/ira��.�4�� �.NN�5S�Gftil,,118So5NuE E �E Gey �fADD��y MDTL.- Uar't ai o�h V to 1` WmV�" w3c z am W 0a 0123 Zto c o c W I- w w z 0 z c qpw T. D. = Nl ' /Vo w,arae. Alv C.4alj ,1 Aloe.,-- WAs L�FrfIF/CLE.D, �5 ' Thla log 18 a tePrastntatlonot subsurface conditions at the lima and place of drilling. With the PLATE ^~ puupe of lime or at any other location there may De consequential changes In eondlllont. �I 1 • BORING LOG BH--3 CLIENTSfzvrNRr PACIFIC W, p 2r52-A-ocDATE DRILLED ! _/ - o LOGGED BY FA ap yP PROJECT 1VEWP4rTBR /Yof?TN SURFACE ELEV._IQFt DRIVING WT. 0-2.5 27D0*- M"11I Olt_ RLLf__KP'T- L4,uc0. fi(1pwrIIIAMFTFR 2y" 2S/-Ng, /(DS'D= 3 saw- ,., w c = co GEOLOGIC/ENGINEERING DESCRIPTION ad yV o (no F70 w zo am ;gym vm z Wa. o fee w m t`- z c o x v O 1 TRRACE 2£POsin (60 S/LTY SRN9. (.DOSE.9RY� ih'IaY Q3(?au.I�. V ECLY PDR.Dus . rn 2' RF4 'AFS MEOItuI DEAISE,, Swe-HTLY Nol ,r yECLOcJ E:P.ow/J. M4,AJ1SZEY FovzMA77,0M LTM� ; SIUc aHHLE�NRICD, I:+P/�E/ PLATYi�DD/N(� !� 7 '.BEDDIA." NS'DE.9SE C^ DI'..=/JTB2Ci6 DDE'D St LtG AND SILTY &LAySrOIJ1:.DEN'oE.hlat5T,612AV CiRewa tit o FehtlE cve I aI_% . @//'BSDDau.c N/Oc% SNE @/6'$EAD/nJ6 /�//.SE856 �22'C3EDD/ub /V/Sh/.1D/JE @23'BF�ortES .9/ATaHRCCOL• r. Cc�25�.5/LlG SfIAGES rl-i.1D CNE+2T.' C�21o'BEDD/ ub /✓F06,9SE 92q 'BE7?D/tiNA itlSoW, 2D5W aa-r T3Y H/NOR FAULT -reWPAJ6 NlvoE,VSFrr)t:AL. @3o'S/��' c�.aYsrd.uFS,HAfeD.rto/s7-, Y�ct04i B,t'o wti1. CC 32�G'cAl�s7'oc/ES h�/ sitrc S/iAZE /NT6,t'L'E,OS. SM ELLL, 3 5 G ND RWY -73•/O 31'5' 5 !O /s c B I'T 25 �, ' —35— 1 This too Is a representatlon of subsurface conditions at the lima and puts of drilling. With me Passage of time or at any other location there may be consequential cnanoes to conditions. FLAIL r__ CJ �Gz G* 'a E30RING LOG 1314-3 RD- T - CLIENT.TRI12E AAc,F,c W.0.&J-2--64MATE DRILLEDILIA-40 LOGGED BY12 PROJECTNEwaoPtrE.P Alorrsl SURFACE ELEV. 14?11 DRIVING WT. . , o,rz 0/10IUr MIAUMTCA ZLf 1/ IZ W 4 3 UJIv~i L6 V !_- W 0 35 a c �J O GEOLOGIC/ENGINEERING DESCRIPTION @38/z'CLAY SE'A�1,Sf{�L'F�D AGOA)b l3EODnJb AT E-W, 27 5, 6 "rH1cX. 1-1/Gy4Y.5VA4e6rD AUZ paG/SN6D. C0NI'CLAYSTDA,E,MDD, H,1RD,MDAST, DA0< ReDWAJ, O GG. SILK LAM l,JA•noA)S cd�13Ya'CLAY �Ff , �-�J1cK,Pa�1sH�a,PAeEYL�G T� .SFDD/�U6 N.50W 2le•SW C 1/!n'/2/Nofc' FOLDS AA1D &F Q V EAL- 3E,Z. DI C-V7'CCAYEY z-,fLT,"TDD/E. HT?2D- v.P41 v. 611va SIPOWN,/RON rrBSIDu del FP./IGTct,2E.� .4N!/, ALcN6 LiE00 / J6 ,LAM /Al r7 p 77Z, 7if7NLY arMO. es►/z'GvPsurl L/,UED L3EDD,AY�,NSOh/,(oSW c5N REsl�unc o/L.l�Arz�snn�s. C�5!D,OLAV S'6AAt PAJ?ALIEL 7D G'WOMI. A7' ,NNDE, /2 NW 196v ,61AY .SEAM . Y8'- Ti!/c , 9A2411 EL 'Tn $EDD/.U6 1V20W, /YSW @60�L'CG9Y SEAM., %B°otticl�. PA2ALGEL Td NOTE 'DID A1417- ",0WA MOLE 3EL L-J 601&' DUE Iry BAD AIR -LACK OF arY,6EAb � 65 ' V. NRPD Sr uc LAyFQ GS G7 SN1aLY S-u nsTD.UE Wl DCG .: ANDy m yv In d. O (9 Vi W U. 2 Lilac am lO OQ vm cam rn .. o � o ' � y W ... HH o a = v yD G This ID0Is DAOps 0 ('jr C. • BORING LOG B -3 CLIENTMEVINEPAC' Ele- W. Oja;-A o(DATE DRILLED - - 0 LOGGED BYFASPB NDP PROJECTNF-k/AMreR A)oP--rN SURFACE ELEV. /09'' DRIVING WT. n A ,1 DRILL RIG -LDLkr-KE' n"b�K dVKI► U DIAME ILK �T W 4 3 W WU W o = < J GEOLOGIC/ENGINEERING DESCRIPTION m 5-007 tom= co H C W s W w'i amWo �p F ,Z W u a c Z P. W y Z =v 70 E7H' HAZD 6tLIC UlySeS 078SILTY 444YS=-Ajr—HA2D,MDIs VA.Pi(4WA., Mtn1A7�D b T'N»JLY 3MDE1� CA2 �t1tY Sf.Anl,d7tFF MQtDi , 62AY StILAeE,D, C S3'St uc LAYE9,V. HAiM, ZARK 6PAY• �90'SAAta GF.�1L5 wl SGEPRGE &91'44AY eBAM @92'S�zei.ue ,avD �uc.�cEnL:incs. 75 85 9D 95 TD=9S' B2 =5' SEEPAGE AT 90' Thls lo0l. � nanlmutl000l n pal tuuoo of fim. or q o" ofMt (T'� j C. • BORING LOG CLIENT rrylh� 1�G+L��L W,0, LI52A DATE DRILLEDIZIZL5 LOGGED BY rIV PROJECT VEhIM97FP-AZOfzru_ SURFACE ELEV. llbDRIVING WT.2ti -SIP erg -T, non R.., ✓c-r tlui rD Gr1A 11lC f11AhAFTRR 241, W h- 3 W .W. ►- a a _� a O C J G' GEOLOGIC/ENGINEERING DESCRIPTION @ N�WWW =� p cc t= y� tL war z am Ica oat W m ism r ~ �... W n s• o w f =.Z W N (- G z = cii TE22�1GE nEr�-ss/r'sCc�t:t �/ T_ SAf.•� : /it. . L.:L•/✓.. 1_4ese Lei s.c: rr�N_ Ad Ac-I-/e_A7_ .; 400Ts. 1 fl?bNfE � �nFnic � Irrt LTM) SnrSTs/✓E � t/tJLD � L,�a�l _ wNfTE , DR. , LAAMVArebD N/&//" FAAC_lrU ED/sjLlLEouS / ®4CL1L'•LJSfLT.:.-n1/c � 7ALe-@LIVE , /jlbD• fr.q/_V, SG/, A70/STD LA/+'f//1/NlEO 77J 7///N.L,S' .BEDDED jrGALiU'LFS�� 6C/dNl�C.>:H/NS D 5 (E) /✓75' G..S-N E17 Hnou? .5/6ic600 L/ ler- ^/zow/ oNE / B Iliy (v v35-w,y /✓ e. ,r, FeLDEU �riv.H� , PDssrBLE � A��.r iBi N¢a w � 14'N - UP r* Xf/•p v.rtaeinr vANTL�I srL/G�oUS sNr1LE W/ FEW s, AJDs furstBZaz (E) ®Lz" C!-kJF..y s.t_r��.�NE Mom. HNC 6/y� , M"' L SAND fnti I/Z.• ez�•` �E) N4eE. )os� cozy' Sarvy u3yER wl -rAx 116) N/760, V'"o G"3►'(G) N/sue'• ti_E SNP L}- i$7 68•� 34� e S ID �' 3 This Io01s psusps a ' G�&s C. • BORING LOG CLIEHT='RVINF- PArLtPIC W.0?�4'-DATE DRILLED fZ� LOGGED BY FA 56 PROJECTNEWPoR75RNo»H SURFACE ELEV. llo't DRIVING WT. DRILL RIG .BucKei- A"psR BORING DIAMETER !�y'� W GEOLOGIC/ENGINEERING DESCRIPTION id UPC W 4W. = t9 HV �� N H r. W Z Z W < J 4.� frt? G t+i F'� W a w p x3IX wj c�im �. a o z B �Es! sLi, sse�av� Q4-3 A&.Ph04raT 5G45F/V.S1D5 j,�If.C//Y� FAULT,4°oFF-SET' , N75w3 7SNE SN , 1 N. w t] LL ©So CD) 14/2SE IZZSE C�SI/y ,�gn.D_.id:3f3NE, V.dN�tt:, �nCrLL` � ' `D�t, w/GLHNC s.t,a,cr,+,in'�.lifT"DNS l�s4' c8� ,vtsw> � NE .4ALL11s/L7"SC61VE TDGLAJSti6NC,DL.pC.toCtU ' nrnD. -41" ro S>7r F � m7ls : st.i T— rzo- Fa Dus . Tutvt-m znDEa 7'o -AFiI V47-64> w/ , ht YAAD SILlLr�ovS G 76r Sancy GfL:.ci_ :�,�__ !,i_L. �L_ Cam;•:•'„ •CS ID'L•$ 2Z'z ' Thu too is arepresentation of suosurtacs conditions at the time and place of drilling. With the .. PLATE.! - Y passage of time or at arty other location more may be consequential charges In conditions. r i i wC� — BORING LOG JW-* CLIENTMU1*1E PAciatc W.O "o6-DATE DRILLED /2-17-Rc LOGGED BY F SB PROJECTNEwPvzmp &o -1`114 SURFACE ELEV. HD'* DRIVING WT. 1 A .11 )RILL RIG pucKET /tucET( BUKINU UTAMETER r-t W t a 3 � a w 0 75 n = co < J co GEOLOGIC/ENGINEERING DESCRIPTION m75 � �Rys�GTSTsn�E , DK• Car+q'J • XiG`� aic15T cN/ �++*�' S•enOJ Lffru/n•/rTio.t/5 t ski iL�i r/G T•A. Ss 14&-Avs jar 4f! 51 -- ff°GE wks. LoI�C,En NP__ m Sg 14oLe ceA5 ZAcl Ficl�i cd r� N p y S 0 x3 am tJ cam ism �� H W �" >- o W ae F- = W O Z n �5• H-L This log Is a representation of subsurface condlllons at the time and place of drilling. With the passage of time or at any other location there may be consequential changss In conditions. PLATE C - I (� — Ce, BORING LOG 89-5 CLIENT rRVIVE`XIFIC- W.0. JLZ-A DATE DRILLED/Z-/8-90 LOGGED BY_ FROJECTNFayib.PT"ER A4M SURFACE ELEV. IIOf DRIVING WT.jL .0 yTr: zavcO ��' /6 8' )RI W F- LL RIG 1-¢ a G bUC J i'J L-1- Au(=tIL_ WWMIMt7UTAMCICtt GEOLOGICIENGINEERING DESCRIPTION ci NV �= pzo co H WW W ca 3 Q w W Ca V m t7m lr z ,. a a 0 W = Z N FW- C = t7 O • TE2)ZpC�'I7EP.asirs (r2tl: SANLLIS/LTi .a,CN• LoaSE. D1e1 , RaoTS SiLTSTb NE F.CArvMEN7.S MON7826 `J Fo1Cyv,ATloN (-Ti-, ) CLAyEy S/LTS7b1VE, so FT, VALVE -OLIVE. M015T FRAc.-tuea-sa , D,A7DM4CEov.5,W/LITiLP -SpNoy LAM(KAT/ON Os' .BECOMES HARDER ®6� (6) N6ow �Z 5 l . MiaDeFSIULTiNv,FOmw 07 1 sANOJ Lti:E2 (B) IV 96E 8 N OS 11S#7AL.. FAULT N306 S4 W •D 10 7z' SAND 1-tUEll N 7D W ) 6 N � UNEVEn,Cd?A a U !" 11A2D SiLiCfOus LAYER . 1•1(oSW , S/V 013=L5'sAAIb.,s LA.yt'E., MEp. DENSj• a LT. LolAS SL/. Nro,ST, ceANt�E_S7-A4Vd LB) N70E , 16 A1W ,( F) 1V3sW, SZS 0IS- Ito uNEvc u",vi14CT DuC 7'> xo LCWG.• 1L=1¢ a4A-4cV LAI(E,C, so FT, v-lnOltr 0 /S' SAA104rbNC L>S aM A3 . MEG. DENSE •SL/, inaiST . FErr, oeANG�sTA/ASS. Fii✓E cs.e..a-,n,co r ,(d V %�CLAYEY LAyE2 CB) ,t/(po to , 29 S ,. 24 I SIL(CEouS LAy Ell. UKEVE,vGOn( �'(1C.T DUL- •ro FAIXT(KG (da3o Lai NZSw, LS.Sw � 3 3 91,2_ (b3.3 %o'� -T!� ,� 3.Z ,,t{-n,� 'P-�� q I Ll-1 � $ ��a C 1D IS o a D GS • ' This log IS a represantatlon of sub&urlace condition& at the time and place of drllllno. With Ina puuoe of time or at any other location there may be consequential changes In condltiorIL rbP1, r G-� C. BORING LOG II_r CLIENT22RV11,IEPAclatc W.0?LGz-,4-xDATE DRILLED /229 50 LOOQED BY Fq PROJECT A&WPOM9 A6,9774 SURFACE ELEV. /10't DRIVING WT. DRILL RIG r'UUrcinli UTAmtltrc T 4 3 U. W 0 E a. G O GEOLOGIC/ENGINEERING DESCRIPTION m U)Q O C H Np W W M =3 Wam W CQ vta Uta N O p a o W .: 2 N F D O = w 4b371 I 6141Va=-844, S11,VG 4A.9E/4- (B) N6SEj3,M f ®AID ABUUDANr &LYPSUM D6A04iT74N ALO.Vz, BiDO/NG Lb) Nzsw ,3/Af &Y3>•—c6vER—saCkfNLe ?oL/sHEo s..eva�r 694-4 fD) Nssw> 40N , a49 cLA9c'_l s,4.l-smvc j v.AIARD SDK` LopA1 sLf M&Z7' m AYOfsrJ T/HNZ-q P.CDDED Ta LAMINAi ED , sG/. PBrKor,-,wa5 , w/ FEW L71• 64A3.3ANDy LA W A/% aSo h HA,eD .5/L/C LAyEA , uNEVEffCONrAGr N7S6 >/oN 05z> 3N silk LA9ElZ 05V 011N04 3EEPA&- &51 GLAYSGAM ,V 6o E 20 NW t • rHERIUNb Obo> �5) NSO tJ > ??-IJ J ALON(, 6r,9D/A/L, -fD = %Q NO CAVfN6 SEE rVAC>6 _. SP ROJ-6 Lu A3 IBAcL•F>LLci) 1-4 ry� (5�•3 �t 2 T`T Y. Lip 4•s v 6� 6S .� ��C This log is a representation of subsurface conditions at the time and place of drilling, With the F LA I C L� passage of time or at any other location there may" consequential changes In conditions. 11 1 CLIENTIEV/NE• Pfaur-fc W.0Q-,5 A=DATE DRILLEb 12-19-90 LOGGED BYSPB/FA PROJECTNEWPOR7ER/✓Rn1 SURFACE ELEV. IID1± DRIVING WT. o-26' Z7o0 T1 DRILL RI Q uK.c..no, /ti.4.bGK 13VMIN%D UTAmC I CI\ �- W F- 3 u, -.. !- 0. c a o 49 GEOLOGIC/ENGINEERING DESCRIPTION m yv _= p 0 ai inw W3 cLw W pC 090 I in W 'u G n >- a t W to= O —rE22AG O /T S AAI'DY S/L7; A14A1-r As%KE, @ Z' 73EGoMF_25 ?LILL/TLY @3yz LtouccoMEtllrL t.:y e Cr r.CXJA=K[a fci_" - I C Ml C4,Q S LIGE1v0. ,/ CSM013T, DfA7b MAGPGf15, IE 7 Yz BEDD/A�L N3//W,18/UE Al-,-SW,22NE ar^/2 JiirnvrlAt�c t S CGAY67A,JE.'PAle Ot/rIE, ABUAjaAMT O/CAAJAE JrA�AJ/ J6. &v/6' C4AySMA..9, AWeD, V. MG/sr u6,rr4e w_r l31POwA/ 011.Yz CW sj%4,+ti sieoA.V. 7MrA2hi 04 N25 tn1, 3yn1E, /z Ca20 BEOD/A iG /V2/1W, 28vV,E�,�n @'2! ' ,5A AADS'rm NE . NAM - V. RAPM , I Z" i-A tcK , uN£uw ^TAP AAJD SD7710 l,DIP A/C. NOTE: J)ID Nor ,mbw) l4DLE LiELbLi 21 Du£ -m wATER. E'26' eOAJ7—. CLAyS'7DAJE hJ/ OtG -SAODY LAM/ A)A77DA.L5. @30�CtAY� 1,M0/371, PGAS-,X--.OLIUE SM' 3 II5''- -- 14 774 Y - - -. B 5 D - 2D 25- 5 Thlt log It t nprasentttlonol Mountee passage of Ilme or at eery other loutlon I • BORING LOG B#4 CLIENT=QviuE PA-e-4PAr-W 0415P•A-0- DATE DRILLEb 12'I 'Qo LOGGED BYSPl3 FA PROJECTNEWPORTaz NoreN SURFACE ELEV. IID'* DRIVING WT._�� I A ..., DRILLRIG Q`-ZN 1JUMINUUMMC 11111 !F W F— 4 3 W a W c C7 2 ..1 m GEOLOGIC/ENGINEERING DESCRIPTION to a.' p fx co y NO WV' wagU�m W am W O4 1 1 cam ~ U) x ,�„ Cl o >- cr o cc H = x N F" x V 35 r_ Ti7 = SR' GW = 28' y0 h Thlsfog lsarspresametlonolsmurtacecondtllonsstint time anoptaoeorctitltng.1711nins rL.M I c passage of time or at any other looatlon men may be consequential changes In condlllons. ' G C. • BORING LOG 8L7 �v CLIENT .LRy//ys7- "IFIG W.0.&E2—A-0rDATE DRILLED I2--0-2 LOGGED BY FA/SPB PROJECTNEwpe>, F Alo=W SURFACE ELEV. /07 �* DRIVING, WT. O-Z5 " 2.700= )RILL RIG BORING DIAMETER 24!/ GEOLOGIC/ENGINEERING DESCRIPTION � Wo W U.tD F- a p =0 cem >. 0—= 4 W IX W r r Cr O C W am tam O = V ML ARTla=lG,aL F-IL.L LCcF� ; G GLAvcn SILT > LDDSE Cr. Ca2Ay DKy TD DAMt'>, SiLriTeNE F2ACoMEiYT3, DIA7'oM0.=EJU3 I C 39�� 4'g� T ERRA L.E .DEPDS/TS 5 ML .SAMLY SILT •. -46D• DENSE , MCD. l3ZN. ,sL,•.Clo,G� 3ILTSTDNE FG4GO MEJVTI Mbn?EQI=Y FO,cmATroNLTi.�) ' CIA _IsrDNE > twD• N6XD . M41vr--89N• . MO/57- Io DIATDM4GEOU.c , TIf,NLk to LwMi vATED NSOVJ , ION ' ®7 Ld) N 40w, ZINE I� �] E/L %L cLAYSERM RLONL>BEOD,NGo ,NSE'�20Nc 'I 15 mIL L3) N3l+l �/5 NE I ® IZ' GLAD St M , THIN, ALONv 9EDDINC� ' ® 17' 13EL.Ow1ES ifw1T 7C ✓. matT r9 f7 MlNhC FAULT . NSE, SOE r, . a 17�L GB) N4-TW a '¢NE 2D ®!9' DrsGpN. cLAys¢nrvt N30 W j 71VE ' 0& LB) N/7W.�/a NE I� i B 2��s L NARD . NODUL.42. LA.9EP— >CB] N fOWAaNE ' 0 LtS L:LAJS,AM YHiN, PbLLS/IEL> N4W&d i 17 NE O2A' Ls) NOSE, 1F6NW �.bC"MES V, WAr- 3� Ig 3o Saa Tq r;E . NA40 5,L/GEcx1S LA.YEX. Gut = 3Z This log lea representational subsurlacecondlllons at the time and olaceof drilling. With the PLATE ' puesps of time or at any other location there may be conaeouentlal changes In conditions. C. BORING LOGS ..� aria r TIL1/iArc �RUF/� W n 2L57-A-00ATE DRILLED /2-7-0-90 LOGGED BYPill= PROJECT NEwl-wen PAlORTH SURFACE ELEV. /09'+ DRIVING WT. 0-25' 2- )RILL RIG O���I NVU9G./tH V(9GR VVISINV UIMMCIGR Us !- 3 W 1Z- O. c = a.0 4J GEOLOGIC/ENGINEERING DESCRIPTION m w(j n'� p to us qk x3 am W Cox I ism N W " 92 na >- a IY :. �W N H Z O /�FJ/F/G/AL F/LL (0-Q LL CLA.2 . -sILT� LDo3 E , LT. (i4A•i , DU To -VAMP MON7'EREy FnGMA1-i�N�Tn+i Jr CLAY.STONE, scPr TD MOD• HAFD . ?ALE d(J✓C D/H S'O MACEOUS, ma,.tT, LAM/NArED 64•r CY) N65-E eG' Ca) Ne'o�, �s3w ®(�r %1," 11.AJSl?AM AILONG7 .BcZ LYN(o I SI.3 4h� c �� ©S TK/N GLAJ3EAM., oFFlcr-d F9ULT' ,(F)/y/S6'• 63E a/ ®n Sm.444 rr 4117- , L,"oFr--SET , n/Ss W , 47E M /D rlAJ.SFitrl % Tb /� MCA , ?oUsNEo , 15 A160W , 27.S &u TLASiI C Gc,N%/NU6o✓5 m 12'4' GLAJS&ca,r/ ., iz'rG J TfH[iC / MULTiPL¢ oFF-SErs , E-W, 2R S Sc/f7Tf wALL .SNEG/NO.a , ,V3T� � ¢P/Vr'' u�) E-w , ZOS zo ' ®I4• f/ay scAM , G411V771V4095 AtoyNO THEwALL, 8/9'' SL/• SEEYAL£, AAWALL ®110/Z cAAMIMOea1.S, NSSW, ZJILS zs ®/9� NOV. Se45FA;CGE ®20� SHEALiAim AND N roW, (o¢N � •. GL LrNEVEN A/ 80W )LDS tr ®L//z 7-if/,V CLf/y-':EA,n, N7pE, 47--'75 S 30 A/7SW i f.3 S , V. NEAVJ SeEPAL�E ® ZS/z HA-D S,L, GEaus LAJE.2, ' ThlslogisanpresentallonofsubsurfacecondltlonsatthellmeandPlaceofdrllling.Withthe PLATE ^ '� passage of lime of at any Pinar focallon there may be consequential changes In conditions. • BORING LOG bN-8 T CLIENT-71VIAE P'`KrF'e- W. O1 2-A-oc.DATE DRILLED 12-22-90 LOGGED BY FL} SPS PROJECTNE/wlAcrge /1,I1:77-1 SURFACE ELEV. /09'r DRIVING WT. DRILL RIG BORING DIAMETER gl Q 3 W u. = W 0 E m 4J GEOLOGIC/ENGINEERING DESCRIPTION m r IN NVWWW O IX ni 0:7I- Z am cam wm ~ W p 6 y y r 0 IX s 6) Z 2 8E-0MC.0 V. molt- YD WCT 6 30-!r11kAZJNLD AN,0 ABUNt] Aiv0 Fou&q sc: Su�C.FAGES TD =3D Gat < 2A BR: Z, 45 This lop is a represemstlon of subsurface conditions at the time and place of drilling. With the PLATE H _f a Passage of time or at any other loeatlon there may be consequential chanpee in conditions. I I II • BORING LOG34-9 CLIENTZRVIWF- PauFlc W. O,2j 2-A C1DATE DRILLED 12'221- .o LOGGED BY -�>I`8 PRWECT NEWPORTER /VaRTN SURFACE ELEV. 113"t DRIVING WT. DRILL RIG LP"KCT ruvtK IJUKIK1i UTAMtItK F,r W 1 3 W .� . h- w c U =CJ ¢ J 0 GEOLOGIC/ENGINEERING DESCRIPTION cm T HVWW n'O o cc M 0 Vic ¢ Z3 w.J am0rm OQ Ow �' N Z O to :0--C o ^ i W ... �Z CM►� z =n O TERQA=� pF14OSrrS SAAlDY iii 104SE, 1J i GQAY Mieb anI. @3/z' C3FLOMES DENSE, ICED 302Dwr.! @5Yz BzsAL C6A14LDMERATELR£k/6KKED CMMr ArID SILiiiiii S SA4ALe), WQA 67�Z SILTY CLAYS DN>`.MEDiLLht flENSE,Aaa1� MEbILLnL 62AY. WF.AT#E2 ESQ. E*9'BIDi>1G N75W,2.8'/VE iRA CLAY BEAi••LCALOAfG SF�D, �iN73W,23iJE. SEA,.t fs oFFs6Y !3Y SAfi FAULT TREaJD,Av- /i ✓E.E77GFlL. L/Z%2B40D11i A.L51611i2E/J Lm21 'LI6N7' SELF-AA&.E.AIe0LL&3n Not 9 .4+ 22' BEODI.LIG /1,�7W, 2�/ iVE 026:3w1.1' &NBoW, 25iJE.NEAuy sEEA9GE AuD SMRTS. @31 S7AUDIt16 W4Me LEVEL OAIF //owe AFTER DZU/Pi Ghl = 26' ism AM 5 io 15 20 25 3 ' This log Is a representallon of subsurface conditions at the time and place of drilling. With the PLATE Y '' passeps of time or at any other location there may be consequential chanpse In conditions. I • BORING LOG M-/o CLIENT XF-MI= PACIFIc- W.0,7-152A-OcDATE DRILLED 12-U-10 LOGGED BY FA/5 PROJECTIVMysn i gMaC77/ SURFACE ELEV. 12o't DRIVING WT. DRILL RIG -nucf-W 6+u[1,P7C tlVK I►U VIAML ILK zu' Uj # uW .... w C O L c� aG GEOLOGIC/ENGINEERING DESCRIPTION cd r win Cal Co vi c War IIW.m W ca �m Um F h o p y G W a t- N z o 2 U TEkta[.E DEl�osrTS LGtt) : s/LT.y F/NE SA.1/p . MCO..DeNs6. , LT•dGN., r7/'i-51 , 70MOU C � SL/. rE 07--D noo Bf2cwvGi _s1./...n,./sT T'a MaST , w/So�++E�LA� MONTER.E� • FOc/nhiTZON LTfi) CLFLI E�3r/TSTVA/t: , ..SOFT, L,T G,a•4y /MU/ST � Hi- WEATUELED 0 9' CLAy3TDNE 3ofY, PRL£ 011l/E, MO/STt 'DtA7'r,r+AC�aVi � �,r„.=rn,ATca M TO WET, SEE?AIpG SA/VDJ LAYER J LT• 610As , SAfL.cn7'ED ®� NAkD S/L/cEoiLf LA.Sf.Eh= SM 5 1 � _77 16 T.D - /K Gta = a, R ' This log le a nproePoatlonof tulleunace conditions at the time and place of tltlllinp. With the FLAIL c panaoe of time Of at my other location theta may be consequential eha gve In contllltona. • BORING LOG CLIENTMEWME PAUFIc W.0.2/52-A-OcDATE DRILLED /Z-Z/- a LOGGED BY -528 PROJECT/V=k/PprMRMO)M SURFACE ELEV. /09'f DRIVING WT. 0R IIILL RIG tlVKINV UTAMtItK' �'+ W 4 3 W F w 0 O ¢J `� GEOLOGIC/ENGINEERING DESCRIPTION ad ti o co h x3 ara CEO OC ulic iota w 0 a a- a Nt� C = 'TER2AC /'OS,T SAn1DyS/LT,LpOSE, 10oRouS. SNL /MAr.24Y.SR0WA, MbN7F'Cry FORM .rAMIZ.8Eaa151) SI1.ICeZU5 SHALES Aut, Z1rA-M- MAf�O��AsS SMALCS. a- y' 56DD,A 4 n/ %sW, y'/JE P S LEDD/N6 AOSE.7%fW a l'.XNCR-A-SI .U. 51LICEOLLS SMALQ, HAlktAe RrIE is/2' LiEDDIAM. MOM 2 :5W @.l5'CGAYSTDNE.MEDIKA4 D£AlSE.MoIST. MEDIIU.I 462AYI MIwOR a2A,s6E 4)x,085. @!7'SluCeotLS 6NALe.NA9,P, BE177G2;LAM/.u4=. SEMAJ6 G /✓?SW, /4/'.5W, @ 2/'SAA�as�w>=., v�Y s#►ae�-�EAISE. � 23'86n�/ILtc.1J5E.30-�60'14i4� /1/crE � D, P - Pr�AIS Tb 7P1G NW tD0W Q D,P) . 0 2R'BeoalN6, N/5W, 53 SW La32'1,1rEet3Es�D6a SILICGOu.S SAlPILE AAM DIATDA AfW 0U-S -SHALe , 4cz, SA^2DY L/iM - /NA'f)O,.LS.CdMhloL1 OIClbE ST7?�,.l G., HEDdII.K n15LJ, 70'Stnl, )r /O /5 25 35 This lop Is a representation of subaurlace condlllona at the time and puce of drilling. With the PLATE m -' —I passage of time or at any other location then may be-consepuenliat Changes In conditions. I I IL II II 1 • • BORING LOG BH-11 CLIENTTRywE PhGIPIG W. O9ff3:A=per DATE DRILLEb r2-zt-90 LOGGED BY SPL' PROJECT/VeW,00eEP /1/oertl SURFACE ELEV. /OR'* DRIVING WT.___._ n �.. a DRILL RIG -r'K67- /+Kc t,K VVM IPIV UINmG I CR a W 16— Q 3 U. = F W c 's5 oz c aJ W GEOLOGIC/ENGINEERING DESCRIPTION Lp�i/ BEDD//.G NSWr IZSW. MoM; MWoR FO Ll) I L16. a VZISPEA12 /J(.DE.SoSE t'MN6';ftoa1 uG N25W,33'SW C �15+�i rTE�es��Ed m4 ecl 51 uceet.t_s SI141W AND SIL-f-s-w e- @�19'G'aMrto,� 'IN-Iti1 SkiJD Lsilsas. ad V ors 0 to Wk. W z3 am Cd ow cila z a o o 7~C HN o 0 H 'f7 No GW ' Thls top Is a tepresentetton of subsurface conditions at the time and place of drilling. With the P LA l postage of time or at any other location there may be consequential change& In conditions. U II U CLIENT Irvine Pacific W.O. 1492-2CDATE DRILLED 10/27/86 LOGGED BY M SPORTED 0-25' 2400# PROJECT NOFdH APAR'IS1EiuS SURFACE ELEV. 118' DRIVING WT251+ 1550# W �- 3 W U. a c V 0=.. O z '� (D 2 5.0 y CO V 5= c CC n fA W W3 = am W ca cam 0m VJ W G n >- c W ZR F- z vIW- c z 0 TERRACE DEPOSITS: Silty Fine Sand, slightly reddish- biown, dry to slightly rroist, loose in upper 1 foot, medium dense @4' increasing amounts of. tan -white shale fraguents, dark brown, clayey sand SM 4 3 B C C 118.4 104.2 6.3 18. 5 BEDROCK: Siltstone, clayey white to tan, thinly bedded, rroderately cemented, damp to roist @8' - silioeous layer, 6-8" @10" - beanies grey and tan @11' - petroleum odor -' @18' - moderate to heavy seepage 3/611 2 2 C B C C 88.2 60.8 85.4 13.5 58. 52.1 10 15 20 25 30 . TOTAL DEPTH: 30' '.SEEPAGE @ 18' JENOR SLOUGHING BEIC W 18' 10-DAY WATER LEVEL @ 13' 3 C 59.2 69.1 LN.-Pam _ • BORING LOG BB_2 CLIENT Irvine Pacific W.0.1492-02 DATE DRILLE1510 27 86 LOGGED BY JRM Newporter PROJECT North Apart a is SURFACE ELEV. 117' DRIVING WT. 2400# x F Q 3 w .. a.. W c O O �aN yO VWW y 7 w 0 W i W am t07m cam 2y ,O c y a c 2 W cn Z O O 20 0 TERRACE DEPOSITS: Silty Fine Sand, slightly reddish- brown, dry to slightly moist, medium dense, occasional shale fragments, caliche; upper foot loose @4' medium brawn; increase in shale fragments; beccnies clayey SM 1 3 C C 102.9 84.5 6.9 38.2 5 2 C B C 69.2 48.3 48.5 89.4 BEDROCK: Siltstone, tan -grey, moist, moderately cemented @8' - grey,white diatomaceous 09! - B: N40W, 35SW @13' - moderate seepage 1 15 0 TOTAL DEPTH: 20' SEEPAGE @ 13' NO CAVING 10 DAY WATER LEVEE @11' PLATE AA-L • BORING LOG B-3 CLIENT Irvine Pacific W. 0.1492-OC DATE DRILLEb 10 27 86.LOGGED BY IRM Newporter PROJECT North Apartments SURFACE ELEV. 119' DRIVING WT.2400# W ►- a = a w V 0.0 -CJ c� m 5-y CoH a.= C co N W �w 4i3 zo O.m ¢C9 OQ cam Vm f' w n >. C wU. a F- w y o z U 0 TERRACE DEPOSITS: Silty Fine Sand, slightly reddish brown, dry to slightly moist, medium dense, upper foot loose @3' - grades to dark brawn, clayey sand, moist dense 3 C 89.5 33.8 5 2 1 1 C C C 45.0 53.2 79.0 7 98.0 81. 38.8 BEDROCK: Siltstn.ne, clayey, tan -grey, mist, moderately cemented, massive @10'h' Seepage @20'-approximagtge bedding fran BQW ,;gS�'le 10 15 20 TOTAL DEPTH :21' SEEPAGE @10;1' NO CAVING 10-DAY WATER LEVEL @ 9' 5 30 PLATE AA-3 Y • BORING LOG B-4 CLIENT Irvine PPoacific W.0. 1492-OC DATE DRILLED 10 27/86LOGGED BY �M Neap PROJECT North Aprartments SURFACE ELEV. 119' DRIVING WT. 2400# H 4 3 W U. = O~. W 0 SO O. O J c9 m yVWLL a0 C9 H w3 Q.m W Mcp OQ vd OM y z ,,. 0 a } 0 o W .°�. �F M z y F z O U 0 TERRACE DEPOSITS: Silty Fine Sand, slightly reddish brawn, dry to moist, medium dense, upper foot loose @4' - becomes dark brown, clayey SM 3 C 116.7 12.7 5 BEDROCK: Siltstone, grey to tan, laminated to thinly -bedded, moderately cemented, upper two feet highly weathered, damp @7' - B: N60E, 12SE @9' - B: E-W, 20N @14'k'- moderate seepage @17' - B: N80E, 1ON ' 6 3 2 C B C C 113.2 61.3 60,7 17.1 65.1 68.0 10 15 20 SEEPAGE @ 14'�' NO CAVING 10 DAY WATER LEVEL @ 10' PLATE AA-4 BORING LOG B-5 "u CLIENT Irvine Pacific W.0.1492-OC DATE DRILLEI) 10/27/86L ED BY MM N rter 0-25' 2400# PROJECTNorthhAnnartn-pants SURFACE ELEV. 115' DRIVING WT.25' + 1500# 3 UJ W LL. 2 W G U S cD a OJ cD m >- yCULLjLL. a7� O 0 F N 700 Z3 4.0 W �M vm Um >. ~ N Z W u �- a C o W •°\• ¢ 0 Z t- W m Z O 20 0 TERRACE DEPOSITS: Silty Fine Sand, slightly reddish brown, dry to slightly moist, loose in upper foot, medium dense belay @41- becomes mist, dark brown, clayey SM 10 C 116.7. 5. 5 BEDROCK: Siltstone, clayey, grey brown, locally diatomaceous, thinly -bedded laminated moist, moderately cemented, upper foot highly weathered @6' -B: E-W, 40N @7' -B: E-W, 40N @81 -becomes well -cemented @9' -J: N15E, 50W @10' -softer, less diatomaceous @11' -occasional hard layers @12' -B: E-W, 25N, hard @14' -J: N50E, 50SE @15' -�" wide clay bed, bedding offset above, vertical clay filled joint intersects above, below bedrock is softer B -: E-W, 30N @16' -becomes harder @17' -softer B: N75W, 25N @26' -moderate seepage, unable to log further due to water 4 3 2 C C C 56,2 54.4 4 4.6 63.4 83.1 9.7 , 8 lor 1 2 25 30 PLATEAA-ba CO C. 0 BORING LOG B-5 28 ' CLIENT Irvine Pacific W O 1492—OC DATE DRILLEb10/27/86 LOGGED BY `RM Newporter PROJECT North Apartirents SURFACE ELEV. 115' DRIVING WT. 15500 IW C� y f' W V Q J H= W C9 W t+i I-' W W G~ 7 W 3 OQ O a m F- Q W O O Z Um >- OZ ' 3 0 am Um o .� 3 ' 4 4 C 52.9 78. ' Stopped drilling at 45', due to water, cuttings not retained in bucket ' 4 ' TOTAL DEPTH: 45' SEEPAGE: 26' ' NO CAVING 10 DAY WATER LEVEL, @20' PLATE AA-5b n J J '1 • BORING LOG B-6 CLIENTIrvire Pacific W. 0.1492-OC DATE DRILLE15 10/28/86 LOGGED BYJM rtPx 0-25' 2 00 PROJECT,North��Apartnents SURFACE ELEV. 113' DRIVING WT.25-45' 1550# w Q 3 vdW;m w w = I- w O 0 IL O (AO M 0 gym- try ZO 0.m OQ Um Um >' C c } O r" Z W F- O Z U TFMCE DEPOSITS: Silty Fine Sand, reddish brown, dry to moist, medium dense to dense; loose in upper foot @41-becomes clayey, dark brown SM g 7 C C 120.7 114.1 6.7 13. 5 BEDROCK: Siltstone, grey -white to tan, clayey, laminated to thinly bedded, damp to moist, moderately to well cemented @7' -J: N15E,55E; B: N30E, SE, hard @9' -J: N55W,65NE;B: NS SE; J: N70E,75E @l2'-J: N25W,60SW; bedding irregular but generally flat @131-intensely fractured,soft,wet, sane slicks, 18" thickjat top, B:N75W, 1ON @14'-J: N50W, 70SE @161-moist, sane slicks on joints, J: N45E, 6ONW @17'-joint with slicks;J:N70E155SE; B: N50W, 5NE @18'-steep joiftts,6" spacing, free water @18k-3" intensely fractured zone parallel to bedding @LO'-B: N25W, LONE @20'-very wet @21'-hard layer; B:N60W,17NE @221-highly fractured parallel to bedding @23'-1/8"clay bed; `B:N50W,30NE @24'-moderately fractured,more seepage @25'-minor sloughing @30'-B: N40E, 30E @32'-bedrock slighly moist between fractures 2 3 3 C B C C 42.3 42.5 64.4 ; 103.5 101. 60. l 2 2 30- 3 PLATEAR—oa 1 1 1 I • BORING LOGB-6 CLIENT Irvine Pacific W.01492-OC DATE DRILLED 10/28/86LOGGED BY '�M Newporter 25- PROJECTNorth Apartments SURFACE ELEV. 113' DRIVING WT.45+ 850# W U. = W O 35 V d0 J @44'-moderate seepage Mudstone, dark grey -green moderately well cemented, laminated to thinly bedded, damp @51' hard layer;dri]ling stopped due to hardness and inflow of water maO � CD N Wu. W3 4mOCO W UC Umco ~ y „ v rZ6 108. o a: Z WCL_ fA OVZ N 16. 0 25/'• 10 C 'in'M DEPTH:51' SEEPAGE @ 18' SEEPAGE @ 44' MINOR SLOUGHING BELOW 25' 10-DAY MTER IFVFT• @ 17' 5 P L AT E.AA—bb 1 1 • BORING LOG R-Z_ CLIENTIrvine Pacific W. p_ 1492-X DATE DRILLEb 10/28/86 LOGGED BY JPK Newporter 0-25' 2400# PROJECTNorth Avarttrents SURFACE ELEV. 108' DRIVING WT25-45' 1550# < W a 0 U m i N N V c ¢ 00.m m W U.W Wo Z W cam � n Um ~ Z r a C W .°�.. Z c Z o U 0 TERRACE DEPOSITS: Silty Fine. Sand, slightly reddish brain, drV to sli tl moist, medium dense SM 4 C 75.7 36.8 BEDROCK: Siltstone, clayey, tan to grey -white, diatomaceous] moderately cen^_.nted, damp; highly weathered in upper foot, laminated to thinly bedded @5' -B: N70E, 8S @6'-medium grey, moist @7' -B: N50W, 25SW @81 -disturbed•.zone, highly fractured, slicks, medium brown siltstone @9' -J: N55W,16N; J: N80W, 42SE @11'-white @12'-B: N10E, 8E @13'-Clay lied, � to 3 inches thick, moist, soft, B: N89E, 23S; below, harder, less disturbed @141-tan-grey, laminated, occasionally fractured, damp @15'-free moisture @17'-J: N50W, 30SW; B: N85E, 25S @18'-J: N10E, 25W, seepage @20'-J: N10E, 60W, heavy seepage @21'-B: N75W, 17S; bedding fairly constant through remainder of hole @28'- B : N70E, 17S 1 3 2 C C C 55.0 73.9 48.8 70.7 38.4 88. 5 1p 15 20 25 30 35 PLATEAA-7a I II G JEEIL BORING LOG CLIENT Irvine Pacific W. O 1492-W DATE DRILLEb10/28/86 LOGGED BY '� Newporter PROJECTNorth Apartments SURFACE ELEV. 108' DRIVING WT. 850# W H 3 LL v F- a G 35 SLO ¢ J � Siltstone, (cwnt'd), clayey, tan to grey -white, diatomaceous, moderatedly cemented, damp, laminated to thinly bedded @43'-medium brown @45'-B: N45E, 37NN Mudstone, dark brawn, damp, thinly bedded, moderately well cemented m (n)WLLW = o C9 F: zo 4.0 3 OQ om Um C C >- =,� G r G 57.9 55.4 u O z o z V 65.6. 681. 4 4 5 5 45 $u 6 6 Br 7 Gj&S ce • BORING LOG B-7 ' CLIENT Irvine Pacific W. 0. 1492-CC DATE DRILLEDIO/28/86 LOGGED BY Newporter PROJECT North Apartments SURFACE ELEV. 108' DRIVING' WT. f. >- .' m H W V N W Y to N F- 3t- a mW= 0ma z y, z 0 wac m ul0 75 0 @81' hard layer, stopped drilling due to hardness and water ' 'TOTAL DEPTH:81' 5 uEEPAGE @ 20' ' NO CAVING 10-DAY WATER LEVEL. @ 1231' ' 0 ' 5 0 0 ' PLATE AA-7e �I hNCO BORING LOG CLIENT Irvine Pacific W. O 1492-OC DATE DRILLED 10/29/86 LOGGED BY JRrI Netaporter 2400 PROJECT North Apart rents SURFACE ELEV. 117' DRIVING WT. W 3 W S �' c v d 0 Q J m m yt� p,7 ° m h rno W y. ZO am W frM °Q cam r ►- Z .,. 0 o n o o m F- Z F- W W to Z ° 0 TERRACE DEPOSITS: Silty Fine Sand, slightly reddish brown, dry to moist, medium dense; upper one foot loose 2 4 C C 120.7 70.8 8.2 9. 5 BEDROCK: Siltstone, clayey, grey -white, mist to wet, iv ghly weathered, bedding . indistinct, low to moderately hard @8'k'-moderate seepage @10'-J3 E-W, 18N @12'-heavy seepage, B: N42W, 40NE L 1 2 C C 68.2 58.7 55.1 58.8 10 15 20 25 TOTAL DEPTH: 25' SEEPAGE @ 8�' NO CAVING 10-DAY WATER LEVEL @ 7' r U 0 BORING LOG B9 CLIENT Irvine Pacific W.0.1492-X DATE DRILLED 10 30 86 LOGGED BY JRM PROJECT Nor AP �zts SURFACE ELEV. 111 DRIVING WT. 2900# W 3 W O V M m }y a M O ~ y D:y ZOIxW p.m O< Vm Um ? N a C O o W •°\• O F- O O .20 0 TERRACE DEPOSITS: Silty Fine Sand, slightly reddish brawn, dry to slightly moist, shale fragments, loose to medium dense SM 5 BEDROCK: Siltstone, clayey, grey -white, moderately cemented, damp to moist, laminated to thinly bedded, moderately hard @5' -B: E W, 40S @7' -Siliceous layer, 6-8" thick @8' -series of irregular clay filled joints @10'-J: N85W, 48N @11k'-B: N85W,20N @13' -moderately fractured @15'-series of parallel joints; J: N45W, 35SW; B: N70E, 15SE @16'—intensely fractured zone 12" thick with thin clay beds with slicks; below, diatanaceous @17'-B: N10W, LONE @181-bedding offset 2" by fault F: N35E, 60W, B: N10E, SE @20'-clay beds with slicks @21'-6" clay layer; B: N60E, 35SE; below, median grey @23'-B: N55E, 12SE @25'-GS: N10W, 13NE @28'-2" clay layer containing slicks; B: N40W, 12NE @29'-12" sheared zone with slicks; parallel to bedding @33'-S: N75W, 37N; B: N35W, 12NE @34'-1" siliceous layer, shears terminate @35'-3" siliceous layer 3" thick 3 3 C C 83.0 71.1 28.7 29.9 0 20 5 0 5 PLATEwg—yi • BORING LOG B-9 CLIENTIrv'ne Pacific W.0.1492-OC DATE DRILLED10/30/8 LOGGED BY JRM PROJECTNorthhAAparbnents SURFACE ELEV. 111' DRIVING WT. W~ h- 3 W F=- a 0 35 0-0 Q J K O @36' - B: N35W, 12M @39' - becanes hard @40' - 3/4" joint filled with gypstun, J: N60W, 50NE @42' - meditan brawn @43' - B: N25W, 16NE @46' - abundant caliche, scattered, parallel to bedding @49' - B: N15W, 16NE @52' - slight seepage Mudstone, dark brown, occasional siliceous layers, moist, very stiff to hard Refusal @ 69' m 0N p,� m O M � rap �y W 3 zo am wto OQ ow ivm w c�i a >- c a 0 W .\. i— W to F- o z 40 45 50 55 6 65 TOTAL DEPTH 69' SLIGHT SEEPAGE @ 52' NO CAVING 17 P LAT E AA-9 r ILJ 11 • BORING LOG B-10 CLIENT Irvine Pacific W D 1492-OCDATE DRILLE15 "/30/" LOGGED BY ap"' Newporter 0-25 2800# PROJECTNorth en a SURFACE ELEV. 115' DRIVING WT.75-gn 15504 W Q 3 W = W C V Q J CD m �y ? y= j O cl ►: W fn �y W3 Z ILM �t9 OQ V m Um )' y W o G a >- C u 2 F- W co Z V 0 TERRACE DEPOSITS: Fine Sandy Silt, light brawn, dry to slightly mist, medim dense -Sy B 6 C 112.4 6.6 5 BEDROCK: Siltstone, grey -white to tan, highly weathered, laa hardness, rroist, massive to thinly bedded @12' - slight seepage @12' - B: NBOW, 16S @17'h'-heavy seepage 3 1 1 C C C 80.3 58.7 61.5 33.9 64. 60.8 10 15 20 25 3 TOTAL DEPTB: 30' SEEPAGE @ 12' NO CAVING 10-DAY WATER LEVEL @11' PLATE A8-10 II CLIENT Irvine Pacific • BORING LOG B-11 W.O. 1492-OCDATE DRILLEb 10/31/86LOGGED BY im Lm PROJECT Nort�. AAppartnents SURFACE ELEV.109' DRIVING WT._ W F- 3 1-0 W ~a O U Q OJ (D m N n'= 0 U' ~ vi 0.'y ZO 0.Cl MCD OQ cam Vm H G >- O N F- z U 0 TERRACE DEPOSITS: Silty Fine Sand, slightly reddish brain, dry to slightly moist, loose to medium dense @3' - abundant caliche SM 5 B BEDROCK: Siltstone, clayey white, diatomaceous, laminated to thinly bedded, damn @7'-B-NSW, 17E @12' - white to light brawn @13' - mist; 1/8" clay bed,B: N5W,20E @18' -1/8"clay bed @19 ,'- clay bed _ @21' -hard layer, 2' thick @23' -light grey @24' -B•: NS, 17E @25' -6" sheared zone, S: N80E, 80N @29' -2" layer of silt(ash),B:NS-20E light brown below @30' -1/8" clay bed .t @32' -siliceous layer 6 to 8" @33' -light grey @34' - B: N10E, 15E 10 15 20 2 3 3 —t PLATEAA-11a • BORING LOG B-11 CLIENT Irvine Pacific W 01492-OC DATE DRILLEb10/31/86 LOGGED BY M Newporter PROJECTNorth APartnents SURFACE ELEV. 109' DRIVING WT. IW- 3 lw�m W W = a c V Q J L9 N NV Cn p.M c 1- N y y14. ZO am W �O 0m ism r N 2 G 0 �. ' c o m Z !- W m Z 0 v 35 @36' - light brown @40' - very moist tomet @43' - B: N15E, 22E @44�1- slight seepage @ south side of boring @45' - moderate seepage @55' - B: N10E, 20E Mudstone, iredium to dark bra,m, mist, moderately hard to hard, occasional siliceous layers, thinly bedded 0 5 0 5 0 5 70 PLA 1 CI I -�� Cam% ��►_ �� • BORING LOG B-11 CLIENT Irvine Pacific W.0.1492-OC DATE DRILLEC 10/31/86LOGGED BY JRM wpo rtpx PROJECT STo±NetF+ Apartrmnts SURFACE ELEV. 109' DRIVING WT. z W I-- 3 I-P W .u. x a.W 0 U x U a " Mudstone, mdi= to dark brown, imist, mx7erately hard to hard, occasional siliceous layers, thinly bedded NU n,OWNm 7 z C9 N W LL W3 CLm W a 0a vm Um >- H Z c a 0 H Z t- FW- y Z 0 U 70 75 80 5 0 T= DEPTH: 92, SEEPAGE @ 45' NO CAVING 10-DAY WATER LEVEL @ 47' 5 PLA 1 C.A5M-13% I r 6 0 BORING LOG B-12 CLIENT Irvine Pacific W. 0.1492-X DATE DRILLEb 11/3/86 LOGGED BY JRM Newporter 0-25 PROJECTNOrth Apartments SURFACE ELEV. 115 DRIVING WT?5-30' 1550# 1 W IWi ... 6 O V = t9 Q J U' . m NVWW 6.O.H O O CD ~>- COO W 3 Z Q.M W Co loom Um ~ Z w } a O W .°.► 0 Z F"' W , of Z O U TERRACE DEPOSITS: Silty Fine Sand, slightly reddish brawn,, dry in upper foot to mist 2 C 117.3 9.6 5 BEDROCK: Siltstone,light to medium grey, moist, high tly weathered, law hardness @7'h' - heavy seepage @30' - B: N50E, 265E 3 1 3 C C C 78.3 63.9 58.01 42.1 61.5 76.8 10 ]5 20 2 TOTAL DEPTH: 31' SEEPAGE @ 7h' NO CAVING lA-DAY wAm LEVEL @ 6' F-1 11 I 0 I 5 I I 'L1 I I �l I - I ® FRACTIAF_F_:/VZi? j4.4.SW,CtAy W"F-D- ©BrDPhJ,&: A/70,G, 265E ©BZMIJ-J6 O,J C44Y BEAK: YZ" rR/ctS A/GL-,2LSE ©CL.A SEAF[: P'7711eK, M1211/,32NE (9)BED//J,r�: A16OW,52N1=- TR-1 SIDE D 5" 10' of p Oa'F: SANpy 5lLT GRAY R.COWAI, LDOSE,DV)? ®BEDD/N6 ON e[AyJEAfi: Yz-2%L'•7iHejc NS5 , L/NE ®BSDDInJ6 a N6Ok/j RAZE. (9BEPWAId. ON CLAY %7_'7.WhW 1Vnr ,✓,35N£. ®B�i7/AL_ : N3.5I41-PbVE QM,9XIML / FM : CtA�/E�/ 7a.7Z7OAIE A/ P. NM.Q), PALE OL/uG $ oW,�l 7D R N4' ow �L• Mol3j 7a No:sD/A7a.�tACE+O�s u�'WEg7NEP�p, LAMJ 7SD 7D 7Jf�NLy EO 6D. C IjEDDIA)!o OA) &Ay/ S£fina +N5Ow, /! NE ®:BEDDINGA)-5, WE 525E 0' 5' /0' 2o' 30' Qt `� H/NoR FG�O/NEB m BEpD/Alb ON etAy srAn i�'.'7N,cK, N?�E, �(osE ®BEP.Oe,3L oN 444Y SEAMYz'7% e.1<j A/6DE/5&St ®BEDDi/U; : A783E/ yoSE /O AS901a4 oAJ 4ZAy SF -AM • l " TN/cK, NbaE, 225E ©RWD/. N-.- A) E, 2S-5E 50, 60' ®Bifeaw zoroccaayl�tsl+K:3/y•t}{tcK 1/0' S0' Qt 60' 70' GGSI[em, 1446 East Chestnut Avenue Santa An$ CaUfomia'92701 Soil Mechanics* Geology Foundation Engineering w o. • 2152—A—OC DATE 2-4-91 PLATE A-21 1. PI 0Qt •SILT 3R-ND�0�/F.UGc L-t�oW,J,DEn(�G, SLf4bYTLV M o f ST PolCouS QE A/re S AMR X°�KEt) C(#.eT ® k� � �i��Y�V1a/NRxfD� ���IG�7j C1As7; ®MO.f.iFcNTZ.2K � Df'1-70,�-cI! c. �S75GLA3/.7PIOF (JBEna,aL:NyBw. /z.ve ®6'Eso!.uL.; VZDKh9AJE Tim 20j 4of &BEDD/fJ6 ; N6OW, I05 W 30' /00' TR-3 325E 0 at o =-® 50' /20' 60' 0 (D BfpDfaj-,'- NSOE,/YSE ® t3EtDIKY� 1- N(of_ 1 )3 56 70' ®Qt;i ft FDj [ TDUSLI[/-14 y BIrDCOA3, © Q&-'J2ffII.1�5PP FlaEFSA#A n G B�a n +L%t'B/�kt coalGt f12(0.+�-1�^cnxJ[zKFD CkwZT" i C ® Mnerk4e£ K � G4�pre mar / H/u/ f'M�-n M�i0�t93y -.y� t� nnu�s, thn�t u /ar3TroNE, tl� SEDDI+a' %%1K(?W, lD=:'✓.aSW_-. .. _. 1446 East'ChestnutAvenue Santa Ana California 92701 Soil Mechanics* Geology Foundation Engineering w o. 2152—A-QC DATE 22—k-91 PLAIIE A 22 O' 7o' SN.f�N¢S -.•_ $O T'q . . S 20 30� y0' •0, , � Tr1 90' , _rml 50' OQt � �/G7}[ SAND, yLffT �OcJIJ, MED/!� DFAIScI D�. LW I 60' 7Or (ZQt: e44yS/ 3I tT ^hW/ [ < S)WUJ t1, aZZV STiSF, _514(491x/ /ti2D[r , COMPfd.J PP p4rF,- ®Qt: y St LT W1 ABuNDA/Jr CALIGHCICprIM.VP VEJe77544L AMD /iDZZn..n'AL. CRACKS AT" Z"/Ar/-zAWAf----, ®MO �# f�FL: CLA��Yy��vy SILTST'17NE, c�DL�2 lS •PDl� F:fF.�OILf�MtUAa4t�ID!A-rt.�aAceo4r5. ®BFLYlg;. (J9 W,19foE �Fi4uLT: E 1k1, y8/1 ®5ZD.*AV6: N7Du1, /3.vC- ®l3F.WXi NSDE,31/ IIL) ®BFA' AJ'C_'6-h1f2(01J OATF44116. NyLIJ, I LMF- OBAW'&X` N/DE 1=5 pBF.o�J� � Nyos, /ss� • ®BE•lbrnl6= G-hl,-2YS ' 1446 East Chestnut Avenue Santa Ana, California 02701 Soil Mechanics* Geology Foundation Engi_neering- w.o. 2152—A—OC - DATE-iG*-D! PLATE A-:23 O' Rf DED1zcGK F��H R 6Fr !l3fiow�i lHM cn/ tao56�DRy �, ®Qt'.5�i6!�V M' nE�BJP.own1,M6D/u.r•L DF+vSE, ®BtD AL' W, 1oNE QBe1ao+,�� : N37W,17NE • TP -� S05W 30 ` D Qt' ME7`iyu.�ADD `" s1-ib,WrL M6w --D oD" 1ZnvT LETS 0,6 OD t A16 : /U-';Z5W,1s =2D SW gBEDD,w1G : Nsz)w f /3 sW ®BEOD,44 % N4ow, 7 SW ®SE/�Df��Gt A166W, ZgSW 0 1446 East Chestnut Avenue Santa Ana, CaNtornla 92701 Soil Mechanics* Geology Foundation Engineering W.O. 3152- --OC DATE PLATE ,A-21 TR.-7 S3?E 0" 10, ZD' • off. ,. •..• dQt 1"=5' J O d Q O4t ° SILImo, -�,DaRED 13 b WN, D"SEtDAKP TV Su6N?LI ©Qt : MLoy S/LT J`tED1�Grc BQdw�J -,�Fp oi�owrv, DE�`�/ © BASF ; LENTSEf2ATE, PzfQON n1 /I-7�1� %�E wO, Ej> G/f�..Qi OMON7cPL l F�� f%l�J- £ �� /N/giFl, D/�¢7DId/L�EO�CS Q13�ijvS/Ln�7i`:�ND3DE,3oNW EtA O *3sDy� a4 : Nz�E,aSNW . Soc,�-TN 05m-M-7 055C 73z-7 C34rk 7P-7 ®BEOD, a`. s N $oE, q l SE QBEDDrA .1N55We3+/5E �BEDDiw.: N7oW,H55E 5FA&&L-r: 1jG$W,8OSE 0' 10/ IQ5'EE-rR 7 (�5 Tk 7 ®SEETR-? Q E3awIafF : ND5W, 56N�F- ® SS00,OL" AIZ5W,SZAF Sf5DD,.aG: V-35W 6t NE ZD / o at G rµ _ _ 7 Gj%sj[c* 1446 East Chestnut Avenue Santa An$ California 92701 Soil Mechanics- Geology Foundation Engineering w o. 3152-A-0C DATE 2-4-91 PLATE A--25 H I f t H H a z 4 HH H H � H H F- N Q J IL 2 1 U 0 CH m 0 0 () CL M11 or O 0 0 CL-M 0 ML or L LIQUID LIMIT (LL), Symbol Boring Number Sample Number Depth (feet) Field Moisture (%) LL PI U.S.C.S. O LB-3 sb 1 10.8 — 101 61 CH m LB4 sb 1 36.0 — 93 57 CH ♦ LB4 sb 2 60.0 — 84 54 CH Test Method: ASTM D4318.84 0 Project No. 1851578.02 ATTERBERG LIMITS TEST RESULTS Project Name NEWPORTER NORTH i I� Date 6/12/95 figure No. D-1 I NORMAL STRESS (paf) Boring No. LA-2 Before Test: Sample No. 4 Dry Density (psf) 34.7 Depth (ft) 20.0 Moisture Content (%): 134.4 Soil Type Tm Type of Sample Undisturbed (ultimate stren ham) Friction Angle (deg.) 35.0 Cohesion (pst) 675.0 Project No. 1851578-02 DIRECT SHEAR Project Name NIEVVPORTER NORTH TIM Date 6112 5/—i12L1L95 FigureNo. n_9 100 so fx = 40 N 20 NORMAL STRESS (pcf) Boring No. LB-3 Before Test: Sample No. sb 1 Dry Density (psf) 71.7 Depth (ft) 10.8 Moisture Content (%): 46.9 Soil Type CH Type of Sample Remolded to insitu density (residual) Friction Angle (deg.) 9.0 Cohesion (pst) 70.0 Project No. 1851578.02 DIRECT SHEAR Project Name NEWPORTER NORTH 1 1� Date 6/12/95 Figure No. D-3 IIII luau) Illllunul 2600 2000 I:r= 6 NORMAL STRESS (paf) Boring No. LB-3 Before Test: Sample No. 4 Dry Density (pst) 72.0 Depth (ft) 15.0 Moisture Content (%): 33.0 Soil Type TM Type of Sample Remolded to 90%RC (ultimate stenglh) Friction Angle (deg.) 36.0 Cohesion (pst) 240.0 Project No. 1851578-02 DIRECT SHEAR Project Name NEWPORTER NORTH I Ian Date 6/12/95 Figure No. D-4 �ILILII 5 4 0 L 0 ® Geosoils' Test Results 1 2 Thousands Normal Stress (psf) Phi= 35 deg., c- 675 psf used in ® L&NsTest Results DIRECT SHEAR TEST RESULTS UNDISTURBED SAMPLES 3 4 � s 4 a 3 a � o 2 1 0 0 1 2 3 4 Thousands ' Normal Stress (psf) ® Geosolls' Test Results ® L&A's Test Results _ Phi= 33 deg., c= 300 psf used in analysis DIRECT SHEAR TEST RESULTS SAMPLES REMOLDED TO 90% RELATIVE COMPACTION 141 51 41 p31 m �21 11 CUMULATIVE FLOW VS TIME Time (minutes) -- Project Name : Newporter North Sample Diameter (in.) : 2.41 Project No.: 1851578-06 Sample Height (in.) : 4.00 Boring No.: LB-2 Max Dry Density (pcf) 120.0 Sample No.: Bag 1 Opt. Moisture Content (%) : 9.5 Depth: 2' - 3' Relative Compaction (%) 90 Date : 4114195 Moisture (after test, %) 18.1 Soil Description: Brown Silty Fine Sand Confining Pressure (psi)= 15.0 Backpressure (psi)= 3.0 Results: Flow Rate, q (cc/sec) = 0.034821 Gradient,i = 20.76923 t- ,;.;.:� rd FLEXIBLE WALL PERMEABILITY TEST 1 1 CUMULATIVE FLOW VS TIME 2 0 B 6 4 2 0 an ie on 9. Time (minutes) Project Name: Newporter North Sample Diameter (in.) : 2.41 Project No.: 1851578-06 Sample Height (in.) : 4.00 Boring No.: LB-2 Max. Dry Density (pct) 53.0 Sample No.: Bag 2 Opt. Moisture Content (%) : 68.0 Depth: 8' -10' Relative Compaction (%) 90 Date : 4/14/95 Moisture (after test, %) 98.2 Soil Description: Tan Fine Sandy Clayey Silt Confining Pressure (psi)= 15.0 Backpressure (psi)= 5.0 Results: Flow Rate, q (cc/sec) = 0.008178 Gradient, i = 34.61538 FLEXIBLE WALL PERMEABILITY TEST 3 CUMULATIVE FLOW VS TIME 0 5 0 5 0 5 0 U lu Zu JV 4V au ov Time (minutes) 70 80 90 100 Project Name: Newporter North Sample Diameter (in.) : 2.41 Project No.: 1851578-06 Sample Height (in.) : 4.00 Boring No.: LB-4 Max Dry Density (pcf) 76.0 Sample No.: Bag 1 Opt. Moisture Content (%) : 35.0 Depth: 24' Relative Compaction (%) 90 Date : 4114195 Moisture (after test, %) 51.8 Soil Description: Grayish Brown Siltstone Confining Pressure (psi)= 40.0 Backpressure (psi)= 30.0 Results: Flow Rate, q (cc/sec) = 0.004558 Gradient, i = 207.6923 a. FLEXIBLE WALL PERMEABILITY TEST Al CUMULATIVE FLOW VS TIME 16i Ni'dIJ 30 40 so 60 70 80 Time (minutes) Project Name: Newporter North Sample Diameter (in.) : 2.41 Project No.: 1851578-06 Sample Height (in.) : 4.00 Boring No.: LB-2 and LB-4 Max Dry Density (pcf) 67.0 Sample No.: Bag 2 and Bag 1 Opt. Moisture Content (%) : 43.0 Depth: - Relative Compaction (%) 85 Date : 4118195 Moisture (after test, %) 62.4 Soil Description: Results: 50% Bag 2 of LB-2 and 50% Bag 1 of LB-4 Confining Pressure (psi)= 15.0 Backpressure (psi)= 5.0 Flow Rate, q (cc/sec) = 0.003754 Gradient,1 = 34.61538 FLEXIBLE WALL PERMEABILITY TEST A CUMULATIVE FLOW VS TIME ►o 35 30 ?5 ?0 5 0 5 0 ��n nnn nrn 9 V JV IVV v r Time (minutes) IN Project Name : Newporter North Sample Diameter (in.) : 2.41 Project No.: 1851578-06 Sample Height (in.) . 4.00 Boring No.: LB-2 and LB-4 Max Dry Density (pcf) 67.0 Sample No.: Bag 2 and Bag 1 Opt. Moisture Content (%) : 43.0 Depth: - Relative Compaction (%) 90 Date : 4/18/95 Moisture (after test, %) 62.4 Soil Description: Results: 50% Bag 2 of LB-2 and 50% Bag 1 of LB-4 Confining Pressure (psi)= 15.0 Backpressure (psi)= 5.0 Flow Rate, q (cc/sec) = 0.002183 Gradient,i = 34.61538 P eala it.tk !ice .,:.. m i FLEXIBLE WALL PERMEABILITY TEST 1 I CUMULATIVE FLOW VS TIME Time (minutes) Project Name: Newporter North Sample Diameter (in.) : Project No.: 1851578-06 Sample Height (in.) . Boring No.: LB-2 and LB-4 Max. Dry Density (pcf) Sample No.: Bag 1 and Bag 1 Opt. Moisture Content (%) Depth: - Relative Compaction (%) c Date : 4/18/95 Moisture (after test, %) Soil Description: 25% Bag 1 of LB-2 and 75% Bag 1 of LB-4 Confining Pressure (psi)= 15.0 Backpressure (psi)= 5.0 Results: Flow Rate, q (cc/sec) = 0.001798 Graadient,i 33ff4.6ff}1..yyyy53�8 .:xWry Y�Rs�i} nR.wx.„mwnTnti.J W+.W FLEXIBLE WALL PERMEABILITY TEST 2.41 4.00 85.0 25.0 90 40.1 CLIENT 3itvme Pnci��c PROJECT UNDISTURBED ES REMOLDED ❑ NAT. MOIST. O SATURATED 0 SHEAR TEST DIAGRAM I W.0. zls 0--oc- DATE LOCATION $H-� DEPTH 15---FT. 7.0 6.0 5.0 IL Y = 4.0 z w tr 3.0 cn z a s 2.0 co y5= sit° 1.0 0 1.0 2.0 3.0 4.0 5.0 64 NORMAL PRESSURE K S F Gdpoigos - CLIENT :zF-vine ?c)Rlc PROJECT UNDISTURBED 2f REMOLDED ❑ NAT. MOIST. O SATURATED 0 W. 0. Z. s2 tNroc DATE LOCATION DEPTHSFT. 7.0 6.0 5.0 u- c = 4.0 CD z w o: i 3.0 z a = 2.0 cn = s2° c= o 1.0 0 to 2.0 3.0 4.0 5.0 6. NORMAL PRESSURE K S F Pi -AT t -- CLIENTM12ine ipaugic PROJECT UNDISTURBED ❑ REMOLDED Eg 90`!0 NAT. MOIST. O SATURATED 9 SHEAR TEST DIAGRAM w. o. 1L'S7 A � DATE LOCATION 6kA _s DEPTH 30 FT. MIA I C CLIENT T1`vtne Rxctj�ic PROJECT UNDISTURBED ❑ REMOLDED C21 90?(o NAT. MOIST. O SATURATED 0 SHEAR TEST DIAGRAM W.O. 2152-A'oc DATE LOCATION 6H-� DEPTH' 2 FT. -45 i 3.0 2.5 tL Y = 2.0 F- z W • 0: � 1.5 CD z = 1.0 cn C= Soo 0. 00 0.5 1.0 1.5 2.0 2.5 3 NORMAL PRESSURE K S F CLIENT Sstvtne. PROJECT UNDISTURBED ®' REMOLDED ❑ NAT. MOIST. O SATURATED 6 SHEAR TEST DIAGRAM W. 0. 2152 (ko c DATE - LOCATION 6H�� DEPTH 2 FT. 6.0 5.0 u- Y = 4.0 F- U' z W i 3.0 CD z a ' = 2.0 s SS' C=o 1.0 00 1:n 2.0 3.0 4.0 5.0 6. NORMAL PRESSURE KSF PLATE_ i i ��—DIAGRAM CLIENT 1-Iyme?inu�ic PROJECT UNDISTURBED ❑ REMOLDED NAT. MOIST. 0 SATURATED 9 W.O. VSZ. (1-OC DATE ZH-4' LOCATION DEPTH lS FT. 3.0 2.5 u- Y = 2.0 F- 0 Z W ' cn 1.5 CD a G=Soo a I.0 cn 0. 00 015 110 115 210 2.5 3• NORMAL PRESSURE K S F PLAT t I CLIENT �vinel�aurc�C PROJECT UNDISTURBED -fO REMOLDED ❑ NAT. MOIST. O SATURATED 0 A 5 Y =4 1- CD z w CD z a s2 cn SHEAR TEST DIAGRAM W.O. 2�5 A-oC DATE LOCATION (o DEPTH IS FT. NORMAL PRESSURE K S F PLATE h-2 I CLIENT Sewne l�Q k�tc, PROJECT UNDISTURBED (g REMOLDED ❑ NAT. MOIST. O SATURATED ID SHEAR TEST DIAGRAM W.0. 21sZ A-oc DATE LOCATION 2)"-8 DEPTH S —FT. 7.0 i 6.0 5.0 u- Y = 4.0 CD 17 z w o 3.0 0 c L-k z a C - Itoo = 2.0 cn 1.0 00 1.0 2.0 3.0 4.0 5.0 6.t NORMAL PRESSURE KS F 1 'K. ii r", . CLIENT T P- PROJECT Nr=\'y Q TPR NdM UNDISTURBED ❑ REMOLDED CQ NAT. MOIST. 0 SATURATED 0 SHEAR TEST DIAGRAM W.0.14 Z—OG DATE LOCATION DEPTH �"'2' FT. �GJl/viw.G �n� 30 2.5 cn = 2.0 I- z w o: co 1.5 CD z Q = 1.0 cn OrZ60 C= 50 QSF 0. 00 0.5 1.0 1.5 2.0 2.5 3 NORMAL PRESSURE K S F 0 LATE BB_1 CLIENT I• I PR0JECT14EWPOP-roR -OAV UNDISTURBED ❑ REMOLDED I& NAT. MOIST. 0 SATURATED 0 SHEAR TEST DIAGRAM w.0.131 OG DATE LOCATION DEPTH 6- 8 FT. vIt•JIVI'1G 3.0 2.5 ►L t- co z w o: � 1.5 z a w 1.0 C_2z5 PSF 0. 0 0 0.5 I.0 2.5 3 NORMAL PRESSURE K S F CLIENT I, PROJECT NEWFo+2E l "UH UNDISTURBED ■ REMOLDED ❑ NAT. MOIST.0 SATURATED SHEAR TEST DIAGRAM W.O. 1�92-oG DATE LOCATION y/:RIovS DEPTH !/ Qi°v=—FT. vru rv�.c .•..-.. -45 i 3.0 Bs e2v 2.5 c�Isoo c b w 7l Gr_So0 o: u) 1.5 0 z = 1.0 U) 45.18 C c 5SO 0. 0 0 0.5 1.0 1.5 2.0 2.5 3 NORMAL PRESSURE KSF FLAir - 5 I_J 1 iJ 1 lim 11 1 1 1 1 i 1 1 1 i 11 1 I 1 i 1 1 1 SEMON A -A' 1 IM LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: A -A'; BLOCK FAILURE; LOWER SLOPE o TRIAL FAILURE SURFACE: FS=1 .51 (smr/, r-4 n N ti LI) O O O ti V 4 -) � O ul O cm 07 H X 0 0 Q u') 0 I cu � o U3 N O ti 102.50 205.00 307.50 410.00 512.50 615.00 717.50 B20.00 X - AXIS (f t) m m= m= m = = = r==== m= m m r * PCSTABLSM ** --Slope Stability Analysis -- Run Date: 6/ 6/ 1995 Run By: AT8 Input Data Filename: Xic Output Filename: X1C.O Plotted Output Filename: XIC.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE A -A', BLOCK FAILURE LOWER SLOPE BOUNDARY COORDINATES 16 Top Boundaries 16 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (it) (it) (it) Below Snd 1 .00 70.00 40.00 72.50 1 2 40.00 72.50 120.00 94.00 1 3 120.00 84.00 160.00 90.00 1 4 160.00 90.00 205.00 100.00 1 5 205.00 100.00 248.00 113.50 1 6 248.00 113.50 250.00 113.50 1 7 250.00 113.50 260.00 110.00 1 8 260.00 110.00 495.00 110.00 1 9 495.00 110.00 505.00 112.50 1 10 505.00 112.50 510.00 112.50 1 11 510.00 112.50 522.00 120.00 1 12 522.00 120.00 537.00 120.00 1 13 537.00 120.00 572.00 120.00 1 14 572.00 120.00 720.00 155.00 1 15 720.00 155.00 790.00 153.50 1 16 790.00 158.50 820.00 158.00 1 ISOTROPIC SOIL PARAMETERS 1 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (Pcf) (psf) (deg) Param. (Psf) No. 1 120.0 120.0 675.0 35.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 1 soil types) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 1.0 675.0 35.0 2 9.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACES) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 9 Coordinate Points Point X-Water Y-Water No. (ft) (it) 1 .00 70.00 2 40.00 72.50 3 120.00 84.00 4 160.00 90.00 5 205.00 100.00 6 248.00 113.50 7 250.00 113.50 8 510.00 112.50 9 820.00 112.50 Jenbus Empirical Coef is being used for the case of c i phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes specified For Generation of central Block ease Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 60.0 Box X-Left Y-Left X-Right Y-Right Height No. (it) (ft) (it) (ft) (ft) 1 159.00 .00 160.00 90.00 .00 2 259.00 .00 260.00 110.00 .00 * IN Safety Factors Are Calculated By The Modified Janbu Method IN Failure Surface Specified By 4 Coordinate Points Point X-surf Y-Surf No. (ft) (ft) 1 157.52 89.63 2 159.98 88.15 3 259.94 103.60 4 261.97 110.00 File: xie.0 06/06/95 09:12 Page 1 I File: x1c.0 06/06/95 09:12 Page 2 m m m m m = = M= m m M = = M r s M r Pile: xte.o 06/06/95 09:12 Page 3 M M M M M M M M= M a = = = = M M M ** PCSTASLSM 11* --Slope Stability Analysis -- Run Date: 6/ 6/ 1995 Run By: ATB Input Data Filename: X10E1 Output Filename: X10E1.0 Plotted Output Fitename: XiCE1.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE A -AN, BLOCK FAI LURE, LOWER SLOPE, SEISMIC BOUNDARY COORDINATES 16 Top Boundaries 16 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right No. (ft) (ft) (ft) (ft) 1 .00 70.00 40.00 72.50 2 40.00 72.50 120.00 84.00 3 120.00 84.00 160.00 90.00 4 160.00 90.00 205.00 100.00 5 205.00 10D.00 248.00 113.50 6 248.00 113.50 250.00 113.50 7 250.00 113.50 260.00 110.00 8 260.00 110.OD 495.00 110.00 9 495.00 110.00 505.00 112.50 10 505.00 112.50 510.00 112.50 11 510.00 112.50 522.00 120.00 12 522.00 120.00 537.00 120.00 13 537.00 120.00 572.00 120.00 14 572.00 120.00 720.00 155.00 15 720.00 155.00 790.00 158.50 16 790.00 158.50 820.00 158.00 Soil Type Below Grid ISOTROPIC SOIL PARAMETERS 1 Type(s) of Soil Soft Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (Pcf) (Pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 810.0 40.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle File: xlcel.o 06/06/95 11:07 Page 1 No. (deg) (psf) (deg) 1 1.0 810.0 40.0 2 9.0 84.0 10.7 3 90.0 810.0 40.0 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf Janbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 50D Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active Arid Passive Portions of Sliding Block Is 60.0 Box X-Left Y-left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 159.00 .00 160.00 90.00 .00 2 259.00 .00 260.00 110.00 .00 • * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 4 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 157.52 89.63 2 159.98 88.15 3 259.94 103.60 4 261.97 110.00 *** 1.470 `** File: xlcet.o 06/06/95 11:07 Page 2 m m m = = m= m = = = m m m m i m m til LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: A -A'; BLOCK FAILURE; o TRIAL FAILURE SURFACE: FS=2.26 to CU 0 O O O 0 V y- O In Cn t�7 cn H x O O a Lo CU CU LC] N ti ti E UPPER SLOPE 112.50 225.00 337.50 450.00 562.50 675.00 787.50 900.00 X - AXIS (ft) ** PCSTABLSM ** --Slope Stability Analysis -- Run Date: 6/ 6/ 1995 Run By: ATE Input Data Fitename: X2A Output Filename: XZA.O Plotted Output Filename: X2A.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE A -A', BLOCK FAILURE, UPPER SLOPE BOUNDARY COORDINATES 16 Top Boundaries 16 Total Boundaries Boundary X-Leff Y-Left X-Right Y-Right Soil Type No. (ft) (it) (it) (ft) Below Brd 1 .00 70.00 40.00 72.50 1 2 40.00 72.50 120.00 84.00 1 3 120.00 84.00 160.00 90.00 1 4 160.00 90.00 205.00 100.00 1 5 205.00 100.00 248.00 113.50 1 6 248.00 113.50 250.00 113.50 1 7 250.60 113.50 260.00 110.00 1 8 260.00 110.00 495.00 110.00 1 9 495.00 110.00 505.00 112.50 1 10 505.00 112.50 510.00 112.50 1 11 510.00 112.50 522.00 120.00 1 12 522.00 120.OD 537.00 120.00 1 13 537.00 120.00 572.00 120.00 1 14 572.00 120.00 720.00 155.00 1 15 720.00 155.00 790.00 158.50 1 16 790.00 158.50 900.00 158.00 1 ISOTROPIC SOIL PARAMETERS 1 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (Pcf) (pcf) (Psf) (deg) Param. (psf) No. 1 120.0 120.0 675.0 35.0 .00 .0 1 ANIS07ROPIC STRENGTH PARAMETERS 1 soil types) Soil Type 1 Is Anisotropic Nu bar Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 1.0 675.0 35.0 2 9.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 9 Coordinate Points Point X-Water Y-Water No. (ft) (it) 1 '.00 70.00 2 40.00 72.50 3 120.00 84.00 4 160.00 90.00 5 205.00 100.00 6 248.00 113.50 7 250.00 113.50 8 510.00 112.50 9 900.00 112.50 Janbus Empirical Coal is being used for the case of c Q phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 80.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 559.00 .00 560.OD 120.OD .00 2 720.00 153.00 721.00 .00 .Od * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 4 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 553.07 120.00 2 559.94 113.17 3 720.15 129.51 4 744.06 156.20 File: x2a.o 06/06/95 10:21 Page 1 I File: x2a.o 06/06/95 10:21 Page 2 i = = = m = = = m = = = = = m 2.25B *** File: x2a.o 06/06/95 10:21 Page 3 L I I� SECTION B-B' I� E t F 1 I 11 m m= m m= i m i= m= m= m m m LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: 1851578-04 CROSS SECTION: B—B'; NEW PROFILE in TRIAL FAILURE SURFACE: NNBB4.PLT/ FOS: m v cn 0 0 Lo N CU 0 cu cn H X O uo a m I >- u-1 CID cn 1.553 (STATIC) 68.75 137.50 206.25 275.00 343.75 412.50 481.25 550.00 X - AXIS (ft) M ** PCSTABLSM ** --Slope Stability Analysis -- Run Date: 8/ 8/ 1995 Run By: SXG Input Data Filename: NN884.IN Output Filename: NNBB4.OUT Plotted Output Filename: NNBB4.PLT PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE B-8' BOUNDARY COORDINATES 7 Top Boundaries 10 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 44.50 60.00 47.00 1 2 60.00 47.00 120.00 55.00 1 3 120.00 55.00 160.00 59.00 1 4 160.00 59.06 230.00 78.00 1 5 230.00 78.00 276.20 104.40 2 6 276.20 104.40 321.60 104.40 2 7 321.60 104.40 550.00 104.40 1 8 230.00 78.00 238.00 70.00 1 9 238.00 70.00 270.00 70.00 1 10 270.00 70.00 321.60 104.40 1 ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (Pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 300.0 33.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -2.0 675.0 35.0 2 5.0 70.0 9.0 3 90.0 675.0 35.0 File: nrbb4.out 08/08/95 16:38 Page 1 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 5 coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 40.00 2 80.00 40.00 3 300.00 80.00 4. 480.00 92.00 5 550.00 92.00 Janbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active Arid Passive Portions Of Sliding Block Is 20.0 Box X-left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 171.00 .OD 172.00 65.50 .00 2 275.20 .OD 276.20 104.40 .OD * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 6 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 168.30 61.25 2 171.88 57.68 3 275.79 61.70 4 287.49 77.92 5 300.39 93.21 6 311.49 104.40 *** 1.553 *** Fite: nnbb4.out 08/08/95 16:38 Page 2 i i i i i i i i i i i i i i• i i i i i LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: 1B51578-04 CROSS SECTION: B-B': NEW PROFILE LnTRIAL FAILURE SURFACE: NNBB4E.PLT/ FOS: m v m 0 0 Lo N 4- LD v N LD 0 N U3 H X o Ln a m Ln Lo m 1.246 (SEISMIC) 68.75 137.50 206.25 275.00 343.75 412.50 481.25 550.00 X - AXIS (ft) M M M M M M M M M M M �= � M i M M M ** PCSTABLSM ** --Slope Stability Analysis -- Run Date: 8/ 8/ 1995 Run By: SXG Input Data Filename: NN884E.IN Output Filename: NNBB4E.OUT Plotted Output Filename: NNB84E.PLT PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE B-82 BOUNDARY COORDINATES 7 Top Boundaries 10 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (it) (ft) Below Brd 1 .00 44.50 60.00 47.00 1 2 60.00 47.00 120.00 55.00 1 3 120.00 55.00 160.00 59.00 1 4 160.00 59.00 230.00 78.00 1 5 230.00 78.00 276.20 104.40 2 6 276.20 104.40 321.69 104.40 2 7 321.60 104.40 550.00 104.40 1 8 230.00 78.00 238.00 70.00 1 9 238.00 70.00 270.OD 70.00 1 10 270.00 70.00 321.60 104.40 1 ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (Pcf) (Pcf) (Psf) (deg) Param. (Psf) No. 1 120.0 120.0 84.0 10.8 .00 .0 1 2 120.0 120.0 360.0 37.8 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -2.0 810.0 40.0 2 5.0 84.0 10.8 3 90.0 810.0 40.0 File: nnbb4e.out 03/08/95 17:01 Page 1 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 5 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 40.00 2 80.00 40.00 3 300.00 80.00 4 480.00 92.00 5 550.00 92.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf Janbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 20.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 171.00 .00 172.00 65.50 .00 2 275.20 .00 276.20 104.40 .00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 6 Coordinate Points Point X-Surf Y-surf No. (ft) (ft) 1 168.30 61.25 2 171.88 57.68 3 275.79 61.70 4 287.49 77.92 5 300.39 93.21 6 311.49 104.40 File: nnbb4e.out 08/08/95 17:01 Page 2 *** 1.246 *** File: mbb4e.out 08/08/95 17:01 Page 3 i SECTION C-C' r m m m� m m m m m m r LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: 1651578-04 CROSS SECTION: C—C'; NEW PROFILE o TRIAL FAILURE SURFACE: NNCC2.PLT/ FOS 0 0 0 cn 1.541 (STATIC) 60.00 120.00 180.00 240.00 300.00 360.00 420.00 480.00 X - AXIS (f t) M r= M M a M M M M M M r M M M M M ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: B/ 8/ 1995 Run By: SXG Input Date Filename: NNCC2.IN Output Filename: NNCC2.OUT Plotted Output Filename: NNCC2.PLT PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION C-C' BOUNDARY COORDINATES 10 Top Boundaries 15 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 20.00 40.00 24.00 1 2 40.00 24.00 80.00 34.00 1 3 80.00 34.00 180.00 60.00 1 4 180.00 60.00 186.40 77.50 2 5 186.40 77.50 205.20 90.70 2 6 205.20 90.70 255.50 90.70 2 7 255.50 90.70 405.00 90.70 1 8 405.00 90.70 430.00 90.70 3 9 430.00 90.70 460.00 90.70 4 10 460.00 90.70 480.00 90.70 5 11 180.00 60.00 215.00 60.00 1 12 215.00 60.00 255.50 90.70 1 13 367.00 .00 405.00 90.70 3 14 403.00 .00 430.00 90.70, 4 15 460.00 90.70 477.00 .00 4 ISOTROPIC SOIL PARAMETERS 5 Type(s) of Soft Soft Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 200.0 14.0 .00 .0 1 2 120.0 120.0 300.0 33.0 .00 .0 1 3 120.0 120.0 200.0 14.0 .00 .0 1 4 120.0 120.0 200.0 14.0 .00 .0 1 5 120.0 120.0 200.0 14.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 4 soil type(s) Soft Type 1 Is Anisotropic Ntaber Of Direction Ranges Specified = 3 File: rmc2.out 00/08/95 12:31 Page 1 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 14.0 675.0 35.0 2 20.0 200.0 14.0 3 90.0 675.0 35.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 9.0 675.0 35.0 2 15.0 200.0 14.0 3 90.0 675.0 35.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -1.0 675.0 35.0 2 7.0 200.0 14.0 3 90.0 675.0 35.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -10.0 675.0 35.0 2 -4.0 200.0 14.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 4 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 2.00 2 240.00 37.00 3 300.00 40.00 File: nncc2.out 08/08/95 12:31 Page 2 4 480.00 40.00 Jenbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 15.0 Box X-Left Y-Left X-Right Y-Right Height No. (it) (it) (ft) (ft) (ft) 1 180.00 30.00 180.00 30.00 60.00 2 290.00 45.00 290.00 45.00 90.00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 5 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 167.80 56.83 2 168.07 56.70 3 180.00 47.60 4 290.00 87.36 5 293.30 90.70 *'* 1.541 *** File: nncc2.out 08/08/95 12:31 Page 3 LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: 1851578-04 CROSS SECTION: C—C'; NEW PROFILE o TRIAL FAILURE SURFACE: NNCC2E.PLT/ FOS 0 c c c c c c NZ 4- c c a VJ H X c c Q c c I c c u 1.327 (SEISMIC) 0 60.00 120.00 180.00 240.00 300.00 360.00 420.00 480.00 X - AXIS (f t) M M M M r i= r M M = = M= M= M M ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 8/ 8/ 1995 Run By: SXG Input Data Filename: NNCC2E.IN Output Filename: NNCC2E.OUT Plotted Output Filename: NNCC2E.PLT PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION C-Cl BOUNDARY COORDINATES 10 Top Boundaries 15 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (it) Below Bnd 1 .00 20.00 40.00 24.00 1 2 40.00 24.00 80.00 34.00 1 3 80.00 34.OD 180.00 60.00 1 4 180.OD 60.00 186.40 77.50 2 5 186.40 77.50 205.20 90.70 2 6 205.20 90.70 255.50 90.70 2 7 255.50 90.70 405.00 90.70 1 8 405.00 90.70 430.00 90.70 3 9 430.00 90.70 460.00 90.70 4 10 460.00 90.70 480.00 90.70 5 11 180.00 60.00 215.00 60.00 1 12 215.00 60.00 255.50 90.70 1 13 367.00 .00 405.00 90.70 3 14 403.00 .00 430.00 90.70 4 15 460.00 90.70 477.00 .00 4 ISOTROPIC SOIL PARAMETERS 5 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 240.0 16.7 .00 .0 1 2 120.0 120.0 360.0 37.9 .00 .0 1 3 120.0 120.0 240.0 16.7 .00 .0 1 4 120.0 120.0 240.0 16.7 .00 .0 1 5 120.0 120.0 240.0 16.7 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 4 soil type(s) Soft Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 File: mec2e.out 08/08/95 1706 Page 1 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 14.0 810.0 40.0 2 20.0 240.0 16.7 3 90.0 810.0 40.0 Soil Type 3 Is Anisotropic Nnnber Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit' Intercept Angle No. (deg) (psf) (deg) 1 9.0 810.0 40.0 2 15.0 240.0 16.7 3 90.0 810.0 40.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -1.0 810.0 40.0 2 7.0 240.0 16.7 3 90.0 810.0 40.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -10.0 810.0 40.0 2 -4.0 240.0 16.7 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 4 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 2.00 2 240.00 37.00 3 300.00 40.00 Fite: nncc2e.out 08/08/95 17:16 Page 2 r m= m m m m m m m= m = = m m= m m 4 480.00 40.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf Janbus Eapirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active Arid Passive Portions Of Sliding Block Is 15.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 180.00 30.00 180.00 30.00 60.00 2 290.00 45.00 290.00 45.00 90.00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 5 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 160.48 54.93 2 165.97 50.81 3 180.00 45.51 4 290.00 80.88 5 298.37 90.70 *** 1.327 *** File: rrx:c2e.out 08/08/95 17:16 Page 3 I I I I SECTION D-D' I I 17 I m= m m m m m m m r m m m m m= r m LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: D-D'; BLOCK FAILURE o TRIAL FAILURE SURFACE: FS=1 .55 trST,s��c) 0 u� r CU C 0 55.00 110.00 165.00 220.00 275.00 330.00 385.00 440.00 X - AXIS (ft) M r= M M M= M = = M M M M = = M ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/ 5/ 1995 Run By: ATB Input Data Filename: X3A Output Filename: X3A.0 Plotted Output Filename: X3A.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE D-D'; BLOCK FAILURE BOUNDARY COORDINATES 11 Top Boundaries 12 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (it) (it) (it) (ft) Below Bnd 1 .00 48.00 52.00 48.00 1 2 52.00 48.00 75.00 72.00 1 3 75.00 72.00 120.00 75.00 1 4 120.00 75.00 136.00 80.00 1 5 136.00 80.00 160.00 92.00 1 6 160.00 92.00 197.00 120.00 1 7 197.00 120.00 235.00 145.00 1 8 235.00 145.00 250.00 150.00 1 9 250.00 150.00 300.00 150.00 1 10 300.00 150.00 354.00 162.00 2 11 354.00 162.00 440.00 162.00 2 12 300.00 150.00 440.00 152.50 1 ISOTROPIC SOIL PARAMETERS 2 Type(s) of soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (Pcf) (Pcf) (Psf) (deg) Param. (Psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 300.0 33.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is An(sotropic Number of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -11.0 675.0 35.0 2 -5.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACES) HAVE BEEN SPECIFIED Unit Weight of Water - 62.40 Piezometric Surface No. 1 specified by 6 Coordinate Points Point X-Water Y-Water No. (ft) (it) 1 .00 42.00 2 40.00 42.00 3 100.00 45.00 4 160.00 55.00 5 350.00 120.00 6 440.00 124.00 Jarbus Empirical Coef is being used for the case of c 6 phi both > 0 A Critical Failure surface Searching Method, Using A Random Technique For Generating Sliding Block surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 30.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (it) (it) CIO (ft) 1 154.00 43.00 154.00 43.00 86.00 2 224.00 67.00 224.00 67.00 134.00 * * Safety Factors Are Calculated By The Modified Jarbu Method Failure Surface Specified By 8 Coordinate Points Point X-surf Y-Surf No. (ft) (it) 1 122.83 75.89 2 124.12 75.54 3 154.00 72.89 4 224.00 63.52 5 236.41 90.84 6 247.64 113.66 7 263.34 144.22 8 265.27 150.00 *''• 1.554 *** File: x3a.o 06/05/95 18:01 Page 1 I File: x3a.o 06/05/95 18:01 Page 2 File: x3a.o 06/05/95 18:01 Page 3 ** PCSTABLSM " --Slope Stability Analysis -- Run Date: 6/ 5/ 1995 Run By: ATB Input Data Fitename: X3AE Output Filename: X3AE.01 Plotted Output Filename: X3AE.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE D-D'; BLOCK FAILURE, SEISMIC BOUNDARY COORDINATES 11 Top Boundaries 12 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 48.00 52.00 48.00 1 2 52.00 48.00 75.00 72.00 1 3 75.00 72.00 120.00 75.09 1 4 120.00 75.00 136.00 80.00 1 5 136.00 80.00 160.00 92.00 1 6 160.00 92.00 197.00 120.00 1 7 197.00 120.00 235.00 145.00 1 8 235.00 145.00 250.00 150.00 1 • 9 250.00 150.00 300.00 150.00 .1•• 10 300.00 150.00 354.00 162.00 2 11 354.00 162.00 440.00 162.00 2 12 300.00 150.00 440.00 152.50 1 ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soit Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Vt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pef) (pcf) (Psf) (deg) Param. (Psf) No. 1 120.0 120.0 84.0 10.7 .00 .0 1 2 120.0 120.0 360.0 37.9 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is Anisotropie Huaber Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -11.0 810.0 40.0 2 -5.0 84.0 10.7 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 6 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 42.00 2 40.00 42.00 3 100.00 45.00 4 160.00 55.00 5 350.00 120.00 6 440.00 124.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf Janbus Empirical Coef is being used for the case of c E phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block is 30.0 Box X-Left Y-Left X-Right Y-Right Height No. ift) ift) ift) ift) Ift) 1 154.00 43.00 154.00 43.00 86.00 2 224.00 67.00 224.00 67.00 134.00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure surface Specified By 8 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 122.83 75.89 2 124.12 75.54 3 154.00 72.89 File: x3ae.ol 06/05/95 18:11 Page 1 File: x3ae.o' 06/05/95 18:11 Page 2 4 224.00 63.52 5 236.41 90.84 6 247.64 118.66 7 263.34 144.22 8 265.27 150.00 *** 1.216 *** File: x3ae.o' 06/05/95 18:11 Page 3 Imo■ m m = = = m = m = m = = = m = m m LEIGHTON AND ASSOCIATES, INC. JOB NUMBER: CROSS SECTION: D -p' o TRIAL FAILURE SURFACE 0 to CL! FS=1.675 0 55.00 110.00 165.00 220.00 275.00 330.00 385.00 440.00 X - AXIS (ft) I" M M M M M M M i M M M M M M M M M M ** PCSTABLSM ** --Slope Stability Analysis -- Run Date: 6/ 5/ 1995 Run By: ATB Input Data Filename: X3A1 Output Filename: X3A1.0 Plotted Output Filename: X3A1.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE D-D'; BLOCK FAILURE BOUNDARY COORDINATES 11 Top Boundaries 12 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No: (it) (it) (ft) (ft) Below Bnd 1 .00 48.00 52.00 48.00 1 2 52.00 48.00 75.00 72.00 1 3 75.00 72.00 120.00 75.00 1 4 120.00 75.00 136.00 80.00 1 5 136.00 80.00 160.00 92.00 1 6 160.00 92.00 197.00 120.00 1 7 197.00 120.00 235.00 145.00 1 8 235.00 145.00 250.00 150.00 1 9 250.00 150.00 300.00 150.00 1 10 300.00 150.00 354.00 162.00 2 11 354.00 162.00 440.00 162.00 2 12 300.00 150.00 440.00 152.50 1 ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (Pcf) (Pcf) (Psf) (deg) Parem. (Psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 300.0 33.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is Anisotropic Number of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -11.0 675.0 35.0 2 -5.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water - 62.40 Piezometric Surface No. 1 Specified by 6 Coordinate Points Point X-Meter Y-Water No. (ft) (ft) 1 .00 42.00 2 40.00 42.00 3 100.00 45.00 4 160.00 55.00 5 350.00 120.00 6 440.00 124.00 Janbus Empirical Coef is being used for the ease of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Stiding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Stock Base Length of Line Segments For Active And Passive Portions Of Sliding Block Is 30.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 165.00 46.00 165.00 46.00 92.00 2 224.00 67.00 224.00 67.00 134.00 * * Safety Factors Are Calculated By The Modified Jarbu Method Failure Surface Specified By 8 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 61.21 57.62 2 75.93 53.25 3 105.52 48.32 4 135.40 45.69 5 165.00 40.78 6 224.00 103.57 7 237.14 130.53 8 238.92 146.31 *** 1.675 *** File: x3si.o 06/05/95 18:06 Page 1 File: x3al.o 06/05/95 18:06 Page 2 n n n 1 C I I n 1 I I I 1 n 1 SECTION E-F e m i m m i = m m � m i i m i � = m m m LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: E-E'; STATIC; RESTRICTED ANISO o TRIAL FAILURE SURFACE: FS=1.68 Lo r- m 0 0 0 uo m � o �. in N (D N co H X o Cl Q Lo I to co 87.50 175.00 262.50 350.00 437.50 525.00 612.50 700.00 X - AXIS (ft) M M M M M M M M M M= i M= ! = M= M ** PCSTASL5M ** --Slope Stability Analysis -- Run Date: 6/10/ 1995 Run By: ATB Input Data Filename: E61NR Output Filename: E61NR.0 Plotted Output Filename: E61NR.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE E-El, BLOCK FAILURE, TRIAL 6 BOUNDARY COORDINATES 10 Top Boundaries 18 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 50.00 70.00 50.00 1 2 70.00 50.00 155.00 81.50 1 3 155.00 81.50 210.00 98.00 1 4 210.00 98.00 226.00 104.50 2 5 226.00 104.50 352.00 143.00 3 6 352.00 143.00 356.50 144.50 4 7 356.50 144.50 380.00 148.00 5 8 380.00 148.00 405.00 148.00 5 9 405.00 148.00 503.00 149.00 6 10 503.00 149.00 700.00 150.00 6 11 405.00 148.00 440.00 113.00 5 12 440.00 113.00 470.00 113.00 5 13 470.00 113.00 495.00 141.00 5 14 495.00 141.00 700.00 141.00 5 15 210.00 98.00 218.50 .00 1 16 226.00 104.50 238.50 .00 2 17 326.00 .00 352.00 143.00 4 18 356.50 144.00 364.50 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 70.0 9.0 .00 .0 1 3 120.0 120.0 70.0 9.0 .00 .0 1 4 120.0 120.0 70.0 9.0 .00 .0 1 5 120.0 120.0 70.0 9.0 .00 .0 1 6 120.0 120.0 300.0 33.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 5 soil type(s) File: e6lnr.o 06/10/95 14:27 Page 1 Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 20.0 675.0 35.0 2 30.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 2 is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 9.0 675.0 35.0 2 15.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -11.0 675.0 35.0 2 .0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 4.0 675.0 35.0 2 12.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) File: e6lnr.o 06/10/95 14:27 Page 2 m m m m m m m m m m w m m m m m m m m 1 18.0 675.0 35.0 2 24.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 4 Coordinate Points Point X-Water Y-Water No. (ft) (it) 1 .00 50.00 2 70.00 50.00 3 440.00 113.00 4 700.00 113.00 Janbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 3 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 50.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 210.00 98.00 218.50 .00 .00 2 326.00 .00 353.00 143.00 .00 3 512.00 74.00 512.00 74.00 148.00 * * Safety Factors Are calculated By The Modified Janbu Method Failure Surface Specified By 6 Coordinate Points Point X-Surf Y-surf No. (ft) (ft) 1 118.52 67.98 2 164.26 58.69 3 213.92 52.83 4 335.95 52.71 5 512.00 123.75 6 537.43 149.17 *** 1.680 **: File: e6lnr.o 06/10/95 14:27 Page 3 ■� M m m m m m m m m m m r s mom LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: FS SEISMIC = 1.16 (RESTRICTED ANISO) in TRIAL FAILURE SURFACE: SECTION E-E' m cD v E 93.75 187.50 281.25 375.00 468.75 562.50 656.25 750.00 X - AXIS (f t) ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/10/ 1995 Run By: ATGV Input Data Filename: TE4 Output Filename: TE4.10 Plotted Output Filename: TE4.10P PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE E-El, BLOCK FAILURE, TRIAL 6, SEISMIC BOUNDARY COORDINATES 10 Top Boundaries 18 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right No. (ft) (it) (it) (ft) 1 .00 50.00 70.00 50.00 2 70.00 50.00 155.00 81.50 3 155.00 81.50 210.00 98.00 4 210.00 98.00 226.00 104.50 5 226.00 104.50 352.00 143.00 6 352.00 143.00 356.50 144.50 7 356.50 144.50 380.00 148.00 8 380.00 148.00 455.00 148.00 9 455.00 148.00 553.00 149.00 10 553.00 149.00 750.00 150.00 11 455.00 148.00 490.00 113.00 12 490.00 113.00 520.00 113.00 13 520.00 113.00 548.00 141.00 14 548.00 138.00 750.00 141.00 15 210.00 98.00 218.50 .00 16 226.00 104.50 238.50 .00 17 326.00 .00 352.00 143.00 18 356.50 144.00 364.50 .00 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soil Type Below Grid Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 84.0 10.7 .00 .0 1 2 120.0 120.0 84.0 10.7 .00 .0 1 3 120.0 120.0 84.0 10.7 .00 .0 1 4 120.0 120.0 84.0 10.7 .00 .0 1 5 120.0 120.0 84.0 10.7 .00 .0 1 6 120.0 120.0 360.0 38.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 5 soil type(s) File: te4.io 06/10/95 14.10 Page 1 Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 22.0 810.0 40.0 2 28.0 84.0 10.0 3 90.0 810.0 40.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 9.0 810.0 40.0 2 15.0 84.0 10.0 3 90.0 810.0 40.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 .-9.0 810.0 40.0 2 .0 84.0 10.0 3 90.0 810.0 40.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 5.0 810.0 40.0 2 11.0 84.0 10.0 3 90.0 810.0 40.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) File: te4.io 06/10/95 14:10 Page 2 M M r M M= M M= M M M= M M M M 1 18.0 810.0 40.0 2 24.0 84.0 10.0 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 4 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 50.00 2 70.00 50.00 3 440.00 113.00 4 700.00 113.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf Janbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 3 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 50.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 210.00 98.00 218.50 .00 .00 2 326.00 .00 353.00 143.00 .00 3 570.00 74.00 570.00 74.00 148.00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 5 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 182.76 89.83 2 211.40 81.88 3 337.76 62.27 File: te4.io 06/10/95 14:10 Page 3 1 File: te4.io 4 570.00 144.34 5 570.63 149.09 *** 1.155 *** 06/10/95 1400 Page 4 i 1 1 1 J 1 1 1 u 1 1 1 1 1 1 1 1 SECTION F-F 1 m m m = m m m r> m= m m m m LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: F—F'; CIRCULAR FAILURE o TRIAL FAILURE SURFACE: FS=1.42 0 0 in IT 0 0 0 m y 0 0 0 cti 07 H X 0 0 Q o co I r, r o 0 0 rn E 90.00 180.00 270.00 360.00 450.00 540.00 630.00 720.00 X — AXIS (f t) M M M M M M M M M a M r r M M M M M ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/12/ 1995 Run By: ATB Input Data Filename: X5 Output Filename: X5.0 Plotted Output Filename: X5.OP PROBLEM DESCRIPTION NENPORTER NORTH, PROFILE F-Ft, RANDOM BOUNDARY COORDINATES 10 Top Boundaries 18 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (it) (it) (it) (it) Below Bnd 1 .00 50.00 37.50 51.00 1 2 37.50 51.00 108.00 73.00 1 3 108.00 73.00 170.00 97.00 2 4 170.00 97.00 236.00 123.00 3 5 236.00 123.00 325.00 145.00 3 6 325.00 145.00 365.00 148.00 3 7 365.00 148.00 370.00 147.00 3 8 370.00 147.00 375.00 145.00 3 9 375.00 145.00 489.00 161.00 6 10 489.00 161.00 720.00 161.00 6 11 75.00 .00 108.00 73.00 2 12 131.00 .00 170.00 97.00 3 13 349.00 .00 370.00 146.00 4 14 375.00 145.00 445.00 145.00 4 15 445.00 145.00 460.00 146.00 5 16 460.00 146.00 620.00 151.50 5 17 620.00 151.50 720.00 151.00 5 18 445.00 145.00 463.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soft Total Saturated Cohesion Friction Pore Pressure Piei. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 70.0 9.0 .00 .0 1 3 120.0 120.0 70.0 9.0 .00 .0 1 4 120.0 120.0 70.0 9.0 .00 .0 1 5 120.0 120.0 70.0 9.0 .00 .0 1 6 120.0 120.0 300.0 33.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 5 soil type(s) File: x5.o 06/12/95 16:30 Page 1 Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 40.0 675.0 35.0 2 48.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 12.0 675.0 35.0 2 20.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -27.0 675.0 35.0 2 -17.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 11.0 675.0 35.0 2 21.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) Fite: x5.o 06/12/95 16:30 Page 2 M M M M r M== m m m m m r M M ■w M '= 1 1.0 675.0 35.0 2 7.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 6 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 50.00 2 37.50 51.00 3 108.06 73.00 4 170.00 97.00 5 236.00 123.00 6 700.00 123.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 2250 Trial Surfaces Have Been Generated. 150 Surfaces Initiate From Each Of 15 Points Equally Spaced Along The Ground Surface Between X = 35.00 ft. and X = 52.00 ft. Each Surface Terminates Between X = 250.00 ft. and X = 400.00 ft. Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft. 70.00 ft. line Segments Define Each Trial Failure Surface. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 5 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 35.00 50.93 2 104.71 44.59 3 172.92 60.33 4 232.80 96.58 5 260.69 129.10 Circle Center At X = 89.7 ; Y = 265.4 and Radius, 221.3 *** 1.427 *** File: x5.o 06/12/95 16:30 Page 3 1 File: x5.o 06/12/95 16.30 Page 4 = m = m r = = m = m o m m = m m m m LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: F-F'; CIRCULAR FAILURE; o TRIAL FAILURE SURFACE: FS=1.14 a 0 uo v SEISMIC 0 90.00 180.00 270.00 360.00 450.00 540.00 630.00 720.00 X - AXIS (f t) M M M r == M = = M M= M M= M i ** PCSTABLSM ** --Slope Stability Analysis -- Run Date: 6/12/ 1995 Run By: ATB Input Data Filename: X5E Output Filename: X5E.0 Plotted Output Filename: XSE.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE F-F', CIRCULAR FAILURE, SEISMIC BOUNDARY COORDINATES 10 Top Boundaries 18 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (it) (ft) (it) (it) Below end 1 .00 50.00 37.50 51.00 1 2 37.50 51.00 108.00 73.00 1 3 108.00 73.00 170.00 97.00 2 4 170.00 97.00 236.00 123.00 3 5 236.00 123.00 325.00 145.00 3 6 325.00 145.00 365.00 148.00 3 7 365.00 148.00 370.00 147.00 3 8 370.00 147.00 375.00 145.00 3 9 375.00 145.00 489.00 161.00 6 10 489.00 161.00 720.00 161.00 6 11 75.00 .00 108.00 73.00 2 12 131.00 .00 170.00 97.00 3 13 349.00 .00 370.00 146.00 4 14 375.00 145.00 445.00 145.00 4 15 445.00 145.00 460.00 146.00 5 16 460.00 146.00 620.00 151.50 5 17 620.00 151.50 720.00 151.00 5 18 445.00 145.00 463.00 .0D 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pef) (pcf) (psf) (deg) Peram. (psf) No. 1 120.0 120.0 84.0 10.8 .00 .0 1 2 120.0 120.0 84.0 10.8 .00 .0 1 3 120.0 120.0 84.0 10.8 .00 .0 1 4 120.0 120.0 84.0 10.8 .00 .0 1 5 120.0 120.0 84.0 10.8 .00 .0 1 6 120.0 120.0 360.0 37.9 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 5 soil type(s) File: x5e.o 06/12/95 17:03 Page 1 Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 40.0 810.0 40.0 2 48.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 12.0 810.0 40.0 2 20.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -27.0 810.0 40.0 2 -20.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 ' Direction Counterclockwise Cohesion friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 11.0 810.0 40.0 2 17.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) File: x5e.o 06/12/95 17:03 Page 2 i = M = = M = = M = = M M M M = = ! 1 1.0 810.0 40.0 2 4.0 84.0 10.8 3 90.0 810.0 40.0 1 P1E20METRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 6 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 50.00 2 37.50 51.00 3 108.00 73.00 4 170.00 97.00 5 236.00 123.00 6 700.00 123.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 2250 Trial Surfaces Have Been Generated. 150 Surfaces Initiate From Each Of 15 Points Equally Spaced Along The Ground Surface Between X = 35.00 ft. and X = 52.00 ft. Each Surface Terminates Between X = 250.00 ft. and X = 400.00 ft. unless Further Limitations Were imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft. 70.00 ft. Line Segments Define Each Trial Failure Surface. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified_ By 5 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 35.00 50.93 2 104.71 44.59 3 172.92 60.33 4 232.80 96.58 5 260.69 129.10 Circle Center At X = 89.7 ; Y = 265.4 and Radius, 221.3 *** 1.142 *** File: x5e.o 06/12/95 17:03 Page 3 1 File: x5e.o 06/12/95 17:03 Page 4 m m m m = = = m = = = ! m = = = = i LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: F-F'; BLOCK FAILURE o TRIAL FAILURE SURFACE: FS=1.57 0 0 Lo 0 90.00 180.00 270.00 360.00 450.00 540.00 630.00 720.00 X — AXIS (ft) M===== M M M m m m m= M. M s m ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/12/ 1995 Run By: ATB Input Data Filename: X2C Output Filename: X2C.0 Plotted Output Fitename: X2C.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE F-F', BLOCK FAILURE, TRIAL 2 BOUNDARY COORDINATES 10 Top Boundaries 18 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 50.00 37.50 51.00 1 2 37.50 51.00 108.00 73.00 1 3 108.00 73.00 170.00 97.00 2 4 170.00 97.00 236.00 123.00 3 5 236.00 123.00 325.00 145.00 3 6 325.00 145.00 365.00 148.00 3 7 365.00 148.00 370.00 147.00 3 8 370.00 147.00 375.00 145.00 3 9 375.00 145.00 489.00 161.00 6 10 489.OD 161.00 720.00 161.00 6 11 75.00 .00 108.00 73.00 2 12 131.00 .00 170.00 97.00 3 13 349.00 .00 370.00 146.00 4 14 375.00 145.00 445.00 145.00 4 15 445.00 145.00 460.00 146.00 5 16 460.00 146.00 620.00 151.50 5 17 620.00 151.50 720.00 151.00 5 18 445.00 145.00 463.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Foram. (psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 70.0 9.0 .00 .0 1 3 120.0 120.0 70.0 9.0 .00 .0 1 4 120.0 120.0 70.0 9.0 .00 .0 1 5 120.0 120.0 70.0 9.0 .00 .0 1 6 120.0 120.0 300.0 33.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 5 soil type(s) File: x2c.o 06/12/95 15:17 Page 1 Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 40.0 675.0 35.0 2 48.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 12.0 675.0 35.0 2 20.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 3 Is Anisotropic Huaber Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -27.0 675.0 35.0 2 -17.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 11.0 675.0 35.0 2 21.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) File: x2c.o 06/12/95 15:17 Page 2 1 1.0 675.0 35.0 2 7.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 6 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 50.00 2 37.50 51.00 3 108.00 73.00 4 170.00 97.00 5 236.00 123.00 6 700.00 123.00 Janbus Empirical Coef is being used for the case of c 8 phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active Arid Passive Portions Of Sliding Block Is 120.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 236.00 60.00 236.00 60.00 120.00 2 270.00 .00 271.00 130.00 .00 * * Safety Factors Are Calculated By The modified Janbu Method Failure Surface Specified By 4 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 146.40 87.86 2 236.00 60.43 3 270.83 108.41 4 285.88 135.33 *** 1.567 *** File: x2c.o 06/12/95 15:17 Page 3 i m m m m m m= m m m m m= m m' m LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: F-F'; BLOCK,FAILURE; SEISMIC o TRIAL FAILURE SURFACE: FS=1.17 (SEISMIC) 0 0 in v 90.00 180.00 270.00 360.00 450.00 540.00 630.00 120.00 X - AXIS (ft) i i i i i i i == M i m i i i i i i i 1 1.0 810.0 40.0 3 2 4.0 84.0 10.8 4 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 6 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 50.00 2 37.50 51.00 3 108.00 73.00 4 170.00 97.00 5 236.00 123.00 6 700.00 123.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf Jenbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 120.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (it) (ft) 1 236.00 60.00 236.00 60.00 120.00 2 270.00 .00 271.00 130.00 .00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 4 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 170.81 97.32 2 236.00 70.80 File- x2cet.o 06/12/95 16:59 Page 3 File: x2cel.o 270.85 110.25 277.14 133.17 1.175 *** 06/12/95 16:59 Page 4 M M M M i M M M M M M i M i M M M M M ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/12/ 1995 Run By: ATB Input Data Filename: X2CE1 Output Filename: X2CE1.0 Plotted Output filename: X2CEI.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE F-F', BLOCK FAILURE, TRIAL 2, SEISMIC BOUNDARY COORDINATES 10 Top Boundaries 18 Total Boundaries Boundary X-left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 50.00 37.50 51.00 1 2 37.50 51.00 108.00 73.00 1 3 108.00 73.00 170.00 97.00 2 4 170.00 97.00 236.00 123.00 3 5 236.00 123.00 325.00 145.00 3 6 325.00 145.00 365.00 148.00 3 7 365.00 148.00 370.00 147.00 3 8 370.00 147.00 375.00 145.00 3 9 375.00 145.00 489.00 161.00 6 10 489.00 161.00 720.00 161.00 6 11 75.00 .00 108.00 73.00 2 12 131.00 .00 170.00 97.00 3 13 349.00 .00 370.00 146.00 4 14 375.00 145.00 445.00 145.00 4 15 445.00 145.00 460.00 146.00 5 16 460.00 146.00 620.00 151.50 5 17 620.00 151.50 720.00 151.00 5 18 445.00 145.00 463.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angie Pressure Constant Surface No. (pcf) (Pcf) (Psf) (deg) Param. (psf) No. 1 120.0 120.0 84.0 10.8 .00 .0 1 2 120.0 120.0 84.0 10.8 .00 .0 1 3 120.0 120.0 84.0 10.8 .00 .0 1 4 120.0 120.0 84.0 10.8 .00 .0 1 5 120.0 120.0 84.0 10.8 .00 .0 1 6 120.0 120.0 360.0 37.9 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 5 soil type(s) File: x2cel.o 06/12/95 16:59 Page 1 Soil Type 1 Is Anisotropic Nurtber Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 40.0 810.0 40.0 2 48.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 12.0 810.0 40.0 2 20.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -27.0 810.0 40.0 2 -20.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 11.0 810.0 40.0 2 17.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) File: x2cet.o 06/12/95 16:59 Page 2 LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: F—F'; CIRCULAR FAILURE o TRIAL FAILURE SURFACE: FS=1 .84 �srRTic) o � �S = �.A ♦ /'srttA�ic 0 in v L+ 0 90.00 180.00 270.0E 360.00 450.00 540.00 630.00 720.00 X - AXIS (f t) M m m m m m m MMMIMMMMMM m m m ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/12/ 1995 Run By: ATB Input Data Filename: X6 Output Filename: X6.0 Plotted Output Filename: X6.OP PROBLEM DESCRIPTION NENPORTER NORTH, PROFILE F-F', CIRCULAR FAILURE BOUNDARY COORDINATES 10 Top Boundaries 18 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 150.00 37.50 151.00 1 2 37.50 151.00 108.00 173.00 1 3 108.00 173.00 170.00 197.00 2 4 170.00 197.00 236.00 223.00 3 5 236.00 223.00 325.00 245.00 3 6 325.00 245.00 365.00 248.00 3 7 365.00 248.00 370.00 247.00 3 8 370.00 247.00 375.00 245.00 3 9 375.00 245.00 489.00 261.00 6 10 489.00 261.00 720.00 261.00 6 11 75.00 .00 108.00 173.00 2 12 131.00 .00 170.00 197.00 3 13 349.00 .00 370.00 246.00 4 14 375.00 245.00 445.00 245.00 4 15 445.00 245.00 460.00 246.00 5 16 460.00 246.00 620.00 251.50 5 17 620.00 251.50 720.00 251.00 5 18 445.00 245.00 463.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 70.0 9.0 .00 .0 1 3 120.0 120.0 70.0 9.0 .00 .0 1 4 120.0 120.0 70.0 9.0 .00 .0 1 5 120.0 120.0 70.0 9.0 .00 .0 1 6 120.0 120.0 330.0 33.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 5 soil types) File: x6.o 06/12/95 17:47 Page 1 Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 40.0 675.0 35.0 2 48.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 12.0 675.0 35.0 2 20.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -27.0 675.0 35.0 2 -20.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 4 is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 11.0 675.0 35.0 2 17.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) File: x6.o 06/12/95 17:47 Page 2 1 1.0 675.0 35.0 2 4.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 6 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 150.00 2 37.50 151.00 3 108.00' 173.00 4 170.00 197.00 5 236.00 223.00 6 700.00 223.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. Janbus Empirical Coef. is being used for the case of c & phi both > 0 2100 Trial Surfaces Have Been Generated. 300 Surfaces Initiate From Each Of 7 Points Equally Spaced Along The Ground Surface Between X = 35.00 ft. and X = 52.00 ft. Each Surface Terminates Between X = 360.00 ft. and X = 600.00 ft. Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft. 60.00 ft. Line Segments Define Each Trial Failure Surface. * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 8 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 40.67 151.99 2 98.08 134.55 3 157.95 130.70 4 217.12 140.65 5 272.45 163.87 6 321.00 199.12 7 360.20 244.54 8 361.89 247.77 *** 1.837 *** File: x6.o 06/12/95 17:47 Page 3 1 File: x6.o 06/12/95 17:47 Page 4 r M M = = M M ! � M `= M M � M r M ** PCSTABLSM ** --Slope Stability Analysis -- Run Date: 6/12/ 1995 Run By: ATD Input Data Filename: X6E Output Filename: X6E.0 Plotted Output Filename: X6E.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE F-Fl, CIRCULAR FAILURE, SEISMIC BOUNDARY COORDINATES 10 Top Boundaries 18 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 150.00 37.50 151.00 1 2 37.50 151.00 108.00 173.00 1 3 108.00 173.00 170.00 197.00 2 4 170.00 197.00 236.00 223.00 3 5 236.00 223.00 325.00 245.00 3 6 325.00 245.00 365.00 248.00 3 7 365.00 248.00 370.00 247.00 3 8 370.00 247.00 375.00 245.00 3 9 375.00 245.00 489.00 261.00 6 10 489.00 261.00 720.00 261.00 6 11 75.00 .00 108.00 173.00 2 12 131.00 .00 170.00 197.00 3 13 349.00 .00 370.00 246.00 4 14 375.00 245.00 445.00 245.00 4 15 445.00 245.00 460.00 246.00 5 16 460.00 246.00 620.00 251.50 5 17 620.00 251.50 720.00 251.00 5 18 445.00 245.00 463.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (Pcf) (Pcf) (psf) (deg) Param. (Psf) No. 1 120.0 120.0 84.0 10.8 .00 .0 1 2 120.0 120.0 84.0 10.8 .00 .0 1 3 120.0 120.0 84.0 10.8 .00 .0 1 4 120.0 120.0 84.0 10.8 .00 .0 1 5 120.0 120.0 84.0 10.8 .00 .0 1 6 120.0 120.0 360.0 37.9 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 5 soil types) File: x6e.o 06/12/95 17:51 Page 1 Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 40.0 810.0 40.0 2 48.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 12.0 810.0 40.0 2 20.0 a4.0 10.8 3 90.0 810.0 40.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -27.0 810.0 40.0 2 -20.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) ' 1 11.0 810.0 40.0 2 17.0 84.0 10.8 3 90.0 810.0 40.0 Soil Type 5 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) File: x6e.o 06/12/95 17:51 Page 2 m w m m� mom! W m m m M M M M M M 1 1.0 810.0 40.0 2 4.0 84.0 10.8 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 6 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 150.00 2 37.50 151.00 3 108.00 173.00 4 170.00 197.00 5 236.00 223.00 6 700.00 223.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. Janbus Empirical Coef. is being used for the case of c & phi both > 0 2100 Trial Surfaces Have Been Generated. 300 Surfaces Initiate From Each Of 7 Points Equally Spaced Along The Ground Surface Between X = 35.00 ft. and X = 52.00 ft. Each Surface Terminates Between X = 360.00 ft. and X = 600.00 ft. Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends is Y = .00 ft. 60.00 ft. Line Segments Define Each Trial Failure Surface. * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 8 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 37.83 151.10 2 96.35 137.86 3 156.34 136.66 4 215.34 147.57 5 270.94 170.13 6 320.85 203.43 7 363.04 246.10 8 364.24 247.94 *** 1.410 *** Fite- x6e.o 06/12/95 17:51 Page 3 1 Fite: x6e.o 06/12/95 17:51 Page 4 i I I J 1 I 1 1 I I 1 1 1 'J 1 1 I I SECTION G-G' I � � � � r� � � � � � � ram■ � r r � � � rtir LEIGHTON AND ASSOCIATES, INC. NEWPROTER NORTH JOB NUMBER: CROSS SECTION: G-G'; BLOCK FAILURE o TRIAL FAILURE SURFACE: FS=1.25 Ln N ti C*l C 0 62.50 125.00 187.50 250.00 312.50 375.00 437.50 500.00 X - AXIS (f t) s M on= r=% M M M" M= M M M m m r M *" PCSTASL5M ** --Slope Stability Analysis -- Run Date: 6/ 1/ 1995 Run By: ATB Input Data Filename: X3T Output Filename: X3T.0 Plotted Output Filename: X3T.OP PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-G', BLOCK FAI LURE BOUNDARY COORDINATES 14 Top Boundaries 19 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (it) (it) (ft) (it) Below end 1 .00 53.00 33.00 53.00 1 2 33.00 53.00 43.00 54.00 1 3 43.00 54.00 55.00 61.00 1 4 55.00 61.00 65.00 65.50 1 5 65.00 65.50 103.00 78.00 2 6 103.00 78.00 147.00 92.00 2 7 147.00 92.00 158.50 97.50 2 8 158.50 97.50 190.00 107.50 3 9 190.00 107.50 300.00 143.00 4 10 300.00 143.00 322.00 148.00 4 11 322.00 148.00 357.00 148.00 5 12 357.00 148.00 360.00 148.00 6 13 360.00 148.00 437.00 165.00 5 14 437.00 165.00 500.00 165.00 5 15 65.00 65.50 87.00 .00 1 16 138.00 .00 158.50 97.50 3 17 190.OD 107.50 201.00 .00 3 18 360.00 148.00 500.00 148.00 6 19 357.00 148.00 397.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (Pcf) (Psf) (deg) Parem. (psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 70.0 9.0 .00 .0 1 3 120.0 120.0 70.0 9.0 .00 .0 1 4 120.0 120.0 70.0 9.0 .00 .0 1 5 120.0 120.0 300.0 33.0 .00 .0 1 6 120.0 120.0 70.0 9.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS File: x3t.o 06/01/95 10:03 Page 1 5 soil type(s) Soil Type 1 Is Anisotrop)e Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 37.0 675.0 35.0 2 43.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction - Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 20.0 675.0 35.0 2 26.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -2.0 675.0 35.0 2 5.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 4 is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -25.0 675.0 35.0 2 -15.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 6 is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Pef) (deg) File: x3t.o 06/01/95 10:03 Page 2 M M ON M r M r M M r i M m r M M M M M 1 -8.0 675.0 35.0 2 -2.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 8 Coordinate Points Point X-Water Y-Water No. (it) (it) 1 .00 53.00 2 33.00 53.00 3 43.00 54.00 4 55.00 61.00 5 103.00 78.00 6 147.00 92.00 7 300.00 118.00 8 50D.00 125.00 Janbus Empirical Coef is being used for the case of c 8 phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Stock is 20.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (it) (ft) 1 65.00 64.00 87.00 .00 .00 2 133.00 .00 158.50 96.00 .00 * * Safety Factors Are Calculated By The Modified Janbu Method failure Surface Specified By 5 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 48.70 57.32 2 49.50 57.10 3 68.96 52.49 4 157.61 91.85 5 164.05 99.27 *** 1.246 *** File: x3t.o 06/01/95 10.03 Page 3 1 File: x3t.o 06/01/95 10:03 Page 4 LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: G-G'; BLOCK FAILURE; O TRIAL FAILURE SURFACE: FS=1.05 CU 1-1 Ch O O O CU .}J y- O Lo CD ci co H X 0 Q Lo N } O Lo N to IM SEISMIC 62.50 125.00 187.50 250.00 312.50 375.00 437.50 500.00 X - AXIS (f t) M M M M m m m M= r r= M M m m m m m » PCSTABLSM " --Slope Stability Analysis -- Run Date: 6/ 8/ 1995 Run By: ATB Input Data Filename: X3TE Output Filename: X3TE.0 Plotted Output Filename: X3TE.OP PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-G', BLOCK FAILURE SEISMIC BOUNDARY COORDINATES 14 Top Boundaries 19 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (it) (ft) Below Bnd 1 .00 53.00 33.00 53.00 1 2 33.00 53.00 43.00 54.00 1 3 43.00 54.00 55.00 61.00 1 4 55.00 61.00 65.00 65.50 1 5 65.00 65.50 103.00 78.00 2 6 103.00 78.00 147.00 92.00 2 7 147.00 92.00 158.50 97.50 2 8 158.50 97.50 190.00 107.50 3 9 190.00 107.50 300.00 143.00 4 10 300.00 143.00 322.00 148.OD 4 11 322.00 148.00 357.00 148.00 5 12 357.00 148.00 360.00 148.00 6 13 360.00 148.00 437.00 165.00 5 14 437.00 165.00 500.00 165.00 5 15 65.00 65.50 87.00 .OD 1 16 138.00 .00 158.50 97.50 3 17 190.00 107.50 201.00 .00 3 18 360.00 148.00 500.00 148.00 6 19 357.00 148.00 397.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pef) (Pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 84.0 10.7 .00 .0 1 2 120.0 12O.D 84.0 10.7 .00 .0 1 3 120.0 120.0 84.0 10.7 .00 .0 1 4 120.0 120.0 84.0 10.7 .00 .0 1 5 120.0 120.0 360.0 38.0 .00 .0 1 6 120.0 120.0 84.0 10.7 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS File: x3te.o 06/08/95 13:38 Page 1 5 soil type(s) Soil Type 1 Is Anisotropic Number of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 37.0 810.0 40.0 2 43.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 20.0 810.0 40.0 2 26.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 3 Is Anisotropic Nurber Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -2.0 810.0 40.0 2 5.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -25.0 810.0 40.0 2 -15.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 6 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) File: x3te.o 06/08/95 13:3B Page 2 m m m m`� m m m m m i m m m m m m m 1 -8.0 810.0 40.0 2 -2.0 84.0 10.7 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 8 Coordinate Points Point X-Water Y-Water No. (it) (ft) 1 .00 53.00 2 33.00 53.00 3 43.00 54.00 4 55.00 61.00 5 103.00 78.00 6 147.00 92.00 7 300.00 118.00 8 500.00 125.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf Janbus Empirical Coef is being used for the case of c i phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating sliding Block Surfaces, Has Been specified. 1000 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 20.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 65.00 64.00 87.00 .00 .00 2 138.00 .00 158.50 96.00 .00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 5 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) File: x3te.o 06/08/95 13:38 Page 3 File: x3te.o 1 48.70 57.32 2 49.50 57.10 3 68.96 52.49 4 157.61 91.85 5 164.08 99.27 **' 1.049 *** 06/08/95 13:38 Page 4 a i = m r m M m M M M m M M M M M M M i r LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: G-G'; BLOCK FAILURE; o TRIAL FAILURE SURFACE: FS=1.43 a m TRIAL 2 62.50 125.00 187.50 250.00 312.50 375.00 437.50 500.00 X - AXIS (f t) MIM= M M M M M M M M m m m M m m ,ate r ** PCSTASL5M ** --Slope Stability Analysis -- Run Date: 6/ 1/ 1995 Run By: ATB Input Data Filename: X4 output Filename: X4.0 Plotted Output Filename: X4.OP PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-Gm, BLOCK FAI LURE TRIAL 2 BOUNDARY COORDINATES 14 Top Boudaries 19 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. -- (ft) (ft) (ft) (ft) Below-Brd 1 .00 53.00 33.00 53.00 1 2 33.00 53.00 43.00 54.00 1 3 43.00 54.00 55.00 61.00 1 4 55.00 61.00 65.00 65.50 1 5 65.00 65.50 103.00 78.OD 2 6 103.00 78.00 147.00 92.00 2 7 147.00 92.00 158.50 97.50 2 8 158.50 97.50 190.00 107.50 3 9 190.00 107.50 300.00 143.00 4 10 300.00 143.00 322.00 148.00 4 11 322.00 148.00 357.00 148.OD 5 12 357.00 148.00 360.00 148.00 6 13 360.00 148.00 437.00 165.00 5 14 437.00 165.00 500.00 165.00 5 15 65.00 65.50 87.00 .00 1 16 138.00 .00 158.50 97.50 3 17 190.00 107.50 201.00 .00 3 18 360.00 148.00 500.00 148.00 6 19 357.00 148.00 397.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soft Soft Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pef) (Pcf) (psf) (deg) Param. (Psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 70.0 9.0 .00 .0 1 3 120.0 120.0 70.0 9.0 .00 .0 1 4 120.0 120.0 70.0 9.0 .00 .0 1 5 120.0 120.0 300.0 33.0 .00 .0 1 6 120.0 120.0 70.0 9.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS File: x4.o 06/01/95 10:06 Page 1 5 soil type(s) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 37.0 675.0 35.0 2 43.0 70.0 9.0 3 90.0 675.0 35.0 Soft Type 2 Is Anisotropic Number of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 20.0 675.0 35.0 2 26.0 70.0 9.0 3 90.0 675.0 35.0 Soft Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -2.0 675.0 35.0 2 5.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 4 Is Aniaotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -25.0 675.0 35.0 2 -15.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 6 Is Anisotropic Number Of Direction Rages Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) File: x4.o 06/01/95 10,06 Page 2 M = = = = M M = = s M= a M M M M 1 -8.0 675.0 35.0 2 -2.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 8 Coordinate Points Point X-Water ' Y-Water No. (ft) (it) 1 .00 53.00 2 33.00 53.00 3 43.00 54.00 4 55.00 61.00 5 103.00 78.00 6 147.00 92.00 7 300.00 115.00 8 500.00 125.00 Janbus Empirical Coef is being used for the case of c & phi both > 0 A Criticat Faiture Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 3 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 20.0 Box X-Left Y-left X-Right Y-Right Height No. (it) (ft) (ft) (ft) (ft) 1 65.00 64.00 87.00 .00 .00 2 138.00 .00 158.50 96.00 .00 3 190.00 107.50 201.00 .00 .00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 7 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 31.44 53.00 2 33.18 51.88 3 52.79 47.94 4 72.19 43.08 5 154.94 79.33 6 190.96 98.08 File: x4.o 06/01/95 10:06 Page 3 1 Fite: x4.o 7 193.58 108.66 *** 1.437 *** 06/01/95 10:06 Page 4 LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: G—G'; BLOCK FAILURE; TRIAL 2 o TRIAL F.AILURE SURFACE: FS=1.17; SEISMIC cU li m 0 0 0 in CU y- O .__. ltl cn H X o 0 Q u') N } O Lo N co m 62.50 125.00 167.50 250.00 312.50 375.00 437.50 500.00 X — AXIS (f t) M ! M M M M M M M M M M M M M M M M M ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/ 8/ 1995 Run By: ATE Input Data Filename: X4E Output Filename: X4E.0 Plotted Output Filename: X4E.OP PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-G', BLOCK FAILURE TRIAL 2, SEISMIC BOUNDARY COORDINATES 14 Top Boundaries 19 Total Boundaries Boundary X-Left Y-left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below End 1 .00 53.00 33.00 53.00 1 2 33.00 53.00 43.00 54.OD 1 3 43.00 54.00 55.00 61.00 1 4 55.00 61.00 65.00 65.50 1 5 65.00 65.50 103.00 78.00 2 6 103.00 78.00 147.00 92.00 2 7 147.00 92.00 158.50 97.50 2 8 15B.50 97.50 190.00 107.50 3 9 190.00 107.50. 300.00 143.00 4 10 300.00 143.00 322.00 148.00 4 11 322.00 148.00 357.00 148.00 5 12 357.00 148.00 360.00 148.00 6 13 360.00 148.00 437.00 165.00 5 14 437.00 165.00 500.00 165.00 5 15 65.00 65.50 87.00 .00 1 16 138.00 .00 158.50 97.50 3 17 190.00 107.50 201.00 .00 3 18 360.00 148.00 500.00 148.00 6 19 357.00 148.00 397.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 TYPOS) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (Pcf) (psf) (deg) Param. (Psf) No. 1 120.0 120.0 84.0 10.7 .00 .0 1 2 120.0 120.0 84.0 10.7 .00 .0 1 3 120.0 120.0 84.0 10.7 .00 .0 1 4 120.0 120.0 84.0 10.7 .00 .0 1 5 120.0 120.0 360.0 38.0 .00 .0 1 6 120.0 120.0 84.0 10.7 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS File: x4e.o 06/08/95 13:45 Page 1 5 soil type(s) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angie No. (deg) (Psf) (deg) 1 37.0 810.0 40.0 2 43.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 2 Is Anisotrople Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 20.0 810.0 40.0 2 26.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -2.0 810.0 40.0 2 5.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 '-25.0 810.0 40.0 2 -15.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 6 Is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) File: x4e.o 06/08/95 13:45 Page 2 1 -8.0 810.0 40.0 2 -2.0 84.0 10.7 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water - 62.40 Piezometric Surface No. 1 Specified by 8 Coordinate Points Point X-Water Y-Water No. (ft) (it) 1 .00 53.00 2 33.00 53.00 3 43.00 54.00 4 55.00 61.00 5 - 103.00 78.00 6 147.00 92.00 7 300.00 118.00 8 500.00 125.00 A Horizontal Earthquake Loading Coefficient of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 Psi Janbus Empirical Coef is being used for the case of c 8 phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 3 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 20.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 65.00 64.00 87.00 .00 .00 2 138.00 .00 158.50 96.00 .00 3 190.00 107.50 201.00 .00 .00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 7 Coordinate Points Point X-Surf Y-Surf File: x4e.o 06/08/95 13:45 Page 3 File: x4e.o No. (ft) (ft) 1 31.44 53.00 2 33.18 51.88 3 52.79 47.94 4 72.19 43.08 5 154.94 79.33 6 190.96 98.08 7 193.58 108.66 *** 1.168 *** 06/08/95 13:45 Page 4 m= m m m m m a m -m m m m m= m m m j LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: G-G'; CIRCULAR FAILURE o TR.IAL FAILURE SURFACE: FS=1.77 u� N ti m 0 0 Cl In N 4- O v r- CD co H X o 0 Q Lo cu I ti r o Lo N to 62.50 125.00 1B7.50 250.00 312.50 375.00 437.50 500.00 X - AXIS (ft) M M = = = M = M = M = = = i M = S ' * PCSTABL5M " --Slope Stability Analysis -- Run Date: 6/ 1/ 1995 Run By: ATB Input Data Filename: X1 Output filename: X1.0 Plotted output Filename: X1.OP PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-G1, CIRCULAR FAILURE BOUNDARY COORDINATES 14 Top Boundaries 19 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soft Type No. (ft) (ft) (ft) (ft) Below End 1 .00 53.00 33.00 53.00 1 2 33.00 53.00 43.00 54.00 1 3 43.00 54.00 55.00 61.00 1 4 55.00 61.00 65.00 65.50 1 5 65.00 65.50 103.00 78.00 2 6 103.00 78.00 147.00 92.00 2 7 147.00 92.00 158.50 97.50 2 a 158.50 97.50 190.00 107.50 3 9 190.00 107.50 300.00 143.00 4 10 300.00 143.00 322.00 148.00 4 11 322.00 148.00 357.00 148.00 5 12 357.00 148.00 360.00 148.00 6 13 360.00 148.00 437.00 165.00 5 14 437.00 165.00 500.00 165.00 5 15 65.00 65.50 87.00 .OD 1 16 138.00 .00 158.50 97.50 3 17 190.00 107.50 201.00 .00 3 18 360.00 148.00 500.00 148.00 6 19 357.00 148.00 397.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soft Total Saturated Cohesion Friction Pore Pressure Pfez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pef) (Pcf) (Psf) (deg) Parem. (Psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 70.0 9.0 .00 .0 1 3 120.0 120.0 70.0 9.0 .00 .0 1 4 120.0 120.0 70.0 9.0 .00 .0 1 5 120.0 120.0 300.0 33.0 .00 .0 1 6 120.0 120.0 70.0 9.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS File: x1.0 06/01/95 09:41 Page 1 5 soil types) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 35.0 675.0 35.0 2 45.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 12.0 675.0 35.0 2 26.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -2.0 675.0 35.0 2 7.0 70.0 9.0 3 90.0 675.0 35.0 Soft Type 4 Is Anisotropic Number of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -25.0 675.0 35.0 2 -15.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 6 Is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Pef) (deg) File: xl.o 06/01/95 09:41 Page 2 M M i = ! M= M = = M i = M M M 1 -8.0 675.0 35.0 2 -2.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 8 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 53.00 2 33.00 53.00 3 43.00 54.00 4 55.00 61.00 5 103.00 78.00 6 147.00 92.00 7 300.00 118.00 8 500.00 125.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1800 Trial Surfaces Have Been Generated. 600 Surfaces Initiate From Each Of 3 Points Equally Spaced Along The Ground Surface Between X = 42.00 ft. and X = 44.00 ft. Each Surface Terminates Between X = 280.00 ft. and X = 400.00 ft. Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft. 40.00 ft. Line Segments Define Each Trial Failure Surface. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 43.00 54.00 2 81.05 41.65 3 120.48 34.93 4 160.47 33.98 5 200.17 38.82 6 238.76 49.34 7 275.43 65.33 8 309.40 86.44 9 339.96 112.25 10 366.48 142.20 11 372.01 150.65 Circle Center At X = 147.0 ; Y - 309.8 and Radius, 276.1 *** 1.772 *** File: x1.o 06/01/95 09:41 Page 3 1 File: xt.o 06/01/95 09:41 Page 4 LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: G-G'; CIRCULAR FAILURE o TRIAL FAILURE SURFACE: FS=1.44; SEISMIC to a m 0 0 0 u� CU 4- c7 Ln CD c-1 cn H X O 0 Q Ln cU I � o In CU LD La 0 62.50 125.00 187.50 250.00 312.50 375.00 437.50 500.00 X - AXIS (ft) M M M M i M M M M M = = r = M= M i M ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/ 8/ 1995 Run By: ATB Input Data Filename: X1E Output Filename: X1E.0 Plotted Output Filename: X1E.OP PROBLEM DESCRIPTION NEUPORTER NORTH, SECTION G-G', CIRCULAR FAILURE, SEISMIC BOUNDARY COORDINATES 14 Top Boundaries 19 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 53.00 33.00 53.00 1 2 33.00 53.00 43.00 54.00 1 3 43.00 54.00 55.00 61.00 1 4 55.00 61.00 65.00 65.50 1 5 65.00 65.50 103.00 78.00 2 6 103.00 78.00 147.00 92.00 2 7 147.00 92.00 158.50 97.50 2 8 158.50 97.50 190.00 107.50 3 9 190.00 107.50 300.00 143.00 - 4 .10 300.00 143.00 322.00 148.00 4 11 322.00 148.00 357.00 148.00 5 12 357.00 148.00 360.00 148.00 6 13 360.00 148.00 437.00 165.00 5 14 437.00 165.00 500.00 165.00 5 15 65.00 65.50 87.00 .00 1 16 138.00 .00 158.50 97.50 3 17 190.00 107.50 201.OD .OD 3 18 360.00 148.00 500.00 148.00 6 19 357.00 148.00 397.00 .00 4 ISOTROPIC SOIL PARAMETERS 6 Type(s) of Soil Soft Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (PCf) (pcf) (Psf) (deg) Param. (psf) No. 1 120.0 120.0 84.0 10.7 .00 .0 1 2 120.0 120.0 84.0 10.7 .00 .0 1 3 120.0 120.0 84.0 10.7 .00 .0 1 4 120.0 120.0 84.0 10.7 .00 .0 1 5 120.0 120.0 360.0 38.0 .00 .0 1 6 120.0 120.0 84.0 10.7 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS File: xte.o 06/08/95 13:51 Page 1 5 soil types) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 37.0 810.0 40.0 2 43.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 20.0 810.0 40.0 2 26.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 3 Is Anfsotropfe Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -2.0 810.0 40.0 2 5.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 4 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -25.0 810.0 40.0 2 -15.0 84.0 10.7 3 90.0 810.0 40.0 Soft Type 6 Is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) File: x1e.o 06/08/95 13:51 Page 2 � Im M M= M== M= i m r m== m m m 1 -8.0 810.0 40.0 2 -2.0 84.0 10.7 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 8 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 53.00 2 33.00 53.00 3 43.00 54.00 4 55.00 61.00 5 103.00 78.00 6 147.00 92.00 7 300.00 118.00 8 500.00 125.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1800 Trial Surfaces Have Been Generated. 600 Surfaces Initiate From Each Of 3 Points Equally Spaced Along The Ground Surface Between X = 42.00 ft. and X = 44.00 ft. Each Surface Terminates Between X = 280.00 ft. and X = 400.00 ft. Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft. 40.00 ft. Line Segments Define Each Trial Failure Surface. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 42.00 53.90 2 79.18 39.13 3 118.17 30.21 4 158.06 27.33 5 197.93 30.57 6 236.84 39.84 7 273.88 54.94 8 308.19 75.51 9 338.96 101.06 10 365.48 131.01 11 379.12 152.22 Circle Center At X = 156.9 ; Y = 289.0 and Radius, 261.7 *+* 1."3 *" Fite: xte.o 06/08/95 13:51 Page 3 File- xte.o 06/08/95 13:51 Page 4 I LJ 1 1 1 1 1 1 1 SECTION H-H' Xy2�E LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: H—H'; BLOCK FAILURE o TRIAL FAILURE SURFACE: FS=1 .65Ln FA �STic, r- CD Ch O O m ..N y- O CU m N cn H X O 0 Q LD trn uo r. 0 77.50 155.00 232.50 310.00 387.50 465.00 542.50 620.00 X - AXIS (f t) � m M M M! m am = m r== M M M Mm ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/ B/ 1995 Run By: ATB Input Data Filename: X2A Output Filename: X2A.0 Plotted Output Filename: X2A.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE HH', BLOCK FAIL URE BOUNDARY COORDINATES 16 Top Boundaries 21 Total Boundaries Boundary X-Leff Y-Left X-Right Y-Right Solt Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 53.00 40.00 54.00 1 2 40.00 54.00 60.00 56.00 1 3 60.00 56.00 80.00 64.00 1 4 80.00 64.00 160.OD 92.50 1 5 160.00 92.50 180.00 96.00 1 6 180.00 96.00 182.00 97.00 1 7 182.00 97.00 201.00 103.00 2 8 201.00 103.80 216.50 108.50 3 9 216.50 108.50 251.00 120.00 4 10 251.00 120.00 260.00 124.50 4 11 260.00 124.50 277.00 130.00 4 12 277.00 130.00 440.00 130.00 4 13 440.00 130.00 453.00 13O.OG 4 14 453.00 130.00 480.00 140.00 4 15 480.00 140.00 520.00 142.00 4 16 520.00 142.00 620.00 143.00 5 17 176.00 .00 182.00 97.00 2 18 201.00 103.00 207.00 .00 2 19 216.50 103.50 230.00 .00 3 20 520.00 142.00 537.00 134.00 4 21 537.00 134.00 620.00 134.00 4 ISOTROPIC SOIL PARAMETERS 5 Type(s) of Solt Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pef) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 70.0 9.0 .00 .0 1 3 120.0 120.0 70.0 9.0 .00 .0 1 4 120.0 120.0 70.0 9.0 .00 .0 1 5 120.0 120.0 300.0 33.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 4 soil types) Solt Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angie No. (deg) (psf) (deg) 1 35.0 675.0 35.0 2 41.0 70.0 9.0 3 90.0 675.0 35.0 Solt Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 17.0 675.0 35.0 2 23.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 3 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -11.0 675.0 35.0 2 2.0 70.0 9.0 3 90.0 675.0 35.0 Solt Type 4 Is Anisotropic Number Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -30.0 675.0 35.0 2 -22.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water - 62.40 Piezometric Surface No. 1 Specified by 7 Coordinate Points File: x2e.o 06/08/95 11:56 Page 1 I File: x2a.o 06/08/95 11:56 Page 2 w m m m m m i� r m m r m m m m w m Point X-Water Y-Water No. (ft) (ft) 1 .00 53.00 2 40.00 54.00 3 60.00 56.00 4 156.00 84.00 5 400.00 104.00 6 500.00 127.00 7 620.00 127.00 Janbus EsQirical Coef is being used for the case of c 3 phi Lath > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active Arid Passive Portions Of Sliding Block Is 30.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (it) (it) (it) 1 80.00 64.00 80.10 .OD .00 2 176.00 .00 182.00 97.00 .00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 5. Coordinate Points Point X-Surf Y-Surf No. (it) (ft) 1 38.54 53.96 2 55.19 39.02 3 80.07 22.25 4 181.80 93.73 5 186.42 98.39 *** 1.656 *** File: x2a.o 06/08/95 11:56 Page 3 No r i�� M i r rr � M r M M M r� M r " PCSTABL514 ** --Slope Stability Analysis -- Run Date: 6/ 8/ 1995 Run By: ATB Input Data Filename: X2AE Output Filename: X2AE.0 Plotted Output Filename: X2AE.OP PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE HH', BLOCK FAIL URE, SEISMIC BOUNDARY COORDINATES 16 Top Boundaries 21 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right No. (it) (ft) (ft) (ft) 1 .00 53.00 40.00 54.00 2 40.00 54.00 60.00 56.00 3 60.00 56.00 80.00 64.00 4 80.00 64.00 160.00 92.50 5 160.00 92.50 180.00 96.00 6 180.00 96.00 182.00 97.00 7 182.00 97.00 201.00 103.00 8 201.00 103.00 216.50 108.50 9 216.50 108.50 251.00 120.00 10 251.00 120.00 260.00 124.50 11 260.00 124.50 277.00 130.00 12 277.00 130.00 "0.00 130.00 13 440.00 130.00 453.00 130.00 14 453.00 130.00 480.00 140.00 15 480.00 140.00 520.00 142.00 16 520.00 142.00 620.00 143.00 17 176.00 .00 182.00 97.00 18 201.00 103.00 207.00 .00 19 216.50 108.50 230.00 .00 20 520.00 142.00 537.00 134.00 21 537.00 134.00 620.00 134.00 ISOTROPIC SOIL PARAMETERS 5 Type(s) of soil Soil Type Below Bnd Soil Total Saturated Cohesion Friction Pore Pressure P(ez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pef) (Pef) (psf) (deg) Param. (psf) No. 1 120.0 120.0 84.0 10.7 .00 .0 1 2 120.0 120.0 84.0 10.7 .00 .0 1 3 120.0 120.0 84.0 10.7 .00 .0 1 4 120.0 120.0 84.0 10.7 .00 .0 1 5 120.0 120.0 360.0 38.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 4 soft type(s) Soil Type 1 Is Anisotropic Nudber Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 35.0 810.0 40.0 2 41.0 84.0 10.7 3 90.0 810.0 10.7 Soil Type 2 Is Anisotropic Nudber Of Direction Ranges Specified- 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 17.0 810.0 40.0 2 23.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 3 is Anisotropic Nuiber Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -11.0 810.0 40.0 2 2.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 4 Is Anisotropic Nudxr Of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) 1 -30.0 810.0 40.0 2 -22.0 84.0 10.7 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water • 62.40 Piezometric Surface No. 1 Specified by 7 Coordinate Points File: x2ae.o 06/08/95 13:19 Page 1 File: x2ae.o 06/08/95 13:19 Page 2 Point X-Water Y-Water No. (ft) (ft) 1 .00 53.00 2 40.00 54.00 3 60.00 56.00 4 156.00 84.00 5 400.00 104.00 6 500.00 127.00 7 620.00 127.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure = .0 psf Jenbus Empirical Coef is being used for the case of c 6 phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 30.0 Box X-Left Y-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 1 80.00 64.00 80.10 .00 .00 2 176.00 .00 182.00 _ 97.00 .00 * • Safety Factors Are Calculated By The Modified Janbu Method Failure surface Specified By 5 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 38.54 53.96 2 55.19 39.02 3 $0.07 22.25 4 181.80 93.73 5 186.42 98.39 �** 1.549 **+ File: x2se.0 06/68/95 13:19 Page 3 I I I I I I I I I I F II I I I I SECTION IT I ri Mr rr r■� rr r rr ri nr rr �r �s �r r r�■R �r OEM LEIGHTON AND ASSOCIATES, INC. NEWPORTER NORTH JOB NUMBER: CROSS SECTION: I —I': BLOCK FAILURE O TRIAL FAILURE SURFACE: FS=1 . B5CST�-Tfc, LC) ti O O O V c-f 4-) 4- O ._ . O LIl O ci cn H X o Q � 0 I � r o 0 in cn c 0 35.00 70.00 105.00 140.00 175.00 X - AXIS (f t) 210.00 245.00 280.00 ** PCSTABL5M ** --Slope Stability Analysis -- Run Date: 6/ 5/ 1995 Run By: ATE Input Data Filename: X2B1 Output Filename: X281.0 Plotted Output Filename: X261.01) PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION 111, BLOCK FA ILURE BOUNDARY COORDINATES 9 Top Boundaries 12 Total Boundaries Boundary X-Left No. (ft) 1 .00 2 25.00 3 40.00 4 80.00 5 120.00 6 140.00 7 160.00 8 188.00 9 201.00 10 188.00 11 238.00 12 220.00 Y-Left X-Right Y-Right Soil Type ift) (it) (ft) Below End 79.00 25.00 79.00 1 79.00 40.00 80.00 1 80.00 80.00 91.50 1 91.50 120.00 107.00 1 107.OD 140.00 113.50 1 113.50 160.00 116.00 1 116.00 188.00 116.00 1 116.00 201.00 121.013 3 121.00 280.00 121.00 3 116.OD 238.00 116.00 1 116.00 280.00 116.00 2 .00 238.00 116.00 2 ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (Pcf) (Psf) (deg) Param. (Psf) No. 1 120.0 120.0 70.0 9.0 .00 .0 1 2 120.0 120.0 70.0 9.0 .00 .0 1 3 120.0 120.0 300.0 33.0 .00 .0 1 ANISOTROPIC STRENGTH PARAMETERS 2 soil type(s) Soil Type 1 Is Anisotropie Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 22.0 675.0 35.0 2 32.0 70.0 9.0 3 90.0 675.0 35.0 Soil Type 2 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -32.0 675.0 35.0 2 -22.0 70.0 9.0 3 90.0 675.0 35.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 4 Coordinate Points Point X-Water Y-Water No. (it) (ft) 1 .00 67.00 2 20.00 67.00 3 175.00 95.OD 4 280.00 95.00 Jenbus Empirical Coef is being used for the ease of c 3 phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. ' 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 10.0 Box X-Left Y-Left X-Right Y-Right Height No. (it) (ft) (ft) (ft) (it) 1 81.00 45.00 81.00 45.00 90.00 2 172.00 57.00 172.00 57.00 114.00 * * Safety Factors Are Calculated By The Modified Janbu Method Failure Surface Specified By 8 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) File: xZbl.o 06/05/95 18:24 Page 1 I File: x2bl.o 06/05/95 18:24 Page 2 m r� m m m m r mI= r m M" M" m m 1 2 3 4 5 6 7 8 xxx 40.99 80.28 44.39 79.09 53.21 74.38 62.30 70.21 71.00 65.28 81.00 65.14 172.00 107.84 174.97 116.00 1.852 *** File: x2bl.o o6/o5/95 18:24 Page 3 M M M M M M M M M M M r M M r�= M M "" PCSTABL5M " --Slope Stability Analysis -- Run Date: 6/ 5/ 1995 Run By: ATB Input Data Filename: X201E Output FiLen ww: X281E.0 Plotted Output Filename: X2BIE.OP PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION II', BLOCK FA ILURE, SEISMIC BOUNDARY COORDINATES 9 Top Boundaries 12 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Brd 1 .00 79.00 25.00 79.00 1 2 25.00 79.00 40.00 80.00 1 3 40.00 80.00 80.00 91.50 1 4 80.OD 91.50 120.00 107.00 1 5 120.00 107.00 140.00 113.50 1 6 140.00 113.50 160.00 116.00 1 7 160.00 116.00 18B.00 116.00 1 8 188.00 116.00 201.00 121.00 3 9 201.00 121.00 280.00 121.00 3 10 188.00 116.00 238.00 116.00 1 11 238.00 116.00 280.00 116.00 2 12 220.00 .00 238.00 116.00 2 ISOTROPIC SOIL PARAMETERS 3 Type(s) of soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (Pcf) (Pef) (Psf) (deg) Parem. (psf) No. 1 120.0 120.0 84.0 10.7 .00 .0 1 2 120.0 120.0 84.0 10.7 .00 .0 1 3 120.0 120.0 360.0 37.9 .00 :0 1 ANISOTROPIC STRENGTH PARAMETERS 2 soil type(s) Soil Type 1 Is Anisotropic Number of Direction Ranges Specified - 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) File: x2bte.o 06/05/95 18:27 Page 1 1 22.0 810.0 40.0 2 32.0 84.0 10.7 3 90.0 810.0 40.0 Soil Type 2 is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (Psf) (deg) 1 -32.0 810.0 40.0 2 -22.0 84.0 10.7 3 90.0 810.0 40.0 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometrie Surface No. 1 Specified by 4 Coordinate Points Point X-Water Y-Water No. (ft) (ft) 1 .00 67.00 2 20.00 67.00 3 175.00 95.00 4 • 280.00 - 95.00 A Horizontal Earthquake Loading Coefficient Of .150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned Cavitation Pressure - .0 Psf Janbus Empirical Coef is being used for the case of c i phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 10.0 Box X-Left Y-Left X-Right Y-Right Height No. (it) (it) (it) (it) (it) 1 81.00 45.00 81.00 45.00 90.00 File: x2ble.o 06/05/95 18:27 Page 2 m -m r�� m m -m `r m m m r m r as m" m 2 172.00 57.00 172.00 57.00 114.00 * * Safety Factors Are Calcutated By The Modified Janbu Method Failure Surface Specified By 8 Coordinate Points Point %-Surf Y-Surf No. (ft) (ft) 1 40.99 80.28 2 44.39 79.09 3 53.21 74.38 4 62.30 70.21 5 71.00 65.28 6 81.00 65.14 7 172.00 107.84 8 174.97 116.00 *** 1.534 •*• File: x2ble.o 06/05/95 18.27 Page 3 i 1 1 C I I I 1851578-06 ' APPENDIX F _Ground -Water Conditions Anticipated After Development INTRODUCTION ' The Newporter North site is bounded on three sides by gentle to steep slopes that descend from the elevation of the mesa either to swales or canyons that drain into Upper Newport Bay, or directly to the bay itself. The northeastern slope varies in height from zero to nearly 100 feet, as the canyon containing San Joaquin Hills Road descends from the level of the mesa top near Jamboree Road to Back Bay Drive, less than 10 feet above sea level. The slope angle varies from more gentle than 3:1 (horizontal -vertical) to 2:1 locally. The southwestern slope falls at a gentle grade into John Wayne Gulch, and is covered with wild grasses and low shrubs. The descent from the mesa top to Back Bay Drive consists of a steep bluff that is locally steeper than 1:1, and exposes weathered but unvegetated Monterey formation bedrock. The slope above San Joaquin Hills Road is consistently wet and seeping along much of its length. ' It supports a thick growth of phreatophytes, and excess seepage water is collected in a shallow surface drainage channel at the base of the slope. The drainage channel conducts the water to the storm drain at the intersection of San Joaquin Hills Road and Back Bay Drive, and the drain outlets to the ' bay. The primary source of the seepage water is the pond in the wetlands area on the mesa near the top of the slope. The pond is fed by a runoff pipe from across Jamboree Road, and is dammed at its downstream end by a low earthen dam approximately 400 feet west of the road. Consequently, ' the pond forms a nearly permanent source of ground water for the northern half of the property, and the resulting ground -water table slopes away from the pond to the south, west, and north. Since the wetlands area will not be touched by the proposed development, and the pond will remain in its ' current location and condition, other subdrainage measures are proposed to mitigate the seepage along the San Joaquin Hills Road slope. The slope along John Wayne Gulch shows no signs of active seepage under the current conditions. The ground water table is 50 to 90 feet deep at the crest of the mesa, where Borings BR-3, B114, and B11-5 were drilled. During grading and earthwork for construction, a subdrain system is to be installed beneath the proposed fill slope above elevation 60 feet. The subdrains will also provide • some protection to the natural slope that extends to the centerline of the swale, since they will intercept shallow ground water migrating toward the slope face from surface infiltration. The slope above Back Bay Drive is currently dry in its upper reaches, and damp to moist locally along Back Bay Drive. Local evidence of efflorescence indicates that moisture laden with soluble salts from the fractured rock of the bluff has evaporated at the bluff face, leaving the salts behind. No ' observations of actual seepage were made, but borings near the top of the bluff contained ground water from 30 to 60 feet below ground surface. The shallowest water was at the northern end of the bluff, closest to the ponded area. ' The primary sources of ground -water recharge to the site currently, are the ponded water in the swale in the northern half of the property, and rainfall striking the surface of the mesa. Some additional water may be flowing onto the site laterally from beneath Jamboree Road, but it is not expected to be significant compared to the other sources. The ponded area corresponds to the portion of the F-1 APPENDIX F (cont'd) site that contains the shallowest ground water, at a depth of approximately ten feet below ground surface. Nearly all of the rainfall striking the mesa surface on the site soaks into its granular terrace cap, either to be re-released from plants through evapo-transpiration, or to infiltrate downward to the ground water table. Apparently only a small amount of rain water actually adds to the ground water supply, since the water table is low across much of the site. On the other hand, the pond water constitutes a continuous "point" source of new ground water, and is an important factor to consider in the overall ground water regime of the property after development is complete. Proposed Develoi)ment Conditions The plan for development of the site consists of construction of detached homes on individual lots both south and north of the pond area and the swale downstream from the pond. Up to 50 percent of the lot area will be landscaped, and irrigated during the dry months. The lots will be graded with a two percent slope toward the street, so that ponding of rain water or irrigation water on an individual lot will be very unlikely, although not impossible if the homeowner landscapes the property incorrectly. Our experience in newer subdivisions has been that the existence of a lot which ponds water regularly is rare. Therefore we have analyzed the future ground water conditions assuming that there are not a large number of such lots. Surface runoff from paved areas, and from roof gutters and downspouts of homes is expected to be conducted offsite via storm drains installed in the street alignments. The pond area and adjacent swale are proposed to be a part of the future project, and to continue to provide a point source for excess water to enter the ground water system. We assume that there will be no major change in the volume of water available from the offsite source for the pond. In addition to the changes in land use proposed for the site, several of the grading and earthwork activities themselves will have an impact on future ground water conditions. They include the following: - The slope along San Joaquin Hills Road will be buttressed along most of its length with a shear key cut behind the current slope face or at the base of the slope. As a part of that buttress, subdrains will be placed at the base of the excavation, and will drain off some of the water that would otherwise reach the bluff face. It will probably not cut off all seepage from the bluff face, because undertlow of ground water beneath the subdrain can continue to deliver some ground water to the bluff: - The slope along John Wayne Gulch will become a fill slope over natural ground, and will be subdrained at the base of the fill key. Although the current water table is deeper than the likely location of that subdrain, it will limit the height of the water table in the future along that side of the property. The gulch itself is proposed to remain open space with native planting and no irrigation. 1851578-06 APPENDIX F (cont'd) ' The soil that is excavated and recompacted at the ground surface will be placed as engineered fill with a lower permeability than the current layer of sandy topsoil and terrace deposits that it replaces. Some of the more weathered bedrock, which is generally more clay -rich than the ' terrace deposits, will be incorporated into that fill, creating a lower permeability "cap" on the graded lots. The thickness of the cap will be specified to provide a continuous barrier to the infiltration of surface water beneath the development (see Conclusions and Recommendations of this report). ' The present study incorporated this information into an analytical model of the steady-state ' ground water condition predicted for the site after development has occurred • Scope of Work and Approach In order to develop a better understanding of future ground -water conditions, our scope of work consisted of- - conducting field tests of permeability values in the Monterey formation bedrock to a maximum depth of 60 feet, using packer tests over 10- to 20-foot-vertical intervals in 6-inch- diameter borings; - conducting laboratory tests of permeability values in representative soil samples remolded to 90 percent compaction, in order to estimate the performance of a compacted fill soil cap; - conducting a laboratory test of permeability value in a representative soil sample remolded 1 to 85 percent compaction, in order to estimate the performance of a fill soil cap placed under a modified compaction criterion. - creating a simple analytical model of the site to predict the future pattern of ground water flow, and the key parameters that control that pattern; - analyzing the model to determine appropriate values for design purposes to limit the ' potential for future seepage; and - preparing this summary of our findings, conclusions, and recommendations. An index map, Figure F-1, provides the approximate locations of the packer tests and the approximate locations of the three cross -sections used for the seepage analysis. I F-3 I 1 1851578-06 APPENDIX F (cont'd) ' FINDINGS • Bedrock Permeability ' A realistic value of bedrock permeability, or hydraulic conductivity, is one of the major requirements of a successful model. Both an order -of -magnitude value of absolute conductivity, and the change of conductivity with depth, have a significant impact on the predicted changes of ground water flow after development of the property. Previous field•studies had identified the presence of several types of flow pathways, but not the magnitude of the conductivity values ' nor their distribution, especially with depth. We chose a pumping test with a single packer covering several different zones in borings between 10 and 60 feet below ground surface to conduct bedrock permeability tests. Six -inch - diameter borings were drilled with an air rotary rig to the base of the zone being tested, and the packer was typically set at a depth of 10 feet above the total depth of the hole. The test zone was then filled with water under varying pressures up to approximately 60 psi gauge (88 psi total), and the resulting flow rate was measured and converted into a hydraulic conductivity value. Tests were conducted both above and below the water table, in three holes along the ' top of the bluff facing Back Bay Drive. A total of twelve different depth intervals were tested The layouts of three packer tests are shown schematically in Figure F-2, F-3, and F-4. Subsurface information from drilling operations is also shown in those figures. Approximate field (not dry) densities of selected chunk materials are also recorded providing an indication of diatomaceous materials. ' The results are provided in Figures F-5, F-6, and F-7. Note that these figures show test paths of gauge pressure versus water intake. Calculated permeabilities are indicated adjacent to the data points. In any given test with multiple pressure levels, interpretation of results would be in accordance with Figure F-8. In -situ permeability values ranged from 1.77E-3 cm/sec (5.0 ft/day) to zero (practically impermeable). Although there was some variation from one interval to the next, there was no significant variation from one hole to the next, or from shallow to deep intervals. We concluded that using an average conductivity value of 5.0E-4 cm/sec (1.4 feet/day) throughout the model for bedrock conductivity in the horizonal direction was an ' appropriate simplification. The tests did not differentiate between horizontal and vertical conductivity values. We used the conservative assumption that vertical conductivity was equal to 0.1 times horizontal conductivity. • Compacted Soil Permeabili Since the compacted soil fill which will eventually cover the property does not exist yet, we prepared several samples in the laboratory, composed of the most common terrace and bedrock constituents from which the fill will be created during the grading process. Bag samples of terrace materials, crushed bedrock, and mixtures of the two were brought to 90 percent of ' maximum density at optimum moisture and tested for hydraulic conductivity in a triaxial testing machine. One sample was tested at 85 percent of maximum density to approximate a modified ' F-4 I MIUMM r I r I APPENDIX F (cont'd) compaction criteria. The results are reported in Table F-1. Laboratory permeability for the terrace deposit sample (LB-2, Bag 1) was 0.16 ft/day. On the other hand, permeability of bedrock materials and composite materials (diatomaceous and non -diatomaceous mixtures of bedrock and terrace materials) ranged from 0.02 ft/day to 0.005 ft/day. Even though 85 percent compaction resulted in a higher permeability, it appears that a modified compaction criteria may be usable, depending on further test results during field operations. Although there is some variation in the values depending on the materials used to create the fill, and especially the amount of fines in the fill soil, in our model we used as a typical value 3.0E-6 cm/sec (8.45-3 feet/day), approximately two orders of magnitude lower than the conductivity in the underlying bedrock. Thus there is good reason to expect a properly mixed and compacted fill to act as a cap over the more highly conductive bedrock. For the fill to act as a low -permeability cap, it is important that it remain intact after development is complete. The most likely sources of disruption of the cap are permeable backfill in deep utility excavations such as sanitary sewer and storm drain trenches, swimming pools, and deep-rooted vegetation. The grading and earthwork which will create this cap needs to be planned to produce a cap which remains intact and continues to perform the role of limiting infiltration of surface water. Analytical Model of Steady State Ground Water Conditions In order to create a simple yet relevant model for evaluating the ground water flow conditions to be anticipated at the site after development, Leighton retained the services of Aqui-Ver, Inc. to construct and run an analytical model based on the Dupuit equation for steady flow in an unconfined aquifer. We modeled the site as a series of two-dimensional flow models along cross sections which extended from the pond area through the bluffs to San Joaquin Hills Road, Back Bay Drive, and John Wayne Gulch, respectively. The current ground water conditions are defined by the presence of the pond area at the ground surface in the northeastern portion of the site, and conditions of a) active seepage along the San Joaquin Hills Road slope and b) no seepage along the Back Bay Drive and John Wayne Gulch slopes. The model assumes two sources of ground water: 1) the continued presence of a source at the ground surface in the pond area, plus a non -point source of additional infiltration across the remainder of the mesa. Rather than limiting the influx to the approximately 12 inches of rainfall, the model assumes that 84 inches of water are applied in addition to rainfall, distributed uniformly during the year, at the top of the soil cap. In the "conservative irrigation" case, the low permeability of the soil cap allows only a small fraction of that water to penetrate to the bedrock and contribute to the steady-state ground water condition. The remainder of the water that is applied to the ground surface leaves the site either as runoff to the storm drain system, or as evapo-transpiration from the landscape vegetation. In the "maximum irrigation" case, all the available irrigation is applied uniformly through time and allowed to seep into the bedrock as though there were no low -permeability soil cap across the site. d F-5 I 1851578-06 I APPENDIX F (cont'd) ' The results of the analytical model simulations are shown in Figures F-9, F-10, and F-11, on which the level of the water table is superimposed on the three schematic cross sections from the pond area to the bluff faces. The simulations show the effect of the "pond alone" ' (essentially the current conditions), the pondwith"conservative irrigation" (conditions if the soil cap is placed on the site and remains intact), and the pond plus "maximum irrigation" (assuming 84 inches of irrigation applied and no soil cap). The "conservative irrigation" curve lies on top of the "pond alone" curve, because the impact of the small amount of water that can infiltrate through, the cap is insignificant compared to the volume of water added to the system due to underflow from the pond. A particularly important result is demonstrated in the cross section in Figure F 10. The results show that the likelihood of seepage at the face of the bluffs is directly related to the depth of ground water at the base of the bluff next to the roadway. Depending on the assumptions about ground water conditions at that location, the worst -case increase in the water table, i.e.,the "maximum irrigation" scenario, produces seepage along the lower portion of the bluff. However, if the water table is five feet or more below the level of the road, then the likelihood that seepage will reach the bluff face even under those conditions is substantially reduced. The model indicates that a subdrain below road level could be an important remedial measure if the ' natural subdrainage near the base of the bluff is inadequate to keep the water table at approximately sea level. ' Finally, the cross sections all show the limited effect subdrains near the top of the bluff would have, if placed at any depth shallower than approximately 40 feet. At this location, the subdrain is likely to remain dry, even if the water table rose to the "maximum irrigation" level in the ' future. Only on Cross -Section 1-1' (Figure F-9) through the San Joaquin Hills Road slope is this subdrain likely to be deep enough to divert seepage water away from the bluff face. ' CONCLUSIONS ' The following conclusions are based on the field and laboratory data obtained in this and previous studies of the site. If additional information becomes available, our conclusions may need to be modified. ' • If there were no mitigative measures taken to limit the amount of infiltration and lateral flow of ground water beneath the site, then the additional water applied to the ground surface in the developed tract could be a significant contributor to future seepage from the bluffs. Irrigation of landscaping in southern California can add the equivalent of several times the average annual rainfall to the ground surface, which increases the elevation of the water table across most of the site by several feet ("maximum irrigation" case), in the absence of any controls. ' • The amount of increase in the water table level, due to development and the attendant increase of irrigation can be reduced to an insignificant level, if a low permeability cap of fill soil is used 1 to limit the rate of infiltration of water from the ground surface. The permeability of the soil cap which would be constructed from onsite soils during grading and earthwork is expected to be 7 u F-6 ' 1951578-06 ' APPENDIX F (cont'd) ' approximately two orders of magnitude lower than that of the bedrock, and in practice should be at least one order of magnitude lower. Since the gradient of the water table is driven primarily by the presence of the pond, the small volume of additional water passing through the soil cap has a negligible effect on the new steady-state water table. • The depth to ground water at the base of the slope along Back Bay Drive has an important impact on the possibility of future seepage from the slope. Therefore, a subdrain constructed at the base of the slope would have a beneficial effect. • Subdrains installed near the slope face at the top of slope will generally not be of much value, since they would not intercept ground water before it seeped to the slope face. Along San Joaquin Hills Road where the water table is shallow and seepage is already occurring, a deep subdrain will intercept the existing water table in the buttress excavation behind the slope, and will be effective in helping to control seepage. However, even on that slope, some seepage will probably continue due to underflow of ground water beneath the depth of the subdrain. ' An increase in the amount of ground water moving laterally onto the site from beneath Jamboree Road could raise the water table beneath the site and increase the likelihood of seepage at the bluff face. This appears to be unlikely because the Newport Center properties are nearly all developed. Remedial measures to control ground water along the Jamboree Road side of the property could be implemented in the future if irrigation or drainage conditions changed offsite. RECOMMENDATIONS • During the remedial grading and earthwork to prepare the site for development, a soil cap with vertical permeability of less than 1.0E-5 cm/sec (2.8E-2 ft/day) should be constructed to a depth ' sufficient to assure that it remains intact after all development and landscaping are complete. This includes but is not limited to: installation of sanitary sewers and storm drains, construction of swimming pools, excavations for basements or other subterranean structures, construction of the detention pond, and reasonable expectations for the depth of root systems for adult trees and shrubs. • We recommend that a subdrain with outlets directly to the bay be constructed along that portion of Back Bay Drive which is adjacent to the toe of the steep bluff of exposed bedrock. The subdrain is considered as an important mechanism for improving the natural flow of ground water away from the toe of the bluff to the bay. The subdrain should be protected from damage during routine road maintenance, e.g. by placing a paved cap over the top of it to prevent damage from a grader blade. ' The subdrain at the top of slope above San Joaquin Hills Road should be extended only to the end of the excavation for the shear key. F-7 ' 1851578-06 APPENDIX F (cont'd) ' The pipe which is the source of the ponded water near Jamboree Road should be maintained such that it feeds all water to the pond area Additional sources of surface water along Jamboree Road ' should be conducted away from the site via closed pipes, in order not to provide any new sources from offsite. Excess water in the pond area should be conducted away from the pond by means of lined drains or closed pipes, in order to reduce the possible sources of infiltration. ' Subdrains should be installed at the base of the stabilization fill key along John Wayne Gulch, consistent with good geotechnical practice. ' Roof gutters and downspouts should be installed on all buildings, and should transfer runoff via closed pipes to an approved storm drain system. All landscaping should be designed and implemented to maintain a 2 percent fall to approved area drains, which transfer runoff via closed pipes to the storm drains. Ponding of irrigation water or rainfall in landscaped areas should not be permitted The use of drought -tolerant plant mixes should be encouraged, especially for common areas under the control of the homeowners' association. ' Due to distinctly different characteristics of diatomaceous and non -diatomaceous materials on the site, grading operations should be carefully monitored To the extent possible, selective grading should be performed using terrace deposits around subdrains and in the bottom of keyways and less permeable materials for the cap. Thoroughly mixed blends of these materials can be used for the cap, provided their suitability is verified in the field by additional testing. The standard ' compaction criterion (90 percent of maximum per ASTM 1557) would apply to all but the predominantly diatomaceous materials. For predominantly diatomaceous materials, a modified compaction criterion would apply, subject to final approval by the geotechnical engineer based on field performance. J I F-8 TABLE F-1 Results of Laboratory Permeability Tests of Fill Sample/Description Compaction Permeability LB-2 Bag 1 90% 1.62E-1 ft/day LB-2 Bag 2 90% 2.28E-2 ft/day LB-4 Bag 1 90% 2.11E-3 ft/day 509b LB-2 Bag 2 50% LB-4 Bag 1 85% 1.04E-2 ft/day 50% LB-2 Bag 2 50% LB-4 Bag 1 90% 6.07E-3 ft/day 25% LB-2 Bag 1 75% LB4 Bag 1 90% 5.02E-3 ft/day Notes: LB-2, Bag 1 is composed of Quaternary terrace deposits (Qt) LB-2, Bag 2 and LB-4, Bag 1 are composed of Tertiary Monterey Formation (Tm) I i J ' APPENDIX F - TABLES AND FIGURES Table F-1 - Results of Laboratory Permeability Tests of Fill Figure F-1 - Index Map ' Figure F-2 - Packer Test Layout, Hole No. LS-1 Figure F-3 - Packer Test Layout, Hole No. LS-2 Figure F-4 - Packer Test Layout, Hole No. LS-3 Figure F-5 - Packer Test Results, Hole No. LS-1 Figure F-6 - Packer Test Results, Hole No. I.S-2 Figure F-7 - Packer Test Results, Hole No. LS-3 Figure F-8 - Interpretation of Multiple Pressure Packer Tests Figure F-9 - Steady State Ground -Water Table Along Section 1-1' ' Figure F-10 - Steady State Ground -Water Table Along Section 2-2' Figure F-11 - Steady State Ground -Water Table Along Section 3-3' 1 �1 II I �o I a Project No. 1851578-04 Scale tdOT TO SCALETO SCALE Eng./Geol. OP/RM/BRC fffl Drafted by LAF Date 8/9/95 FIGURE NO. F-1 J 1 I 1 1 I 1 7 I 11 - - D, /aPPyROX, rIEL D� D6NS/riEs: � '-'� I � _'� ' I CuTrrn�Cl, 17ES�RIIPT%o/JS; I I I �/1 !q li I II II I I! �.IItl1 '/O'_! I I I I Y_ .72�y I I ilL/0�L I ! ! I t iYl I �PhY� / y.l[tLvl�� 1 , ! 7 I El I I I •_ I q�'j 1 II i ��L % „'� ']• Bro�wTn J-/�� �/w:�ll�h I Rrl? I .ZF,cf cl I slnn�)� ,r}�.�,<S _' I IE tea, r n I e. I 1 j I i $roc.3v1 i�W I�I,wfe 5!i!J—ois'f si ' s ft s-j ± c�sg0 IIII II .i� Tem! &-'o I I I ! I I I Ira ! I I ! I ! I IT'// �veo J PACKER TEST I-A`/ovT Project No. 85iS7d ob Project Name Newao,4& ao,4 Hoye # LS -t Engineer OPIRarc M%U�J Date `1/13/R6 Figure No: Fz Tes{ed 1800 691 ILI I 1 I 1 C' 7 11 1 1 LJ 1 ' II IIII111 ilk II I!+ fCN7TT��'�ESC�PT! , `I Zo _ 8rnwn - 61�cE _san a/ �� : Du:7� raven ✓ I I L; I Tq,n O iA'tl e I wi 'Doy (I !. 1 I 11 --�— _, -E— f "�I� h-nick I!� I , I JbaL- , Tp-I P�bk tib�,. Project No. / 'PAGKEt? TcST LAYOUT gwpocko- Project NameNe�orlei Nora-h I lU�l�u JI Engineer OP/RM/'Bfr- yoLE N LS -2 Date ±LMLI4 Figure No. F-3 Te-4a 1800 691 I 1 I I 1 I p 1 17 , ! ' `''' � T APPR�x, r'/LLD ,17E 51T1tS: ! '' ---�—• --'—I c aiTri�4—DEsc�t�PTioas%----T—. f�rnwy,-.J!Ylz '5-f 4o i7d? pC�_ 1 i� IS j, li , — 3 - 2• - i , to • � I sT- — I ! I fI— I G I G O�11I n Cu�oine Sri+ �SYWL�_• e I,,._ZQ_,_ i .. .._ . _.! . _� ' _, _I I I ! 'FacKER Tts7? LAYOUT Project No. /85/5'7B-06 Project Name AyporaP Noryll .NpI-E # LS-3 Engineer !�P/Rr44 w Date4ho-alOYS Figure No. t-4 jeo-4 1800 691 I 1 I I I H I f_ I I u H I --�-1 it tl!€I 'I lip€!1111'I'i ! '• � i I� i l! i i I I! i I_ . i� 11i11 I It €€i11!!I!11€li!I —II I I IIII i I i I I _i _Q T� I_' ( I € !- ! I ! I € I/ I Iv I € LI l ! I l I I I II I'T IJ ) I I € I L I I I I � I ! € I I1— I I ;Pke-5s C4 I CP si� , I I! I ! ?AcKF.R TrST R£SLIL75 Project No. /ffTIT 78 •o Project Name New�oir Na�fh III Ilul—Ii L 5-/ Engineer bP/Rm/B�c Date 9/i3 MC Figure No. F•5 %shed 18013 691 I 1 1 1 1 1 I j 1 1 I 1 1 0 1 1 1 1 n■n■ �� niu■ N _ C■■■ ■■■■■■■■ ■ ■ ■■■■■■■■ Nunn■/J /1■r�m■ N■n■■■■ri21■■■■■■■■■N ■■■■N■%I■■I� �■■■■■■N■ ■N■■ �II■■I W■■■ NNI�/ ■ ■■n■■ NoWIN�I►\■/■N■■■■ �■■■■ ■IIUW■■■ NONE ■ ■ N N■r�MAIN N ■i��n© i SO ■ON____ �i%■n■■n i� ■ - a e � N ■ ■ " i■ii ■ ■n iii - � A Project No.— I S516 Project Name kC-Lls ,. - :.. 691 I I I 1 I I I n L 1 ,ilf IIII �� �iil flit! !Ilf� '' - 1I 0frd' I I -�r"'" ' • .SL�d i— 1 '• � t lal!—�! -I I jZ, �Te� I• I! 1 i se I I ! ! I ! I FT lI_ I I '! ?o I i J I 3b I I I i 4b 5v I LW �jl + I + I _ Cz 41a RE y i PS i it I III. III I pAGKER TEST 'hESULTS Project No. 185iS78 •ob Project Name1.lew�/•le. Nor+l TIM ,f 01—C 4 L5 _ 3 Engineer OP /Rm /s2c Date Jio•4/u/45Figure No. F-7 1eded 1800 691 M M m m m m m m l m m M M Practically impermeable - no intake Very permeable -takes capacity of pump- - no back pressure\ O J\ • AMENNS POPErMINNE Packer broke loose - took capacity Plugged tight with no measurable intake at maximum pressure EFFECTIVE DIFFERENTIAL PRESSURE, Ib/inz Fiounu 10-9.—Plots -of simulated, multiple pressure, permeability tests. 103-13- 1478. - Manual (A Water Resources Probable conditions represented by the circled numbers on figure .10-9 are- Q Probably `very narrow, clean fractures. Flow is laminar and permeability is low with discharge directly proportional to head. 0 Firm, practically impermeable material; fractures are tight. Little or no intake regardless of pressure. ® Highly permeable, relatively large open fractures indicated by high rates of water intake and no back pressure. Pressure shown on gage due entirely to pipe resistance. Qi Permeability high with fractures that are relatively open and permeable, but contain filling material which tends to expand on wetting or dislodges and tends to collect in traps that'retard flow. Flow is turbulent. © Permeability high, with fracture filling material which washes out, increasing permeability with time. Fractures prob- ably are relatively large. Flow is turbulent. QQ Similar to Q but fractures are tighter and flow is laminar. QQ "Packer failed or fractures are large, flow is turbulent. Frac- tures have been washed clean; highly permeable. Test takes capacity of pump with little or no back pressure. . ...... ...__.. Qs Fractures are fairly wide and open but filled with clay gouge material which tends to pack and seal when subject to water under pressure. Takes full pressure with no water intake near end of test. 0 Open fractures with filling which tend to first block and then break under increased pressure. Probably permeable. Flow is turbulent. 110.00 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 AQUI VER,INC QuartitativeEnvironmentalHydrogeology Figure F-9. DUPUIT ESTIMATE OF HEAD NEWPORTER NORTH PROJECT Section #1, SE -NW 0 O O 0.0 , OIM Note: Estimated seepage o, ° ° a where heads are above the 10.0 o profile line. g. 0 �'�•Q o '° a o o .... Pond Only ° qo o Maximum Irrigation o Conservative Irrigation Profile o,° ° c, o a 0 0 .o •g 100 200 300 400 500 600 Distance Between Boundaries (ft) 700 11839 Sorrento Valley Rd., Sufte D, San Dkgo, CA, 92121 Ph. 619 794.2307 FAX 619 794.2310 110.00 - 100.00 - 90.00 80.00 70.00 q� 60.00 C 50.00 40.00 30.00 20.00 10.00 AQUI-VSR, INC. Quantitative Environmentat HydrogeoloV Figure F-10. DUPUIT ESTIMATE OF BEAD NEWPORTER NORTH PROJECT Section 02, E-W �O8 ^OQOOro�O00 o•0 0 p OO o• ° o o 'o °o q O 0 01 Ct 000.°o o ------Pond Only Q o Maximum Irrigation o Conservative Irrigation ° no o• o �0 Profile 0 00 Note: Estimated seepage where heads are above the .4 profile line. 0 100 200 300 400 500 600 700 Distance Between Boundaries (ft) 800 900 1000 11839 Sorrento Valley Rd., Suite D, San Diego, CA, 92121 Ph. 619794.2307 FAX 619794-2310 i M t ii i i i i i AQUI--VER, ING Quantltative Envrronmentat Hydrogeology Figure F-11. DUPUIT ESTIMATE OF HEAD NEWPORTER NORTH PROJECT Section #3, E-W Profile 110.00 o °p op O o °000 0.00 O °OOo p °O oOOo p-o ° 0.00 ° Op ° a°a °o 0.00 p'° °°o op 0.00 a ° O �% O ------Pond Alone °o 0.00 b� o Conservative Irrigation p o 10.00 ° O o Maximum Irrigation *.00 Profile n (t II 10.00 Note: Estimated seepage b ° where heads are above the O !0.00 profile line. 10.00 0 0.00 0 200 400 600 800 1000 1200 1400 1600 1800 Distance Between Boundaries (ft) 11839 Sorrento Valley Rd., Suite D. San Diego, CA, 92121 Ph. 619 794-2307 FAX 619 7942310 I H E p 1 E 1 1 1 lim APPENDIX G LEIGMUN AND ASSOCIATES, INC. GENERAL EARTHWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING Table of Contents Section Pepe 1.0 GENERAL G-1 1.1 Intent G-1 1.2 The Geotechnical Consultant of Record G-1 1.3 The Earthwork Contractor G-1 2.0 PREPARATION OF AREAS TO BE FILLED G-2 2.1 Clearing and Grubbing G-2 2.2 Processing G-2 23 Overexcavation G-3 2.4 Benching 0-3 2.5 Evaluation/Acceptance of Fill Areas 0-3 3.0 FILL MATERIAL G-3 3.1 General G-3 3.2 Oversize G-3 3.3 Import G-3 4.0 FILL PLACEMENT AND COMPACTION 04 4.1 Fill Layers G4 4.2 Fill Moisture Conditioning 04 4.3 Compaction of Fill G-4 4.4 Compaction of Fill Slopes G4 4.5 Compaction Testing G-4 4.6 Frequency of Compaction Testing G4 4.7 Compaction Test Locations G4 5.0 SUBDRAIN INSTALLATION 0-5 6.0 EXCAVATION G-5 7.0 TRENCH BACKFILI S G-5 7.1 Safety G-5 7.2 Bedding & Backfill 0-5 7.3 Lift Thickness G-5 7.4 Observation and Testing G-6 3M4% LEIGHTON AND ASSOCIATES, INC. GENERAL EARTHWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING Table of Contents (Coned) Standard Details A - Keying and Benching Rear of Text B - Oversize Rock Disposal Rear of Text C - Canyon Subdrains Rear of Text D - Buttress or Replacement Fill Subdrains Rear of Text E - Transition Lot Fills and Side Hill Fills Rear of Text 3M4% t LEIGHTON AND ASSOCIATES, INC. General Earthwork and Grading Specifications 1.0 General 1.1 Intent: These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s). 1.2 The Geotechnical Consultant of Record: Prior to commencement of work, the owner shall employ the Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultants shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading. Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing. During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required. Subsurface areas to be geotechnically observed, mapped, elevations recorded, and/or tested include natural ground after it has been cleared for receiving fill but before fill is placed, bottoms of all "remedial removal" areas, all key bottoms, and benches made on sloping ground to receive fill. The Geotechnical Consultant shall observe the moisture -conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to determine the attained level of compaction. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis. 1.3 The Earthwork Contractor: The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture -conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the plans and specifications. G-1 3M4i I,EIGHTON AND ASSOCIATES, INC. General Earthwork and Grading Specifications t 1 LJ I 1 The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "spreads" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate observations and tests can be planned and accomplished The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations. The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). K in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified 2.0 PreRaration of Areas to be Filled 2.1 Clearing and Grubbing: Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant. The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). No fill lift shall contain more than 5 percent of organic matter. Nesting of the organic materials shall not be allowed. If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area. As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed. 2.2 Processing: Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be overexcavated as specified in the following section. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction. G-2 ' LEIGHTON AND ASSOCIATES, INC. General Earthwork and Grading Specifications 1 I I I 23 Overexcavation: In addition to removals and overexcavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic -rich, highly fractured or otherwise unsuitable ground shall be overexcavated to competent ground as evaluated by the Geotechnical Consultant during grading. 2.4 Benching: Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise overexcavated to provide a flat subgrade for the fill. 2.5 Evaluatio /n Acceptance of Fill Areas: All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches. 3.0 Fill Material 3.1 General: Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material. 3.2 Oversize; Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction. 3.3 Import: If importing of fill material is required for grading, proposed import material shall meet the requirements of Section 3.1. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed. ItNI 3OX495 ' LEIGHTON AND ASSOCIATES, INC. 1851578-06 General Earthwork and Grading Specifications ' 4.0 Fill Placement and Compaction ' 4.1 Fill Layers: Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near -horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading ' procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout. 4.2 Fill Moisture Conditioning: Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over ' optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557-91). 4.3 Compaction of Fill: After each layer has been moisture -conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of ' maximum dry density (ASTM Test Method D1557-91). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity. 4.4 Compaction of Fill Slopes: In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557-91. 4.5 Compaction Testing: Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test ' locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches). 4.6 Frgguengy of Compaction Testing: Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. ' In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be ' accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met. 4.7 Compaction Test Locations: The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade G-4 3030.495 LEIGHTON AND ASSOCIATES, INC. 1851578-06 General Earthwork and Grading Specifications ' stakes are established so that the Geotechnical Consultant can determine the test ' locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided ' 5.0 Subdrain Installation Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending ' on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys. 6.0 Excavation Excavations, as well as over -excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill -over -cut slopes are to be graded, the cut portion of the slope shall be made, ' evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant. 7.0 Trench Backfills 7.1 Safe . The Contractor shall follow all OHSA and'Cal/OSHA requirements for safety of trench excavations. 7.2 Bedding and Backfill: All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 ' (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from i foot above the top of the conduit to the surface. The Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill. ' 7.3 Lift Thickness: Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can ' demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method. G-5 3=495 1 LEIGHTON AND ASSOCIATES, INC. 1851578-06 General Earthwork and Grading Specifications 7.4 Observation and Testine: The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant. G-6 3M40 PROJECTED PLANE _— -- 1 TO 1 MAXIMUM FROM TOE —___ _-? --- FILL SLOPE OF SLOPE TO APPROVED GROUND ---?_ -- 4 REMOVE — �= — UNSUITABLE NATURAL—_�=----y� 4]'—TYPICAL MATERIAL GROUND \ 2' MIN. _1 j'so mm. KEY LOWEST BENCH DEPTH (KEY) NATURAL 19' MIN. LOWEST BENC 2' MIN. KEY DEPTH CUT FACE SHALL BE CONSTRUCTED PRIOR TO FILL PLACEMENT TO ASSURE ADEQUATE GEOLOGIC CONDITIONS OVERBUILD AND TRIM BACK, DESIGN SLOPE PROJECTED PLANE 1 TO 1 MAXIMUM FROM TOE OF SLOPE TO APPROVED GROUND\ 2' MIN. 15' MIN KEY LOWEST BENCH DEPTH (KEY) KEYING AND BENCHING HEIGHT a' TYPICAL PH BENCH HEIGHT REMOVE UNSUITABLE MATERIAL CUT FACE TO BE CONSTRUCTED PRIOR TO FILL PLACEMENT NATURAL / GROUND / UNSUITABLE MATERIAL FILL -OVER -CUT SLOPE CUT -OVER -FILL SLOPE For Subdrains See Standard Detail C 4' TYPICAL BENCH HEIGHT BENCHING SHALL BE DONE WHEN SLOPES ANGLE IS EQUAL TO OR GREATER THAN 5:1 MINIMUM BENCH HEIGHT SHALL BE 4 FEET MINIMUM FILL WIDTH SHALL BE 9 FEET GENERAL EARTHWORK AND GRADING SPECIFICATIONS U STANDARD DETAILS A u 4/95 FINISH GRADE SLOPE FACE 01 ► __ _____ _ _ ____ ________-__ =_ - ___ _-- ='— ___ _ _ _==- _____ __= __ __- ___- : R --�= --___- _______�____--- =_ _ '='OVERSIZE ____- �� ==WINDROW —__ ____ ___ • Oversize rock is larger than 8 Inches In largest dimension. • Excavate a trench In the compacted fill deep enough to bury all the rock. • Backfiil with granular soil jetted or flooded In place to fill all the voids. • Do not bury rock within 10 feet of finish grade. • Windrow of buried rock shall be parallel to the finished slope fill. JETTED OR FLOODED GRANULAR MATERIAL ELEVATION A -A' PROFILE ALONG WINDROW JETTED OR FLOODED GRANULAR MATERIAL OVERSIZE GENERAL EARTHWORK AND GRADING ROCK DISPOSAL SPECIFICATIONS l u iuu STANDARD DETAILS B u 4NS NATURAL GROUND -- ------ -------------------- - - - - --- --------------------- COMPACTED FILL ----- - BENCHING REMOVE UNSUITABLE MATERIAL 12" MIN. OVERLAP FROM THE TOP HOG RING TIED EVERY 6 FEET CALTRANS CLASS 11 PERMEABLE OR #2 ROCK (9FT.3/FT.) WRAPPED IN FILTER FABRIC FILTER FABRIC (MIRAFI 140 OR APPROVED COLLECTOR PIPE SHALL EQUIVALENT) BE MINIMUM 6' DIAMETER SCHEDULE 40 PVC PERFORATED CANYON SUBDRAIN OUTLET DETAIL PIPE. SEE STANDARD DETAIL D PERFORATED PIPE FOR PIPE SPECIFICATION 6'(p MIN. DESIGN FINISHED GRADE 10'MiN BACKFILL FILTER FABRIC (MIRAFI 140 OR 2% APPROVED M 3 EQUIVALENT) 20'MIN. .NON -PERFORATED - 5' MIN. #2 ROCK WRAPPED IN FILTER FABRIC OR CALTRANS CLASS 11 PERMEABLE. GENERAL EARTHWORK AND GRADING CANYON SUBDRAINS SPECIFICATIONS STANDARD DETAILS C t I I I 1 OUTLET PIPES 4.4, NON -PERFORATED PIPE, 100' MAX. O.C. HORIZONTALLY, 30' MAX. O.C. VERTICALLY 15' MIN. -- BACKCUT 1:1 OR FLATTER f:ff== -BENCHING —=-------- t / \ KEY ---- DEPTH \ .t l =_ =__2°%MIN.-► � �_ _ / t 2_ M 15 MIN. ��KEY 12" "MIN. FROM THE TOP WIDTH POSITIVE SEAL HOG RING TIED EVERY 6 FEET SHOULD BE PROVIDED AT ` FILTER FABRIC THE JOINT - . ° (MIRAF1140 OR o . APPROVED OUTLET PIPE �8% MIN.-. EOU IVALENT) o (NON -PERFORATED) \ T-CONNECTION FOR CALTRANS CLASS 11 COLLECTOR PIPE TO OUTLET PIPE PERMEABLE OR #2 ROCK (31FT.3/FT.) WRAPPED IN FILTER FABRIC SUBDRAIN INSTALLATION - Subdrain collector pipe shall be installed with perforations down or, unless otherwise designated by the geotechnical consultant. Outlet pipes shall be non -perforated pipe. The subdrain pipe shall have at least 8 perforations uniformly spaced per foot. Perforation shall be 1/+ to Ile H drilled holes are used. All subdrain pipes shall have a gradient at least 2% towards the outlet. • SUBDRAIN PIPE - Subdrain pipe shall be ASTM D2751, SDR 23.5 or ASTM D1527, Schedule 40, or ASTM D3034, SDR 23:5, Schedule 40 Polyvinyl Chloride Plastic (PVC) pipe/ • All outlet pipe shall be placed in a trench no wider than twice the subdrain pipe. Pipe shall be in soil of SE>30 Jetted or flooded in place except for the outside 5 feet which shall be native soil backliill. BUTTRESS OR GENERAL EARTHWORK AND GRADING � REPLACEMENT FILL SPECIFICATIONS I IULJ SUBDRAINS STANDARD DETAILS D �fw 4/95 II 'i NATURAL SIDE HILL FILL GROUND FOR CUT PAD / FINISHED CUT PAD A � j -� _ -- c • t PAD OVEREXCAVATION AND (Mlltj-'£ \ RECOMPACTION SHALL BE PERFORMED IF SPECIFIED BY THE GEOTECHNICAL ---- -- BENCHING CONSULTANT TRANSITION LOT FILLS AND GENERAL EARTHWORK AND GRADING SIDE HILL FILLS SPECIFICATIONS ��uunu�j STANDARD DETAILS E 4/95 - SEE STANDARD DETAIL FOR SUBDRAIN DETAIL WHEN REQUIRED BY GEOTECHNICAL CONSULTANT 2' MIN. 9 FEET MIN. KEY UNWEATHERED BEDROCK OR DEPTH ....-�- MATERIAL APPROVED BY THE GEOTECHNICAL CONSULTANT CUT AND CUT -FILL LOT REMOVE UNSUITABLE GROUND MIN. 1 PACTED ------------ OVEREXCAVATE .- • UNWEATHERED BEDROCK .- MATERIAL -. THE GEOTECHNICAL CONSULTANT OVEREXCAVATE AND RECOMPACT (REPLACEMENT FI OVERBURDEN OR UNSUITABLE MATERIAL t � I -t �r- 1 - - �-j-a• , - Tr , - - 1 _ � T*- i1 - -; -?-L�Y- t' j l _ - +_-'-i T"t' i t l _ 1-1- . r+ I FT ';--I- 1 i +-*� -� �_ } -• -!- I. + - � �Lt- -t 7 { r- ,-'�- -'- ''T-, - - - - i -' ..1__ - - -T -T•- }T -. r-r. V 1 +- 1.1 I - I"�...-'�."- ? i ' - - -t. T- �: - ,7yI - • 1 ' YT -._ -`�-'�" ' i (- I �_? I .,, .1� .1.1 . 1 I 1 1 ' { I 1_�,.- 1 - ' `i --f-` ' - . • -TY:y. - r 1' - r I 7 t^ ! , •-,- 1-- T-;- --t- , =L- - i' µi t i �.1T'--j .�, {-T- t-T-'._ 7r"T• 4 L ,Y ._T_, .}. I 1-� ._--+_ 't"T' _ _ - _ - _''-_r_, _ -�._.._r_. 1 , ,.�-•_ . _yam ! ; I - ' +� .L '-' i +- -YF-'- r-i^+-i _'r _'__ .. ' -T � ' .. --t-.7._,_ _l_' T r -+--i- 1 .. ;� --"-'- , t L -i-'_•-_1-. -J_T. '-F-._� ' �_1�-_ ��.L r _ t-'_-r�- ' i !_'-+-_ri-T ,-1-Y- 1 ' 1- , .�'ei _ _ _ �L=:-..;-: -r «_'_ i '-*_ T_ _f-t. -1_}...: - -•--+-'- I r-'r -i-'i--+ -i... A-j--•--•� 'yr--0I,'{- -t Y 1 I 1 '" r-'1-1-+- -TT �Y1--I..�._ P _ I - I _i- +^ i '� •4. ' - ' !'1 -,'--t-� t -1 y _+.' I , I ^ I _ _r T 1 1 - ; 1 -FTC- , _ . , i_{. h j• �- -r 1 1 -•-1-_ } -1 T- _ + + t7 f ' - --'r'-4 __i._ "-M- -?-i 1.- �-- 1 h- - _'_�__i'. --T { 1'; 'F.'1_-L ; -.-+-t- 7 i ---F -r- - j --;-.-i_ +_.1. ..t�_11_ �--.t. „ ? _�-_r'. _' .'1"• -1" _a_ _ 1 L r I�'? �_ ^- r { r - -}'- '1- __ '-1 - r { I _1._ , 1_ i i'I 1 - r: , - - - rr-I-, ' ._r_r_r_ -4. -''__-�__, --E_ _i r__�_• _ .t .i_ ,. 1 -�, 1-!.+ I -t ,- - -- -t" -1-?- I �- `I-"(-+- --♦-I- -' ,--L-i'- f-j- _ -r- -1 --i• _ _ y -�T'}- +. -t-' _ T t-. -+=:-r- .T: --.I-_.. _ t j .:� I ..;,-.i__ - , +- .�=++---j _I`.i-'- -: .T .� , 'i. 1 i jam" I..--1---.« - ;T -'- j T-i----'..L .1 ! , T' .a-. i' -+-�' 1- 1. T_, _L I 1 7'-_:T.._.' _- .• .I _.-- -_ �'�-'�- t _'A- -1--r' ,�_' '' -�' i..!-'I ." I `f.. i_ r -+.• 7 ' �1'T -r-�. +y -,�{_'j- HT -; l� , 1 I I I ' .�.I , Y-�.Y- +--r-_ �.7 _ �--+-r - I ;,--�-' i 1- ! j--'•-.r t j_'f_ �-_r , !-J-..._ ty-i _h� I-t__',_- ��.?, y _'�" ��-- r-4-� -Y-t� _+-�--L 7 _J._+.,'I' _;' -�-*'i-' _i-r-I- -+-, I !- ! T -- 7 T -r I 1 r i -i L_; -_ I I-+-t -- '-T ' ! r r - - 1 1 �1 �--•- I-Y--` T'" L : .1_f-»-_' --" - -.-_ice_ -'i'--r-i-- }-+-r- -i' - t't - rl _ -1-t=-�- _ '-t '- •-.,,_ _ .--t--T- i---'- y.._�- j } -- - -- ++ ^- _ `r -t- -5-�-- -Y-J-r ._ , r-7' -±--F-I- --j-' t-i--T-' ' >._T _ I r _ -e'h' .l _ . +T _.-j _ .1. _{_ _ 'I �--•-" __ __ -i .-;--:-.. -}.� _ f. _$_l. ' 'Y'-�-' I 1 - - - -j-{. r_ _ i-::- - I -a a-, - 1 - - .�,- '_' -�-+- - - _ _ . Ti--�-. - - I ,' L 1 - yl +-1 r , Ls +- T- 1 } I r-+-`- +,-+ t +-t-� 1T 1_t..r + I .r1 T- + j I ' - ' t -T I ' II 'I -"-YT r . I : r I r_ -. „_•-_ .•Tt- _�.{...._ ,_-a- - -T-r r , - i-�-I �_ rr -+-t- I , , -T -'--r-` --_ _j- -r-j�-?-- --rr ___ ' ,- 1 --`�Y: T- .., r -i- I -�- iJ-.,____,��..i:.�__ ' -f. -:-�-_ _ - - ' -+_-_ -r-+-`--'--•- --.T_ T _ - -i- �>_ _ _,-_1_ { I , 1 ' Yy - ''-F ..t--1 -_ -_ '- - �-i-: t .•-. t �---!- .t , __t_�'_-r_ .I t - 1 r7'. _ 1 IY_ - 4 _'_"'_ - --;'- _ yl � -J'_y _"1 .- _-h.-T_.� _,._:__T' _ I. j '+_ f ' •. r._�-_'_ '_ I ' T- : Y._•,-T- ' � _ t _ _r= i_y '� - .- _ __ � __ T-'t' +1'-T�' __ _ ;-?--j' ---T-__ -h-•-_� _ ..! _ , '1- 1 _ 'r "I- -i--� _ , Y.--F.. - _' --T r-r- i-;-- -r-_.-r- _ t_ •_ __ { _ _ : r � � -� i' -'� -r' -^--{�_ ' ! T-�- �-}-t- -1 I "--""rr 1- I -4--i"r I _I - r _r V...._ _�-� 1 i-, +_t_. __•_.L _1_ , .T __i_a-.,_ f__ _ .T . _T.1_• _ TT_t. T _ _ r _ . _., �Lir - T+ I - '-i -1- t -t-1-,L -r_y_ r I -+-:-.-' ^-1-r- -#--'--1- 1 f• I'--1 - -+- - - -r�-- -:.1- 'T- +- r- r - rt ' Ft-r - -! - _ ! T"-1! - - -' -- -! - 1 , 1 1 � I� T-'r-+ _. T -"'- _� , , - � I - - �rT_ TT7 __ - �� I _ _ _ _j _rT. -+-+--t- ' -1_ `-� _1-a� --t� _ _�: -T T ' 1 1 -�--+- 1 - :-1'-'' --1_ �` . {:-F 1 i r -�_- k �.�._L _ L� ! .,"-, - -.{_..}- } I --`-1-1- I ,� , , -r , , •-T, _•-✓-. -t_.. I-i--1_ .T _1T_ I 1 _ -i?• 1 , �_*. _!_._ T1_.r 1 r t '_ «. .✓-y-- _ -Y- - _ �t -r�ti: 1-T ,-t- I , 1 T- -r - -'- !-V - --- - - _1 _ I , -r- --'-'---+--1 _T -•-, �t-+- I- I - -;-�-T- -y-+- -i , i-j' �--' 'i- -Y _•_ i_.-_ I- ' - { -, -rrt : -1 - -1- �. I_ -Y_ ! ! - -tTY '-{ _,_ i t y- y i-_ 11 1 �_ �.-Y-__ - _: _ j -r-t--� .,- _ i1 -� �-. T ... _+ y 1. -r.--_( - ;. _!-�_; _ ^.�-'- _-1_ J- i--_ I'- ' -'-f_ ''-T-*-` _L. --r'{' k- ._r'-!-� -T -,_-- -i` - - - , -r -T' - - -�'-�--r-�- "-t'T' -F--1' i- 1 - ---�--I- - - --- 1 1 +•-i , -,- .1 -- irr r , - 1 t - -1-- T• I I r -a. _ r + _ „-�-. - _ _ -' t + 1_.r_ i ._+_ __ r T� ^} r a � F a .j� _ _' 1 1 1 r + 1-}-I r - I J-+ � i -t--1 1 11 r L� F. T r-t- , r = jlj-.',�' + F + , -! I _ r _ r i - t - - t'; -+_ -_ , - -- -_ _ _ � - i j _ _ ,..�_ _ _ I_. i _+_ _!-_ �'�" + _+.. T.. 1.:.5__ - r,�-r ' .II Y t- r ' I - 1 ' _r _ r _ ,_. r . • _- 1 T.}_ •_ r I - T_t '' �. J '�__I-_- - 1 I 1- -i_ _ i- t_i"_ L T-' _- ri' __!. ' I_,•"'- .'.Y-' . t _... -a-1 -i- -T--1-_J- .. .- I p r t-'(� - { i _L__J 1-i _ __ �_ _ _ -!-"�' .,- _ -fir 'I _ ' _ __?' 1 T _ __ i I _.y.,_ -+'+- t - 1 - I • -t- -I- I r' ' ._+ T` ,.1' • r y -"''-_-- t -•--' , r T l r`T •r -r TT •-.--.. + _ rY I I . -t I .,._ ._T •. ,..i .1. J-4-+ I -,--1 J--t-'• _ ^I-� __f ' j',1,11�'1, t :_ +.a ♦. .i1.1 _ , r `'+ r r_r_; _ - ___ _ +_•_ _ _ Lr - ' - _-,__,-_�_1 _+ 1. -i -•-Y'- { _ I _T"t._i'_ ___+ ._'I _.._ - it - - � _+.. i. -"t--i-'T- ' -'fit-- .1 ' - _1 i-.1...- t'+" { 1 y -+--�'- I -1- _�1_ +t 1 -r-+ -1' 1 I __ - r Ti- J r _ _ -r -i.. 1 - i- 7 '!"- -1- { I ' -'•-`r-' 1. - - - _ t - T _I _ -1-- _ _ r YT I t'T _ , r r r -�'_ - r _,_;- •-_t_ .-..-1--r- J -- ----r- , + - '1-- -,--` -'-:_� -- . -- --,. _,_J _,. t..- l 1. "1- - -+- T .i --✓--- - _+ , r "- --� - - - f' -• i -- -- _+ r'�' - _ � __ -' �( :'I '- � '�_i._r _ _ -i J - r I { ' r-+_ , T ' 1 � I 'TT" r , f 1-"--t-� r 1- I-I-T. •_ !f- +` , , r-+ r +j-+-t� + -1-• r 1 - + T1 --' r r -t-t r- _ 1__! _ r-a t _• .- _ � �-1 , -' I r-r- - i +-r-k-+--ram. ♦ _r. 1 I _+. _}_ t --�--------'I-- r ..+. i -r --1-' _-_i_ - r'-- -��-�- r-7 .' .i.. - - -- �� -- '�-, -J--" -a-' --+-Ti-r � - =- •�- t -- - ,-T - - , +--r'.- �; ' -1-r---1-1. _?- 1 •'L-- _+. � -' � - -i .i- �. - _ -t-1 ' i�-r- -'�_ I _ _ -� _ _'_r.• � i-•_ 1 ..fit- _ _ _ .� r I .-t-"�-1_- i �'-rr I -Tr�_ I �t I r ,• -- -,--:. • 1 r'_ _'1 _.+� r _�_ 1 -'1 -� r -'- - i I 1 "?.�� 7- _.+_ ','Y--"� I _...��._ J _ " !_ _ -s_.?- 1 - t _ _-'L ,!' 'T".r- f _ - "- .Y �_ I -. -_ - _-.r 1-'!- T-� -V-- T-{ f -- -' - -"Y_ _ r-±--t -=-r --Jr-y- -J-- -- _r t- -r ` i T I I 1 t r I {-'1'-- :��' -L" -! _-i--�-: ' 1 �r" _-1 '_ _ _ rr Y I__~. _ -r r + •_-1 ' r '_+_ _.-v_ �-"; a -I- -._r_ r : _-t it �� '�11+ `T .t..i..l _, -+-� _ I"_l�__ _.�. t_ _ J- _ �' - __ _.�.y__^_ -1 __ _ :._}-_ I _ _ ___ ..� T� _ _ _ - 1 i j _ _ - 4 ! _ _ _ T T-.T- rI t'�'�- --rT "T-' _'Y" T, T !_'.- + _ V_ -1-+-' __T T •-i-�_ {-i-T. _}--'-.:_- +--- Y_i- _r _r 1 -�-_i.-�_1-"'- y ♦ _ 'L- t ' _ � -r � I r r ._' , -' rr� • i.. I. _ . + _ _t- :.+ . -t- rZT -Y- « r , T. �- 1_ __L_F. �. .-F- i- _+_.-, - I r t + ._ I- �..� _ L � - � _---- - t -�-+ ' -i - -•--' -+- -' -� � f - - - - - - .i- � f - • . t- _ _J- -1 _.I � _T •- _- _ _1 _ 1 _ - T.-L -I .. - _ I ' 1- ' � _ .� It •1 - 1 1 . -,-Y- � _ _ _ 1 I I -_--_ -'-- t -I --_ , 1 , -~ �.i-• -_ + _ .y. .y_ ' _i-L r ! -'- t--, _ -- 1 ! r- -J ' �- 1 --' - r t T. .t--� { - - - I 1 -- --'�-_t- .�-�- y -{- - T - 1"- r - •1 I . -�'-t'_ -, 1 -t 1 . r -t-+ ; V t L +�_ .. -r , L .J - - _•_y-' r- i r. +-1_ _.1 • .• +.1_. j r _J-_l._+ a_ J_ r .J-.+.r ._ 1_ V ., r __1-._ _,.._ .1 .4- _t _J. r� .r..'_j. {r i }-y a . r , 1 ti_ I I � _ - ice. t _ ' _ ':-. "� _ ^-i f l' J. "t_T'1 .r'-' -_ _._ ___r --T-t` -�•�-r-_ 1 _J-' _ _ r_ I r -1-+' .+_t-r .L t.. _}-. „ I 1 +Y-i_ --1"_1_ I ' I ' r + I r i 1 T ' 1 _ • {-r+-+-��" ... t r .. .. f • - -"_ _. r ,yam. -- .. _ _j. •- _ - - - - 1 1 r-z- _ - _ t } - F 1 I - .._- , _ -;• +�-- i -�-' --- - _ - - .+ _tT I I _4- - r I I I • , r I r r "1 r r 'T r-r �-{ ._r-t _y. -�V_. .1_T' _1.1.t _i- _ �T_ -4-L. I t y ,-+'-r- 1 1 -r T r -f .� - [ 1�:-f .T_...,-- -:--'_ _'-..-� r r -1 "_._-+ I _' '_ _. .I- 't- _� ..--.. ..1 - - I ' r-_r'_''_t i- ; . _ - _ �: _ - _. - _ _ - •- j"_ �.-... r� - --' ` .-: -1 +r? - - L - .,,.�-:_ -1:-.:- . .�. T I _� '' t ! _..-_I �t ''rt' .' �1 I ._,-,_"- : _• - - r� T ' _-_•- t Y , ��.�. .i` h t r ✓- ,. + r ?-' �- "+-.-�-A._ : .. 4--- + -! „�♦r - J �✓ I .--_. T -i-• + 1- r I , , ri.y T"'- r --•- 1 - i` - "•.yam t-i_ ---`- -r .I_ I _ • r r _ __ __ • _ _ .. ' 1- t _ - + t t_? .i_ i - _ _ T _ _i a_. ..' - � ! - : ,!,_i-.'- r-1 Tl a.}_�'.T� y ____ •- �..' + ._ T-' 1 - - - 1_, 1 + _+_ ! _-__r_I i �- �.•_. 1 .j-__ T-t'. _ _ 17'T- _ _ _ _ �1 L _ __ J ;_.� 1 I _"I_-{'. T- _ :-t+ i. t _f_ l t_ I- _ I i ti ` - _-4-"j-- _} •_.T _ I_ •� _ _ _ t-t , , _ -r- I _ _ _ r r T -•� _I -r_ -r._ �- -r-+ _ _ -I- 1 __-f._ t- 1 - - �. 1 -�"_. -�*- ^_ T _ I _ _ _ _ , r .i _t 4 J ?"j ..T�r _ I rra�nn _ "1:. 1 _r._}^ - ..-_ 1 r 1 J i .+ �_ 1 -+-r _L I r _ 1 1� I ,-FT -r- _. 1. .1_., 1- -T +._ 1 _i _. •i _.�' ! ' I -t_-_-_i- I 1 - r� r __f I -!-t i 1 1 _.� _ -J- -C I I i_'-r_�- ' _r. 1 1 I _-�r_r- y_ , "�' '-•-- -r-' r 1 y r r - I� , `-i_ .r ,j... _ : .1-^- -r , __ _ .?_ •r _ _•. i .' ___ f ,-r'f---- _ x.: -r�-f-'._ _ _.1 �__ r _ ___ 1 r r_ _ r _ .1_:- - -' i -r.1._}_ L - _ __ _ r ry- � _ _ + t -�-- .J_r_ I_1 .�.. 1 ..,-r..� ._ _J-}- �' __ _ 1- t ..'_. .. -..... r T •-.•_ _ t_ _:__.." I I + •_. _i. _' _T_ r, _ _ - _.YET __ __ r i -- r-r'-- -' -�- -A -;`- -Iy-�- 't-Y Y {� 1 .-�-- . r -1 +. 1 ..i•T� .-.- e- .}.r_� : r r _ �. _-F_ I .. t r r ..�.. «.-... .. :. -0 _ ___ I r ..J. .-.._ I' i I i. _Lr •-, r•_ T•_.. .:_ ,. •t ., _ t r , _ -i -• _iV r" __ _ _ _ _ V " _ _ _ -r , r _t _ _ __ _ _ _ _ -F--4_T _ _ .J .'✓- _ , _r ." __ _ _ __ _ --Y' QQf _J V. _-,-r . i I _ ' -{--- �I © I I .t T--1- i 1- T-i- • ,-, i r , I-,` , t r-'F- , -f ,-r I- • -+ •- + • r •� -♦-' 1 __ T "t- - `'1 ,. - r._" - r ' . y. �_..' I _._.._ . y...+.+ " _+ • - - - _ i -« i *-.. _ -•f-.:'" _ - - _ -Tti - - _ "♦--r,- I t1- L-t+ - y } 3 I -T', ` I , I . 1T. : r . i :--A- r -a'!- . 1- - r I ! .t r"i -! �i -I _{ - J / _,..:.1. 1. t-, f.• _1 ,._• - _ - , � 'r +; -Y.�r"'. r ( �'Y - �_ _ i T -'--a - i , --y-'- -t 1 j - - _� T i• -1 '-�- .� - .1.. , _r I • - .� + "I` _i -!' r . - 1 , r' I i t � ,T- _ - I -i- :+- - - - r I +1-__t t -+ -J ,--+ 1 1 f --+'T--+---1- , � _+ -. 1 �_.-1__ t 7 7 Lam_ � , T_ - - .._}_. -1 - I. l _r_ -- T __-.��--:.'�._ _ i • . ' r _ . A _ ' t - i , _,-_�. .. -• r r_ . I -�--•- _ r - 1 _ �.._ - i ..1. t - r -r _ _.�.J. ... I -- 1 y_ _ __ - .4 _.i. i _ r_�'-'� i• -'I` - ,,. _i _I _t _ - --r� - ' _ . -_r _ _ _ ,- - -'1-- .� ' -•- L. T - '1 a"_. t i -j-+-�- _ 1 - - - '~ _ _ r --r-f--r. _ t r -:--` "'- r _ } { - 1 ( _ - rT - _ _ �- �.1 r -; �-- ' _ _ t r r 1 . 7- I I ,._ � � � 1 .. _, -i- ___ , _„ -.T .,'. _ __ __ _r_ _ -1 ___ i I�i _ "T - _ }-,-. 1 , .Ti_ 1 _ rT'-t _ - I _ _ _ _ T , _ .1 T�� _� -+-t� I_-4--�--'i-- - : 1 -a---F- �--�- r : 7 +_ '.J. I r I _J_.+ '- �r y-- ._I , .r i , 1-- -_ �-A--{-.r 7.:' r -t r 1 : -. .T rF`. Tr r 'T" T r _*_` I '.t ,.r T_ i y..i _ t - , ..�" �•-}-I-. "♦• r-. I "-r .i- - +..: J_t_• , r +-., : „ ._a--_ , � +- L - -1 -r-Y FI 'I T.i. -i- � _?' r'i T.. -T Tr _-i -- _-i_� "'T--�- T--t-r - � -T- i-r- i _ `-i- , �" _!"_ -'--*-•- i - r-r� -- 1--�r--+'-_T_ t -` -- - -_ ._� T_r'1 -i_+- - _�i- - -r•i-. _ r -�+ � «-} - -�_ ' ��.. r --1 -'--+ - ' -' . L- :- + , ' - - r-} : -.' _�'... , r -• _ t fi -�_+_1._ I .,i--1- ._ _ „_ •___ . }. _ _ ; r � r-�-r . r - : 1 - - .T -r-E' -�'-t- I, r I T.-0_ r _4_ --'-_ _ •�" 'i .'r. _ _{' _ Y�" T +T-!'._ - , 1-_i _; _ i .T - I� __rT�" -rJ �,1--T - �... } _.ti- -i`I--"-- --i-�-i -, -j--i + +"I �- �-F-� -, 1 ,-t -l_ -T ,�"r�.1_+ t _ _1 : _ - - _ ? j. r 1 --_ -1 , ' Tt- }- _.' _ 7 ... '1' r r t_.,. r _i .{.. --i-.{ �.__ ;-•+--_1 -r 7 # j '- F i T + i 1 T «- , . I =-4 - , -'-�- -i-' r-�', ' �'-� -- - T_.t - - r - � _1-1- _ r; _ + t-; f`; -`iT tl 1 1 r j r, 1 t ._++----f�' _� - �-1 -I t , - �-t-r , T'1- { 'Y -TI{ I t I I , T-t 1 r-•. _{ .._r � 4, , I "Y `( r 1L_� -1 f. I 11 J_ -_l_S - T I 1_ . r -'-'--+. _.1. .I-r.- ..J-_I_ 1 fj) - - .T_. _.i_ - Lr.}, ( -i. 1' _-F .t._ { -t __r _t .._d._' _.«. i- f .rY..i l _ +_ I - `} �-T. 1 _; : T. _i_.+ - � _.r _ _ _ I t - T. i -,. . _r ' -r-..�; _.._ ._!-_'-_" i .+, -_ _ - i =r, -. L-. _ - 1._ _ __ .1 _ = ; _'. -� I 1-+- -1-- 1 � -+r-T .t-,- -r_' -t. T. _r_ 1 T, + 1--L-! r- +"_ _ "_tt_j _t--� _ - f_ _Y _ _ __ 1_ - _ .�.____'• r+� _' -- 7 r -' 'r-rT--r-- ,.. .«-'--�--1 i 'i, r, r 't-1 _ _ I 1 r • .. __ I - J + I _ I - . t -1- , - - • T , _ t i j r - i ,--r- } i 1 j r r 1 :_r t-1 "}"'-+. ..J _ r- I' .t _ .{- _i i i -, t r r} t ; - {- +`I ? « - } - - 1 t _ �I -' { T --}T- I 1 ' �L`_ 1 1 -i"-• l� +-}-+- I "-{- 1Ir---t�- r -I f ` -i I 'Jr _�" + _I'-t ' I --i 1 t , .{.� +- . -r I 1, J -r } f � + : t �.. ". . t I - i. T 1- -t , } �- - t - } y� --1 i ' ' -t- _ 1.. , -t L t-'- .1_ n- - t - � rT T{--f- T'T .- 1 _ •�!.� -r i ' ;. I T, -t- I =t�'t-- - < 1 - - �_-1-t .. � 1 - � 1 " i `I i- J- �� r - i - S -' i-+-+' _ _ r- - �� � 1 r ; y -'--r-i--a-:� T j_ I 1 I I • ' t � I' 1 � 1 1 .+- _ � ; t_L_+- ' _ . i--� I �_ 1 .-J- - . '` I i _.•-- .• 4- -I-Y �1_L �-t--, -rt_T_. � .»-. r J- I -T�-T- -'_t_ I t -i-}-}�-t-'� - , .1 � -�-+- - -i- i' ,_, - - '' - j- 1- C 7"... --r - r' -r f- _' ,1 ++_ _-1' } -+. _� _ a_... -' - : -{ : - --* - t a tTl ' -+ r T- .•-_•- ,-- t __ 1 I I -' I -i._`t_. � , - r T �- i I �' T 1 ''1-T' i., r. ..L �.. ".- ,�._I r -+t- r'r' ..J_ I 'I 1 _ .r. I _'_ y - - .1 _ Y -' - - ! 1 i +i_.a 1 I + i � 1 - � 1_ J I -'- it' T i �! -+ _ •-�_'_t_-!_i _+ - �...+�- `� -F .�'T_ „-� '- 4' - ' T- - I , '- �I rT i I ' I t T- - - j- r r -f-- i 1 -y--{--+-•_. , _ 't-+____ jam- i __�; -+..+-1_ -t- _�-•-,- 1 -'. • -- -1-}- I - ! _'-_ r --- ._t j{ - ,_�"._-_ -T'{--r' - - ! '"1 1 y- _ _ - _ _ �- .. -{'- _}.!_ I -+'-- 1- 1__ Ii _ ..,:. 1_ , �" _�'. ..y...+_ i I _ {'-�-_L _ , _Y._ t I T _-F.__.'I--' _ ..y - LL '..1 . �.+_-1 Imo' t I _ _�-�---1._ _-"_t - f -I--i- .L_' t ''_ i'^'i t _ , _ --__ i. -: .••--r _� j. _.F_.,_•_ _y -_, _{._.�_ _'"'ti- _ .� •i ---•- : }..+. - _ _ r-++{--; _i I__.L_:. r - _ "_1 __t_ --L_} �-r. 1 ! "LT-::-. - , - . i1} 777 r 1 - � � -F -" -• -_ I I' -I-a �. - -{." - -1'{ �,,. 1- _l _ _i_l� - 1 _ - ` + t-- -{•- J-1 1 I ~1 - .- t I _ _ _.it i- L r 4 ' _ L__-'. � t il --I-r-•-1 ; _ - i 1 - F r r _ ,r�TWT �k : r -� 1 _ �-� - I ; � +__I__� I ' ' i� II I i- -r $� f-I - 't i - --- - { �.. + _L.a i f - ; }-r I f -1- +,1_ _ r"I {*- _ f ;'_ -1- -i ,' - - � ,._A.1 •._7. _r I 4 ;-� 11 I ! ._ I 1--i -rY I ----� t�-,-.. _r, I __.-+-.�k. _�_ r �_---.-�.--y -4-_ - .-1-_I_.•..- , y T_.' - 7.. �'_ (- r _'{--�- r i t -+ -�- i - .�-. t �� r.... i? ' 1--_j -I' L._t r - �-�-+ __ .f-k �_ _.J....L_ �F_'_ r _.I.Ta- _t--_t"__ -i-I-1- _ _ _ - -�-i- _ _ ., � -.1-i-�._-1-1-.f } + :i. ' , �� -r_T_.1_ _ .Lt_ __ t _ , _r-i--�• ' + }11 -Y Li 1_i � _ T+-� -! - _L 1 t - r _ -+- _ T.� I -1- I -�- _f - --I-- 1_-r.l'_ _ _ _r_ F -i i-_ !� _L _ ( .:_ _J__L. I. -� �.�. i..} `•_� 1 _t-'_1- +-L- I I� iTT - =-�- I -�--+--F- -' 1 t r - r--� -• : . i _+ ~ --j,_ _r:.-i - -L-a-- 1-L- ' -•- --- -I- •- T-+ , L �-' y -1 1_ •_ , I-'-f` I -, _L-'t .t_+ 1� I L ' -t_.._.1 _�-� .' 1-i. " -' -f-.I �� _ -F--,- �.. ---1-- I -f .,-r 1+ 1 - .-'-. -_-- -+-t "_ _ _ i_•+ -��.yI-IY-. _.f.Y_+ _t--'_ - _ .-I -I' _L.� 1 ' __ y' _f.J_ I t- - + -�'-Y , _ = '-1 _L i _ _L} i ..;_..j._i. Y 1. 1 _-F--i--i" _a ..-. _., r. _}. i ' rj' 1.. _ 1. 3.1- I _ T y-- -_�'i'- T_ _" T`lr r -�-- '- T _- ' t •- 4-!' -' ; A- LL L - ;- 1 i 1 _ _rL ..._ - �..i �- , _ ,. I _1 i L. -F-�-_i-- ! -L .1. 1-:. +. _1_J-� -:- ��. L ._L .� " .1-F-+- ._1 - - - {" - - ` -1- -`- �i : !._ Ti ;-�-- -r-•t. _ - -i"-- {� .L_ 1 --! F I I f }-; _ , . I I ., . lil i_ -.'_ r' + .-:- �--� i L .:- i �-- - y.I- �- -1- i- -t-1 r_. • -'-- _-f-,--y - - _, ._I ♦ _ _ -_i �-f-I 7- r+-- F 1. !-., - j.+ "r +i-Ir--L._._ -, - ~- II -+-- r I +-t-"` ! L �. 1 t-�--�- _ 1.+.. I . Y _ _ f _ _ _ .f _I _, _ A. _,., _I� : t I .. -i-.-% I 1-L-'I---'-i- '+-r 'I- _' , y ' r _ k. .y--` -I-, r - L - r --:` -+ J' . _,. ! .+' .. _-T f I _� ! I , r . i_ 4, i -- r-x- _ L `� _ _ -, - _; +-i 1 , L _ ` ' _ `rt r y� J-.} ' I -r f +-_ . - __�- - ' •. ' 1 I _ T, -t -f r' �i +- - _._t _, , - -�"___ i y'-T_I}- -i -L .'� - .--j -�_ -'i-!�- 1 -i--' I -" - ' -+- + _ _' .r . _ _ _ ' _ _, 1 ._♦.�_F _ _, .J `-Y `-'--1- r .�_. ,_ --'-!-- r 'YL _i- ,_L 1 _ _T- 1 --+ J_ ."L-.' : r -I-'L_ r r' . ..: _ +'_t ♦_'J--J...a. 1- "-�'_ y_ i_. _+__ ._ r -1-i _t _r„ __-L . ( t !•~- 1 , 1_ 1 _ __l-}.L •`�-'- 1 --+-_I_ , _.__ -+-'+-'-- _1--. __ _ .. _ _ :_.L.i. ..{--L_.I- , •-1_i -1.- ,L_ .1- -1. _;-*+'.4- -•-_ - 1 1 1 '' _ T _i_.i-.+ 1. _ �.i•_.. .{ _ "t "L- j 1 , -- - .. ~W�__ - - L ' L- , ,-�__ _..t'.�' 1 -'-„-i- .1--•-r _ t -i I -J"_•-ti- .a_�, -+-- 'f a i" I ar --t- -11 -L- _ _ t _ _y 1 I -i- - '- t 1 - �--*- -- - L_}_ 1- _ -- I.- , - "i--' j_1-` '- - �-r +_-r- +-;--r -i-L -*'F-LJ�1 '1�.- 1 , i 1-�_'f_ -may. ' ' +- .1- _I-1_1 1 - _ I '--' _ .1_ -+- ' }_ �-" ' ; t - •I_�-_ L- k _ �_-%I.i I I r '�""�,^'_ (-- r' r , -i- _ - (L _ " �.' �_ ._ L--i - , - -+- 1 -y �. 1 --'- - -T .i. -+-'r j- r-; --�J'-- - _ _ -t '-�-.i- ;__L_' - � 1-� +"- i-!'-' I Y- - -�_ Y _.J_+t. Y- .i_l F J. . _,-. t f -{ }1� ~-� 1 �.•_ _ ,-a-;. �._. __i + .i ,_1-L_ , ., , t t �_, 1_., _i_1 , ',L. _ �-i , 4 I ^ 1 I ! , r' .I __�_'-".-i T- r -,.. .._;..1._� T �... i•_ T^ , _f_.' r--_' I I r T -i- .1.- 1 L._., + I�I . 1- •- Y r _ +__ 1 r + 1 -:fi�'_ ! r- _l. r +- } _ ,. -.L. r "t_"'"1'"F" - �. f i--{._ i._ -1- 1_•--1-, ti.. _t . °-F_ �' *___ i i }-t- 1 `F T _ _I_'.i-+ _ �--�-- '_ _ .-. -m 1 _ - I- - - . _L -I- ' - i r . _-•---- L., - _ -_ - �_ _ - +- -_ _ - - _, .J _' i ._ . ! .+ - ---�'Lr-` _ ___ _ } -- 1 +-.-L__.....t _ _ Lam-' _��.: __ _ t- _ 1 i-: _ �-' J., . _i _ I �_ -t 3 _ -[- i T_1_1__ -:. 1 ,- ' _Y.. !"_•-. I _ _ :-1 1 -J I �--t- __ -1-_�-'- -T,. r-�'-1__ - - -4- -I r -1-44- _ - ,{ .+--L-"i'�--'' --'i-1 -1-+ '- I -� -F'{' s. J _. ��, -r -1-r-' `1. -a �_ -� _ - I 'i Y" T Y _r y'., . " , �- L `• : L ,_ ! ri- ---F-, -. -i L_'� F---� I "-L ti- -�T; .1_--.' -�- 1 --L-4 I _ i I _ ?-�+- _T T , '♦- a- I' ll-' «-4-- '-�._ -.. -rt - . "1 _� +_ .J _ ;'I--r _, `t` _'; -+'_�- _� T __,_ r .1. + I T } -F-, - +' . _i_... j _ L..I. J_ ' 4 , 1 } -� i- + e0{ FI _ , _ �j -ReI a k £ }� CY ` 1 l e - _ 4 - -777 -r -. - 1 -L_-:. + T '-+- L _' -'- _ f +µ 4 _I . _ _i-F -+..� t -1 {� _ T_J-i , 1�L- L ' _ --L_ � �. I � �_ I 1 F -r I -h-i-t- ' 1- -_ -i `i- - ]�-," - 'L- "i_ -}_ . I!I_-}- ,- "T-+ '.r 1 --L T +-', I _ 1 a .I T - I ,.. 1 - _I' :. L• 4.1_ • _ f t + _1 1 - �. I f -f 1- - 'f T ,,. .. i I a.. _ L T- ._-* ,f- : _{ _ - i- - - { _ ___ L.. _. - _ k . - O TL, 1 I 7 1 , I T � +', f Y i'. _t i .� -; -��._ _L -1 i +^ I 1 _ {'- ' I - •_ + _- + ._ ,-�_L. _ T _ _ _ , Y- i 1 '�.i� _ 1 . +_ L-_.1 - _ __ _ +- :_. - T, •' ' - _` _i _ f -. 4 .._ ! __ - 'I 1 - i L 1 .r. _ _ + __ _ __ _ t I 'i _ .rjoVm 1 1 1 r t , �--I �. +-' L-I_1_ ._i +..- �� _. ,-_r 7__` -" •_+ .J. 1 --+- .�-. 1 , ♦ �1 �y' T I 1 i '_ p A U�SV�-O - t i' - - "i - - - - - - - -t ..1_' _ __ i - .L_F.1. _ _ - - r'-- - _!_.. _ _ ' - - -t - -- ._I.-+.__+ "+_-I- _�. �_ �y_ - .L I 1.'1_ - { L I _ _ , �- . 1 --1.-..{. j_!_ �--I-, I �_:._ 1 _ T t _-1 ' -I I _ - -r-1_t - I ' - __ -..:. F_ I .- 1 -- - J Y '- - + . ♦ 1 Q . I _.j. * i f- • - _ ___ ,_1 - _' , x . . . r __.___ +. _' �_ - I 11 -L r • i -}-j-1 -"!-+-,- _,_.,_ {..7 .I_ _�_ .a_. -; _-L_-�_f_. I I , -1 -.i _�-Y __r -F I 1-r ! _ __L_ 1 1 -i-1_ .t.L '.� ! -1_ Y )-' t- y 1 - - - -t -` -I - -4 - - - 1' r t -+1 � i tin '4 L - 1 T _ _ _ ��-J - -- -` - . -L__. .I - - - _� �- _ - _• J - I r el _ • - - a F _i _,- _ -- : - _ 4 t -i- _ - t r.- 1 '- 1 L _ �i _ + _ , - - ; 7 + r -+ _ F i -T" - - - '- ' + I t - y-- }. , , _r?'-r' L-+ :: - 1 _Y-, �_ Qc1i Wl S __ _ - __L� i '} - _ + .T � 1 +f _ ..i _ _ _�-I--_ -I _ _ - 1 T"'.I '-�- J _ _ i- ,- _ "+- + r _ _ .. _ t -}. .. L._.: _. -r. _. _,_+- .! -1 T . 1 _ -f J.. J. - 'r _ P' Y e li_ j+ _ j TI _ - -_ - l 1 t-i _ L _ _ '-y_ -1-i- _ _ _ __ _ ._ _- 1 --� - .L _ ._ }. -, i.� ,y _ -� _� j Y L. ,_ --1 L ' • _ _ _ `�-' - _ l_- rt..1_ 1 1- , -- Y�__L ±_ T _� _ . i_1 - _ i -L __L• 1 r + 1 `- 1 .-+ . i I-F ,'-- _ _ _r-t _ _ _ '-j-. ._ - -1 '-1 � r-+' ' . L -- _ _. T r ;- r - : a. 1 1- 1- 1-,-. + I -' 1 ' i - 1- - - 1 _ , __ -F• -1-1 Y" i r _ - I - I -r r { 4 + , ; r - t - _ -, ' I !--r -. - -I i- ' ` ,- 1 _ - ' T + - t I ' 1 Y - - + i y ,.. - +- _� _ .-1. I + -. --r 1 - T fT 1 !. r ;- I - -'I-+- r -I-'+-- '" - - - -� - -: _ . 1 ' -'' - '-- - _ , I 1 r ; T „ T + : -i-T- r1'1 -{- _ ri - �-- r } t -- _.. + 1 -� -+- r }- ' L ! 1 ri - 11 t + ..L+ ~ ,. .l •_ " + 1 ' ; i • ( T . , I - i L_I . _ - - + - - , 1 i -, , , --r- i. L _I- T- L _ �T jl� '.. - _L _ ' -!- + -1- L.l.n� T .4� , ,. L.• '� _ ♦ -I 1 - •� '�F� L- _ _. ' I __ L i - '' - { ' . '-T +- , f I "-' { J J7 _ - y' , y , L I _ - '1. i- 1 •.y.+ • 1r_. ,_+.i 1 ' Li I _ +-}'♦ , _'_ L - M-,- _ I .a I--:� �. 1 � _ 7 1 ~ '� t-� - { -1 -+--+-'_ ' .�_r -L_ I _, 1 +'•',- .1__r r- '- - f _ - - -1-- ,'1-Y- _ '1 r - - li 1. _r , 'i- + } i- µ - - - ----- I 1 _ 'F •--� - L-F- J 1 r t__ J '-� +- .w '-�_ - � _ _ 'y.7,�` �� .;- - _ - - __ 1-L.' L -j--1 - -!'- -r- I-�•+ 1 - -lv - -L' - - 1 1 L.�- - -'L- I-- _ _1 1._ 1 1 _ I..._ _ ' _ _ I -ri 1 _ _ _ -I 1- - - __ _ L.,._ 1 - - - - -- - •-' ._ _�. _ _ _A _._ ., - -- -'i - - r - - - - -1` � _ _ _ } +_r ....- __.�!- ' -r -f »-� t L-1. '- -.. __L..k .l_F._L . . _-L_�- r -1_4-:- - i T-� _ I I .. i__ -��.. I ..F_1 - ,_� I I .- _ _.� _ _ _1._ __J_ 1y7J :_ _ _, r _ - 1. j..+rt -i 1.. -r. -T" I I -1- y--1- - .J_ _ 1- - ' '-I-t- L.�_L I �1-1-. _..+..... mil- i I --.. �+ "_ ! -L- r % __. _, :-t r J.-y-.•- � __.,_. _y.�.-L ; _._.__. «_. r._«-. L_1 t __ }_, _. .r.j_ ..-:. I __L ..., _+. r �- I _L_ 1+-.- "` --- _ _ _.:. i 1 a J_ - _ ._'- - _ _: i L :_ . - 1 _ _t_� I I '-'_ __ __.L _ _ '_+- i _1_i _ __ - - - _ _ _, -- _ *-=_.+ -1 ---- +_.� _ '/ _ _ y`" ' --,• _ _ - - t _ _ -+--1 - - _ ._L-.,_ I- - _ __ _ -1 ___ '_ - _. - _ • J- -. I r ,.-+_ •-y--:_L _ r I -- L -- - _ - 1 --�1-I- -Li_i. �1 II .f}.. - -Y J._ _ + ' r , �.. .,-i•_L. .+ -,.:_ 1 I i_.1 1 � , ; I i , i" - - _ ' -- ' __ -- - -- -'-- -- i-:_ i ,+� - . r - _.- r �' -t --1-.r � •1_.-l. _1.._- t '• - 1 1 I ' --� - +- ' ..-L._T_ i «.- 't. ... _.. _.- ... _.,. ,_, - ..._ -,_J...1 {- -: - r _i _...-- _ -' ,. _- - - .. .: .. 1 +' : - _'_._ I i - I .. __ ..I .1-- `- I . - �--- -"'" J .. ;-^. -I" .-'I i- , --: _ 1 -- r , + -- : , _ - -� . 1 - -- - - r - .4 �� - - _ ��:. .. • _. i_.: _ J -- +_ 1 -. 4 , I .L I ' I - -. 1- 1 -- - _.1_ .i -T _ I _,.. I 1 Ii�LL 1 I =Y- - r - Y T..; i 1" • - - y --1-' ' 1 - - ; -L+ _ i _'- ; J- ,.+ L r ,-. L - 'L '._"-_-` - - I- 1 1-� . 1 L ' i „�-r -r .i .. F r _�.,-I, _. -�-_i_� ' { . I _ . , f• , . ! - I , - I - , -' -x ;. , l.. - , �_L. ,-. -,.�--.:--. -I - F ii _,. t _J _} i-. -J _L-ti- i--�- i , ..-1--•- -� i _ _l_' } - 1 I__:. L ' '- ' ` r -r -1--ti- ., +. _, ._ 1 _. r ' - , - -� - L }-" -- .- .. _ , _- .-.. ,. _ L-.- i i- ,_ _ J.1 .1 ._ L J ... . -:- -, , ! _ • . -� .T_1_- _ L __ - s : _ �; � - �'- _ _ r -. . 1 + - _ _ - _ 1 r ,y . ,_ 1 I - 1 r _ - _ ___T.__ - .. I 1 .., _ .{ L __ _...-.- F f-� + _ �J i , I t , ' ,- f _ _. _.. - ��i r..,..� + . - _ , ; . _ _ f 1 _ ,-- - - .-i l_ -- -r I /i1 ._ I. L �`�' + i } J r 1 � i ', "I -I , t -,- ,. .1 .t ._ _i�_.t I "t. - +f_4" _ t x ♦ _ ' - T, .; . _ ,. , . _ . -- I - i , ' { t • 1 ! - + _ . 4r -r 1 - +_, ,- r �-y , , - r _L - i '_ _. -. y _ L 1 , i T L + . - . , ( L - 1 _ - , T .-.J-- { .-+. _ L _ _ -,_ F : _ , + I L I - + t- _I ' ' _ I i J „ GG ep i (:~•JI i ' }.! 1- _L -I-• 1 L _ i '�_.. .. . 1 1 j ` I h 1 LL 1 , .j- ,_ i' + _ , •� -{. _ __ i { .. _. _ , L.. f ' .- , -.._ 1 /� -� ' - .._I"- � -+-,_ ` _.+-.._.. - t .._ T _L_, .. l -- - I -t--t + -- �- I _- �--,- -I-- - �r i + w1l _L J ' _ - - -t- + ,- J ', - +-i-�.. L- +�_ ' I_ i, 1_. r _ -,_L .} i 1 - 1 r 1 r -. '-_ _...r y� l+ F 1-,-> 1 -1-L -+-I-L _�-+T r ._._'i. • r --+- �- - +-- *- I _ , '-. 1--- -♦."_. -___r .+..�.-.- 1 _y_ I r _ __-'_- '_:_ __• _ j II . , - ♦ -' , + - - { - _ t- L - ., _- ri _ ' - , L, _ _J .+. t -_ _ ' y 1 -t_I_, -f_ f• _ -_ + _ •-1,� L y -.I -t-1- CI -_ - 1 -1 - _ _ -,` L f 1 -{ -1� YI :11 i_-_ _ ""F ' T -'- }" i 1- _ L - . '_ ti 1 -i i.~_ _' +_ - 1- iT?+.- _+_ _ i - I -_-�� T+-1 T + .L_ 1_._i 1-� T L '-~ _ t _ A - (,a _L i l-i-T'' i J--L_ .�-_`-� ' I' 7i7 . i_. i . - I . ., 1 t t , Q ' j-: - -r j�-4"- -+'-I-�- _ _ - -- -T _ _ , i _ .-+. ♦_. .L .- �..1 .. I _ - 1- r +-,-1 -_� _ _�J. i } -; - - --r`--r- F I -1-. .. .I 1_ - i -�- 1 _+; ; r, +.L I t - /{ry �}'!T"' .LIB Q�p� O' Q�j -s � Ja: -.L. i i 1 L..� �- - I_ jI _{_. i'T'�- _. 1-_-_}-1_T .L .1. I--i.. . `y- I * ~` 1 11-; y_ - - ; J - , ' - -� r +- 1- - } -� . - ' _ - - 1 L -+- + . - _ t _•__i_+. _ i __'Ir1 +- ' -•- -L-r-'- -� _r} - - ",.:.�:� . L-: -i_L r; r , _ .ti _ 4-_ _� 1_ t } - r -1--� +' f -Y- -I T -T -r- +. I _.l I +,. r- - -L _-. _._ -- �__ - _ - `+-• - _._ , _ _ _ __ k ._1 - i i- 1 . 1 LLLL _'_ -_ r r -+- - i r , _ - +T - ,- t - _ __ _ '_ _ + I - - 1 S. _ +--`� '- . -- `I ---,- - - . -. J .. J _I _ _ 1 t .. -,- r' .- 4_1 +-a• _ + + -• - _y,. 1 , 'r , - + _L..I _ -."1 ' _ _ 1 _ + r *- t . i-. _r_. ,1 , t �. _ ..L + !, ., -I -j.. r 1. + - - _t._.r... t_r I ' -- 1 I -« _; t , �+--` y_ 1 1 _ 1 _ __ ! ! 1 l - �. , I I -1--��-i - "•--' 1 _, _ L , 4rt ,- y T r r { .. L T - t t . ,: . y _ -'- .- _. -, _ a _ . _ L_`_i_•� r -y -J. , i.L + - I - -+--i T t - r_ i- - 1 -T -'f-+ K- _ - _ _ ,"_ - '_� _ -' ! _. ._ -. r + .J' _. , � L _. L-I J • 1• _I _ I. ! 1 i L... ! J L _ 1 -r t_i T 1 J i , -+ 1-1 J4. 1 I �- 1 ' -t--f'- __t- , + •__• _ .�-i_-T_1 1 I _ , , , i L- L_L � , J--.._ I . _ _ _ ' - 1µ _ I--�r_�-=i -,--may - 1 L - -, t T r- _ - - _ r _ 4. (C/�l' I _V _.� -1 1 ALL. - i f T.._.- -r ... _ _`-'I_ ' �_ - _ � I -� I - ` 1r_ II- f A 1 _ L �. f Y _ ...r_t_._ r _ I t L _,' - _L-L y � _t-f ',- ,---- �- T 1 - ._l-"1. I ' -f I,--,- { -1_ -�- :} - t y I 1 1_1_ I _,-- _• - .- I - , }1 _ ' ..-.-.-, '-I -_1-_... _ _. ___ - _. , y -A _,- �F 1_ ,1_-1 - -�+- - __ 1 # 1 I _ J- 1 Y _ T--`-� -+_ _ _, - __.Lj - - . _ -1. _ '1-T_ l _L .. _ , I' r=i �. I r "I 1 .T r _y_ �_ _ _• _ _{- ._� _ _1' _ '1 1 -L �.. i -T' -L- t .,. «' t_ _ _l. .+ .L -. _ -, _ :I -f ... .. L.. �' .. i_-r �rY--. i _r-r .._ + r -•1 '-4 _ L_ - .�l ' 1 � r` ._L_ I mot. �. _r� - - _ 1_-_ L___ _' ' ;-, _ _ L _ •-' , _ � r ,+ t i I I : a t-'-1-,-"� µ _ L J_'_1 i ,..h-I r � -- i• I -i _ _. .I - �'i - -.I. ... .. ,.--+-t-I---+" 1_-. _-__-_.+-`-- I ,__ I y .--- ,- "_ �_-. _ r _,_._ ,_-- 'y-1_ �._._ ._ tI -� _ -+-J _.t :. .I-t� _.,__�_..,_ ti- I_ L , -;- _, �- -j_y t- 1 + _ i-� ' ---L.- , .i L_.1 1 _4 L�' , -I t-t '-i--- - '+ _: -1 t- � ' , r i ..e1 4 -t ..J I ' ♦_ ,�-1 . t .,--. i ..J i '1 i I 1 ..I. 4T J ! + r - -t- 4+ r_..I_: 1- -+' I_ I i. L. . ; 1 _,- .-1-.._I_ i - a. ' _ LI 1 F�r- - y..1 _ 11 'r_L. -1.- L _ 1-- .'A _ _ Y I t _ _ i- - , i ;_i.- 1 l t-' - } I i )4. - - --.- * - .- -' i , r.i r y _i .. _ ... 1 _ _ � , - , ._ -' - _I_.L.�_ _: - r ' I i ' �-i_ 1 �.L_.. .-i... I I r- �_`_ L ' -''* 1 i -I - y I + _' t�-T r �� -tT- +: j.-�, '`T 1-, t- -++ __+ ,- L. + a+'�A _J - - ` -r� ! ._ i--_ �_�-- - 1 --! - - .r . - ' �. 1- ..L. _ 1_.. T�F _ -_ - I' .� .. T -I-1 „1,. ' -I _ j} -_. ..._. -._ .. T'_.', .Y - •-,- -t - �� 1 1' i_ r* -- , +�+- ..._ I - i _ Y > _' t ' ll - _I - - -..+ _ _ jIy -+ • r L+- +_a_. .� t- _ _ _ Y+ - _- «y i +i �t _ L r_,,� i_, _ 1 i _.}. ,. t *� t_. r_ _ _, �_ .I y Y - .. ,f +'. +- 'L _ - 4- _ 1 I -i T' -t t_1 L. ..1 j- J + 1 I' +. -{ " I ... ` - r _ + -L- T- , . < . 1 j_ ,.L.1 ,1._... , _L ..: , r• L -I--}-I" - - iEq ...- ' -- -' _ - - , 1 _ __. * -; , I �_ 1 - L_ - _� i- I v- ( 1 , 1 - - ' ' i' , r '--- I ' r '1--y-7 -t :.. I '-+- - :-, L f _ I _ _ - - rr� - -�-i-t _ t - -� - -- _ + , 4' -t- - y -i - T :�-:_ ..., (_T _ 1 _ .� � .i--- I .'-a--,_ �. - -� -r- - - - - 1 - 1-` L I. -,- I-, =, -+ ,_ I ," _i. L , .i. - . 1 _!- ,L _r . r r., i - +_, .-+_ L�1 , .I- j`_1- 4 _I . . - r r 1, j r 1 t + 1.- _ ti 1 y I . _I . _ _ ,, I _ h• .l_ - -5•'- T 1 LI f -- - _ I , ._r-`- +- �-Y-- a �' , ! �- --�- --` I t r ' 4 I ._L_L__ , '� L i , .1� Y r -' - 1 1 ` - Y "� 1 -'�; -+"t J" -i-. }-�y-. •.-±-� ' - ....--- '-T r l ,-� t -� . }L T 1 ' r 1 11 �' -r , -T-�- ` I i -•' _ -;- + -; . _ _ T' L- 'Y' y ~1 i I ( 1 1 -1--. [_Y T k �-` T r, ,- >-1 �+ L �j. ; h, -,}- T • _ i -+-I -�T_. r'_'F _'+'..I l '_,_L .1 -1 1 !" _`. � LJ--- r� - 1-{.. �_ .'r-+i, �IY - + j -_ I- ,+-Y , -_ i" I_ -}�I t ' I T+ ET__T I I .may, 1 ' ! ' ., �T I +� � T-i _ -1� �'1 y...+ r- tr � L. -F + , , I +.i--� �-i-'t- - 1 T-.1- I.T : .1_1 _1_ i 111 u" i #L. ' `• - A , - �j .- -I' � _ _ __ __ _ _ _ ..! _ 1_ _ - -L T � I- JI �. __ i t, I .}T 1 ,-1 -'`� , - ` 1 .J ,- � ' .- - Y - - ,- _� _ _ _ - "T' _ _ _ _ � -t Y , . L. ,.. 1 I. _•! n. l_ I .,." j j 1 1 I I 1 i, 1 -, I 1 r 7 I .. .. -, , r , . - - T . , -4-i ' -r-•I I T -1 1 , _ Y -d- I _a•_ -I L �-Y� � -I i i-' r . r I l 1 _ r --t-- - I 1 I I I i i' 7 - . 1 L4 - - -� L. _:_-1-,. T"., I r .r ,- 1'_I � '•1 .1-�- ,-. "-�-- ,. �L .. -..1_ -I I 1 .�. { 4 _a. . 'I----It..-'L } - 1 1 - +..1. 1 I I�,1_ i.. _ -� r I - _ - ! -{--j} 1 -} .I. 1 ,_1 I - , , 7 VT Fj_ rj __ I .- - - - ___; 7- 1 --! T I 47 T 7- t T _7 7 4 -i - -+-4-4- -4- 4-- - 44 4- j, .. F 1. i__4 -.1- - _+_L -_ - - -,- - : .-,[- - I 1 -1 -T- t-T- 1 T iti .4 4- IT t J - 4 j tc f 7 -i I T- i_4 -- -- -- L 4+1 14- _T_ 7.1.1. Ltijj -.1 + _711 T A L TT I 4- + i Al-li. �_ _4_*,t7 I I T 7 . I t t - -]--j - - - - - ! ; . -t- -T- 4" T_ _T­ tI -4-j- '-I- I �, I , I I -A I I , T T-1 f --f + I,r + t + -7 1-�- ­4 1- t T - -4- + T -1 4- T j, i - f ►dti N -f s I A J IT- 44.4..- S%A 'T T -4- - T 4� 4 - - - t-. p 1 I-, YIR111 , .7 T_ A. I _T_ 7 _.L 7 '_T .-1.1-1 T- T_ I -4- I - +,1.4 T_ 7- 1— 4? _T 44 _L_ 4 F r -4 ++ T_ J 4 L a -d - -1-T, •I •I I 4� v 4 A r 7 4- T4 _77 _T _. T- - r-t-- _� T f- 4- � _4 4� + -7- -A J t ---- --- J�_ J -�_L - 4. t L T -:-A i � 4- __4 + 'T-1 4- J I Tj 4 L-T 4- r _7 4 _j___ Ir 11 I —T t . 7 ...... tr M J 44_ T-1 _7 -------- r_ TT-T 1 -4 4 - -4- --....�_.T._• ----- i - r T 71 T_ i 4- L �G j --t- - 7 4-L 74- Ti­ J_ Tt. 7-- 7­ 4� H 4 + I T + -i F, T! 7-t-1-A P� PZ _T_ 4 -4 4- 4L 1 -4- 1 t 77-11 4.1 _T •d T -44-4-am- I tT 4' L J, I L__ T L + ­4 i 1 i 41 r r 4 7 T� . . -4- I t _7 4-4- + j - .- -, I I i 4 - _4 J. - - - ' i i I I I 4- T 4� _4 Fi I -4 I --T i I J Tt 1 it I I I I I I I - -, -44, -j -4-1-4- I - [++4 - 4-T_ 1:41 tt -T 7 _L_�__ -4-4-L -4 -4.4 T-11 4 F_ 4 T 4-4 -4- -4+ -Tf - TT 7� ::rT _t _1 + 1- _T _4 I— _T 17 f .1 - 1 T T_ rl _�7 -4 4-4-- _T T-r L 4-Mt _T_ ,T_ I- T -4 L 7 _T1 Ir 444 _Tr__ Ll -t-4- - L4 4� -T- f T t; -t-t t 7-7- L 7- rT It t T_ 4- J_ 1. 1 1 L -i 4­- I 7 T r I I 1-d -1 --- IT +4 -+t . L __t_T L_ -L.- li-4-t- -TiT t t- i I .�ws I �t I D - I IL Lok I- i -4.4- -T-T-T- 4 t 4 _j L 4 L 1.4 4+[­1,1_+ LI- 4 i 4 1 41H _T L J_ TT - 7 4-r - -T-4 `-i- r 1 1 ' 1 I �:-( i , -r-+ r i 1 1-+- j' - -,--• -- -- -r � + �- -, *-i-- I 1 - F- __ � I , - - - ! - -7�- - 7 - ' i --r- - 1 1 t� T;-ram � � y-+ i�I ' Y� - -T , � -j I t-!-' -r- L ..t � =�-- i i - _-�- iT I C T- - 1 L - -- -I - - -� i - - - -- --- l.- "'-, ."- --' -- -�-- r- �-- -�--�-� L�-� '-i--,�•-- -'--��- 1- - - -t" - - -i- - --'---� --- -' -- --"_L--- - - -1 ---1 � � - - T- - - -f -' I---1-" - -"�-'--+- 1-~-' ' T I I I .1 � _'_. �1 I i -r II_-_-1`J`- .1 • tr:. ;- i -1. , .''_ - r -• __ -1�-�-, � i I I i_t--{�-��-r�, I -- -I-: 1 + I - - _ 1 _I' -_ �_ - } -__' 1. _ � ! 7 ! _I I •.•- i_ ;�-. I 1 • _� -1-_�---'- __ , -i"-+ - �_t-f - - ,1-+-� , j � I I I i i i I I � I I -r s : -.._. -- __•. � 1-s- - , � _ v y I 1 ._ T. -- 1 _ I -I-'-•- , U, +-•- I , I -{-_}. �.. � i--r L , 1 1 __ ! I 1 1 1 _� � _- IIr tI � 1 .I. L _ _ _ , _L_ - 1 - � �� , _ f T .� .-�_ - ..1-! J. T r r I 1 1 1.1. w. ._� `- 1 T p� If N�� � -r- I F_ _ 1 I �- I •- r LI T t I I i I -4--`T 1 I 1 — I T' I 1 - _r� I' r V JI- -".TTt� rr-.-. -�aI1 `_'ii .'- . r� -- 1' 1�t I�L! L•-�LL,�' �r- I,i L,{._ _'r__-ti_ - _-- .��} �1I lii' _ -1 -I - ---- - I -- --'+ _-�T;--II_�?I - — 1,' p _LI _ - - �4 _. ---at _�1•�'; r� ...--_ -- �-Y �- -j1---T.-!!----!t1-_ -- j " - - - - '- 1_ i- y i'i _7_ t jj� '• I �i-- 1 1-:_ 1-' F 7' 1 {...L_L --1. .l-L. ._L _ �-L -i- r - i 1 i- i- " +-T -•--• Qt-*-- r i t �-t r { �r 1, 1 -�1-{- �1-T i I '- -I-i i -r I � .1 i !-� 1 t ! L j I-1 l � � y-1--� , 'i 1 L �I i_ !�1 "rT�-f--I- � - �T � "i- 4 I -�-�- II J I i + �-I-� - ,-i-,-,-'- 1 ? � i T � - T� }-I � ��1�• -I T_�_ �-r� r 1 -1-�. L.h.-._I-� •—•� ! 1 -_. �_ ,.--I_ r I -t � -r I r -r 7- JL _ { 1 i I_ -•. - I �. -+---a _I !_ i r I• , L ---�--C �._ .�_.L !-, ! _}'-!'_i- -T 1 �-�-T ;"_ J,..— -1_ ,-. t�--,- -�--i - _ -}- r-i _r r r �. f- ,r __ - -� I t '- r F - i j y - I �1-mot .-�- •- + T r '-r '- � - ", � � ��L -,.�. IItJ 1' r tQIrF Y � ._ 4 I -t - - �� -ram' ! ' �� �-'-� i I -t-7' � -- I--'-' 1 � '- I i 1 _ - -- � I r I I -+ - i _ - .� -.-L .--+,--: -_ Y ' �! DO �I-•- .y' > r r-r -t '-"-* y'i �'-__� i -' -�' -I - i-'- __, - r I I L'-!--'---= I-i_ t_ I �T I - I ' I .. --It -}-{- f � 1 1 ji _ 1- -1 I : T �--{j _ I 1 _ _ _ I _ _ , I I , 1 _ _ - - _ ' I __L �' T _ _L__�__ .---r-1- 1 _ _.L..y____ I -_,-_-•.-J-- _ •_ 7 --µ----1 _ __ j I ; -}- __ I - 7 _ _ 1 I -- _ _ � _ _ t 1 _ -, - _ -- - �--•_.l _ _ -- T-�- _ __ - - -- _ _ _ �"-7--� � -'-i- }- -r ,--- I I ' .. 1. ; __- �' r }._t.y__ - _ ' _ - T .+ r. -` _ _ __ __ t. T _ 1 _ _.��_ 1 _ ___ _T_r__,_ _ __F_ V_ +i _ _ __ -_ T _ _ _ �. _ _ + 1__E_ __+ : _ -r-1-1__ �_ I � Y_ r _}_. r-'� -ti-L 1 T -,-,_y_ __ _'r•- _ _: -i i T•�1� "-__ - !-{- - _L . -___r �-r-- 1-- I I,,ey7�" t": L 1 11 r I (j'-1-f-Y'Y-' i --+- r--�- -I -� r r t� =-��- T � `-TT 1 @fig � y_ 1 I -!- `1 T +- ,-- T -I.-�L !-r1' I �' _�-f I 1 i i r' * I I - 1- 1 �1 I T ; - 1 _1 - -- --� -L -I - - r' 1 I : ,. , I.•__+_ r- _r., I_i __r._ '-,� ' . T r i � � }tj-p�-"; --T-' _'--{�" -�-_+ _ _ i�r t � -•_ — T— 1-:-?- - ,�� �_.!_ T-''- +._'-" i- -- +-._ _! �Jt. .1 r. - _-I r -{-1 _ t ' {-+- i- - -F .�. _!-�-- ITT i I I � �'_ I I 1 1 7 r � I'-t--i- ,� , I , _ I_ __ i __..—t— L _ I_r_ _-r- r- —Y 1' 1 t �I .ih"t-+ i T+-T .L - - 1_.1 i� -,- —` -+T I Ll - r- �_ - _�-r `- t-r -� I--i Ir- -�--="'- T-i-� -i- i--1- I�. _� __,___� --+ --ri�,--I �--rl_'I--T�f.. -T--' �.-'--�-- �_j +���-'�-I�_--1--1�-�- � � _ +-i -y _1 i _i--�-'- -}-�-.• _ .� -r-h-T- -j-�y_ --- -- -I �_i_ I 1 ' �--�-.L. .�...--, : j- -�_ 1 � -- , �i� - -• r - I T. - _ I T(- - -- __ _ _ _ _ _T_T_ �.r-+ _ i �_y ; i -'-l-'- , ; ,i- -• 1 w - j_r- t.-F- - �- - - - r T I i�"-"j T.�_i._-.1-�i'-' --1--r.-j-T.i-_ -14_1_ t� J�-- + -- I - ' I..-4_ _I' '{- -t-r"T 1. Y :It1"- ary' _Y I_ -•- T' -l--' L, 1j�I _�-_ J �_l _ _ _ _L-_ i- -I--i _ _..�_. � �- I r j T! _I._': _•_ + i _r_r .T. _I I_I j_� I 1 i I 1 I 1 1 it 1 - -"i-- ry- __, H-_L ._L .yJ. + 1 I I I I ( � I t , I I , 71 ­ L l !T �__ J-j I_ _ ___ 1 T 1 __I 1 '_ I r � �_ r-I-,- -,--j-; +-7- 1 r 1 ,- 4-4 i- 1 I + f-1-- :--I-i- �T I �• 1 ��- -f" I -j - - I I - t �- i t -�i- , -i T" I . l._ �- -I- I--`- z-�-' , I , -{- I � —' - ,---- I I�-- ; T�-r� I ; +-^i ��?� -• }I-�-L��, f T- - -+ -t'i_' ii •-�' j _'rT i `-!- - ; -+-'r-- , - -T--�_ �+ t I I' I, . _.r�j- �, i ?-� '_ � i �_ -- � -! { - � � �� T r __ , ..{-J_ -,-r r _ _ -�_ t ( }r , _ - I r - { j _ j +-t __ _ _ i J i ' 1 T ? _ __i' �I _�_ t r I - I- I t * �_. I I� �-}I L-L?-� �-�'--{'.-FT r-"- �1 -1-� 1 , I �i--r-'� 1_ -T -t � �-i'-�I- .fir -�Y_� ,-r �_ -+ j�-i � I I I � -(�� �t-� I_ _'�- _ _ _ .-t- i '� - -';-'1� I�"�- • _i.�_ -.L �._L _T�_. I- I • T - �-I-r-r---�-i ! ;-�--r -Jf- i I ( -r --r't-F- --- i +i-- T -�-� -j-- -t - I I , '-_y+ _.r_,-- T- _f-t- - -• _.TT: ; � 1 -'_-I- , "-� � , t - -- - - ' I 1 �'�-+ _.i._ —N'--�-�-- � 1-_i ' i : 1 I � , � �_ .. � , -�-._ , T I ' i I ��-' �-j-t . . -�--t. I _- _1 t'-r I � i -I---I- � -t; ' '�_ - - - -i -- - _--;--1-- -' 1-, _L -I _• _ _� _ _i .1..;-.� �__� _ -*- r_ —L� '-,- �-T"" �-i_r_ ; i _.F-Y i--. _ _{_. _�_ _'_._ _�_.L._.� • -*_ _r_;__'_ _UAL�!J �'' - - _��_ -`1'--+-t-+- � �_!�.�. y-_ _ t_-�_ _�__ -�-r_T- _ 1 �I-i.�._ T_�' _ _t_1 _-i_ �� -f__ -t Gmdi .�_ --7 ' __]-_• — _ �_1_ - _.�� 1� 1 _ � _ I _L __I Tt _ � _t- 1 i I + I +;� _ � � I - i _ - I - I ' I �--�-• I-iI{�i ;- rT" — , -t-�-T. .-}_ +-:1- '.i�--r- I ,_ _ r_�._.:_ _ _i__ _ _ —'-r 1 i J.._- �i -*- _-I-�"_ f -��ia� ;i-!_ 1 _`_�'_-r_ _1.-�- ' 1 k- ,_ "1 -'f : T_- i- I -�""I- r T _L_ - } - - -�-__-I r+- �� I "-r_ --�--� -r _'�J _L _ .h1--r- I - 1_ -j .-i ----r-t-1 I -r- ._ - + i -� 7'-'f-•- i--r ._r_,_ 7 , I _' -;-�- .I T 1 . -- -'- -T--- 4----r - I -'-- 1 H -- ,-- '- - -- - - ' _ +"""r-T t 1 I r_ - 1 jTi,-'�' fi I �-T-' -� 1--, ; _ -mot t- + ; ; , •-+ T'- '•r �- -- i� Tqui : --I j__. --j- '--- �_._'i ---'-;- 1 '--�-- _;-L y--�--'- -++-, 1 - - -� -'--'--1- _ T._� 1__ 1- - _.r._ ._ -1- -_ - 1jI- _'___ -- - _ .}_i____+ III -i-• �_- -(-rT- 5-titt.��- �? -r- ! -r --�' �- 4-4- 1 I L y r I 1 I i 1 _ - 7- 1t-I - T - I I r-' T-! �-Y- �, •, 'I �; ��.-cam. �__-..:. --; i I -; T- �-rt-- I •:-+- ter' - _++-C..I _ ~ _-,-- I '� 1 i-•-}-1-� _ _ _t._'- , - _ _.-i_ }--I-_ Y-�- _ _ t I ' I � � I l ii �'_i__*- I i , I , Y-1_ I I -1 �-- ' I --•-'— L i ' I �; � � -� I }I I , j t-I - � - r I. , ' ; �- j �y I� �- I � J� I ' � t I. � �I --{--,� i - -�I I �- T; 1'-- 1 � • T i -T-� -+---I � -t-^- I-i� .. .}.-+._ -r1- E�}�' I I -r- 1 _ __r � L ' r- L-1"'i--1- -t- 1 1_ i I- I I-4' * •- A --: ;rt- -h'f - �-: - -;--r�--'-' i- -' �'-----1---'I--i '^1-- "1'.15. -- I - -�-' — 1 I Try- T-' -F- T-r-- -t-- -'- - - I"- -- - - -1- _ 1 - - .I rI 1 a _ f LL_ ' _ II r_.. i T 1 µ -! _I-- --L- _ r • �. T. �'- t-`_l- I t 1 1 _L I .� I• y I 1 1 if -- -,-; , �.T ' I I _fr_ 7 r i rY -{�_- � L _'' -T', - - r - � - � � ---r 1 - -- I I I - •_T_-r - i Tj - - T-t- 1 I , , C . t- I i "i -I� f '• I I , , I -� i -T i - 7 + .r_. r . I , �-r- � _.-�'- r... t I �� 1 I - -L-' : . i-K.i.� f. t--{'{ I II - r-t � 1 "I • ' � I r . T- I i- -i-� I 1 +- 1 -Y-�- , -_1- :�--- -i-r? a . � -1=- , *- -r r-, i- z*� � J. -+- -I---;- I -- .- - •----'--r ..-...`.. -f--,---1-- ---� r-r-''` ' -1--T-tom-=-• _Y__i._r. , .-Y-i- I '�---1-'- - I � i - -'I-- -1 - •-?_-- - - - -J �-- - -T- I-- - �_ �_1 _ -.._I _' Jam_ 1 i - F -� _I +. f 14 _ 1 ; ; I I i , I 1 I _ 1}`��;r I I I 1 J ' 1 1 I i I 1 • y- I i I 'I . -}}�-� , - i_i. - -� _.,_--r'j-�--'--fir I I L. - - - 4_ i__ - f-' : � - _! , r I T-F- � I - -T -1- -+ - .:-- �-t -� -� -i"- {- t � -?"-+-" _y T I ' .i __ -t't i .F �_• �-?'_. �-.J I rt-' _' __'y- -"_'r..' I -1"- _ I -I-' I �_� 1 't ,� -Y .1 i 1 Y , Ti- _ 1�-F -�-- _ _ i -i- j i -- •�-, ; _ � -� -F _ - _ { "-'-• --F--��- 1-'r-1 i .�-�-�-• I , �T1 _ �!-i" ---i_-� --rt--j-� �'--{._ , T y- !--' - -t�- - ----*-- 1 -:- -+-�-�- -�- _-f-^! �i �-�-- .I,--T'' � -r- -_�_ -� I - 1- -i- Ir} 1 'I} _�I _r ' _ ; __ _ __ _ � _ .r �'. -�-, -� I t �-r ty + ' - - j -J-T- " + I -� -i-. I — ; — �--r - r- -�---- r - ,-r-;- i -�--i- --' I I 1 I --{--L-r I i I - I I I -L , I i I I ---+--_J t i- I I 1 I I 1 r ----- I -- - 1� -�- LL _�_+ T - - t-' --iii-a--T- a r- --,--1 � - '- -1�-- � - - I ' t- -+ �- � rt-�- j- ZT� _ i-'_ �. o ~ SceTe• - :T' �' 1_ 1_ _ '1 r _i}_.r. 1 1 '- I - L-L- 1 j{_1I 1 i__ jL-_y_ i - -+ ' -J -1..- I I , � T ,- I f I '; �L�j_--Ir}L-11 I ( 1 I I-+' �- I T _-' I �- i 7 I� -I i , A t_ T - ._I Y �+,- +_ -" '-'•-I iI}-t- ��"I-- I_-�-j---'j-'+ -;-r-? -i�-1 4- -r t_ _ t=-I- _7-i --'_'�"I-7 I -''.�k -+.--{- 1._ii-"-j_ _1-_- _Z I _�_ - ; _ i_, --- I i ! --{- Y! -i- 1 -_fY. i,-- , -tt-4-- _4 ? t 1_- -4 F _4 L T L -T T 14-r- 7- It If 7 T T 4- - _; - it I F �5( 4 J - T_ T_' 4 J.- : I I i ; T V 1 I—, T TL� t -H I 7_­i LL Ic I 1-7 . - _T i - ----- ..... r 4� - -F� +i 7 T-t- rs "o 4- 7 777 + JT f P t 1 L r o 43 off-, a I 4 FF • 'Pt T L 4 -t4_ -4- T- -4 _4 T, F_ FF T2 u _1 _J_ -r- t 4' T i+ _T_ t 4 T i-A - T fin t-T T -r- 4- _L4_T_ 4 J- - 7 4-4 FT 1-4 1 _-7, , F , _T_ 2V _T T T7 if 7 T 4 + -j- M p P,� 1p -4- i F t 4- i-4 - - -4 -4- - r T-T- 1p T I L f T- _T -_ - ­1 ".- - 141- 1 T r t I 7 _T__ - T_ 7 _T_ _T-4--� 4- i ...... _1 1- 41 4- + Lf 4 7 --r- L 17T fir'-7 tt i WA + I I I I i i t -i-TT it 7- I it lI It 7 -T+4 TT L 7- 4_1 -ILL T-- J-7 44-i- T +74-T- I t 41 I p 4- 4 -r,41 11 r -r- ! 1 1- ' i 1 I f j�- -L- +-- t{- _ -i._ II 't _.{_ ! I I �_ �. -i_ I T � -'�-- -I-,l_y- I -}- -+ -�-i _ 1 i F-.�� �._ _+ t ' -� _, L i tilt _ I i-' _-t-.. I -{ +--t-• ..1- • _ .L L _+� , I rl L t1 --t I �1. ! I• - I _.L I I ! T _L ! � ! �� t ��� in r'- L. ~_ I 1 -j+--?- ! i I i ii 4' 1 }- I I —{I- -- - - � �- I _, +-- +-'- T-G- -+-t I -'fi --�---- -• -- - �- - + - -r-- - - j- + Y• 7 - -�-�-�- -{- -1- ' I - ---1-� I -�-' I.0.r- -�- ! 1 ---- r- -T'� - a-T- --r-�-'-- T� �F?r - --- 1 - !a_ - - Lfl4_ -,-- -J-I i - -t- - ` r -, - ---I- +-�-�-- �- - - - - - - - -i'--I- - - -1-+ i-- _I- _. d g- +- -- y L r �I I I -j •'--L- L��ILrryy-- � } =. -I I , '-� I � I r- I � I 1 I i , • 4 I � t � r-- -t �-1 ' , -�- �}� �� -� ' I -l- ! �"1-- 1 - -`-- 1 - I � -! , - - -I-} }� + rT T� k r i� - I I� � i � A I ti - - 4 ,- -- - -r-'x- I ' T I I— , - . - --a--1--+-�-1-- •T '-+- 1 , -- 1' _ -, -r--`_ +- -•--_-1-. ' � �._ ,r--!—' I 1=, 1 �J_ I - -r-_F .� --I ' � -- -.� � 1 . J.- - �; _ -1 � --=- j—r -j-- - -=1-4-- �- I —; __ � _ I_ - - - - -'r ! 1 1-+-e- T—I --' I 1 _ - I_ -- _r.__l. -` -- - �-� I � _ •- _1_ 1_y- -1 - } - -�1 _ --�-�-- +�i-1_-t_ I I - =--�-' � 1 T � +_ ! ' T-r---- _:-I-' '"-�- I �_i�4 i' ''-- _ F -,- -L_. -_. �'-t- _ - _L. -'I-- _ _'_ -1_"_-- , - _ _ -y- -� L �_ .� I • , _ -I i -� -I-' T - - --' • � - - - r--I- ' -i -%- I -r-i--i- -+--I-�- - ' -- - �� 1 -T --y -fi-Y_J-_-J--L - :- � - - L _ _ -' � ? _ �'-t-_L 1 I �- i ' i �-•• +- _ I_�_ _ J-�-' .+--=-Y-- r -LI--L- _1-1 1- - -� i- 1 I - - - -�-: 1 I ! - �._ I I ' { �---L i I ' 1 1 -ram - • - - -�' -1 f +h 1 + i , - I I I _ 'i - 1 Y)- r I 1-1 -1-a --L4- �� - 1 L I r t I 1 - 1 T. - J- L_L_._1 - — - - -I - +-,,_ j_>r - 1-__, �'_'_.� -1 ; I ,� 1 _�-}_ +_L. 1 .'"I"' 1 , -I• {-F__*X: • _ ' _ ,t _ 1_ -f =�- -- -- t= - -�-I- - - i --i - , ' �'- --i ,- r -I- F--i- :'", _ >1 1 ; L•_; i _ • _• _ , r--!_�_ -!-� .T 1 _-t , �_�' 1 _L-I + _ _ L�_ H-4 IF _i j. T - 1 - I - - -Y -i--k -- 1 �- I -;_ _ �. •--T' t - - - + - - i L'- - - --! � _ . L•-+--f _—'--'- _ �_ } _i_i•-T e.r-_'_ ' - -- .+-'_ � - IA^;- i I I 1 1 1 - -+- j I - r -+- i : T + _ ,r_ -'-;�-{I- _j r T_ t 'r1 - - i T •V. 4, + - ; - I 1 ~-I `�I � - ', 1 I I I G I 1 - • r I I I 1 I I I -IF 1 i 1 I I 18- I -'F-J--1- I f -+-{.-... 1 ,;�_ ,�. f y-1 -a-----'-_- ^.. F-. ,- 1 -"-'-t'1' 7-T"T-i---'-�' -t- 1 'i ' - - 1-�,-1 - r--- _..L - I - 't-' - -'- - ._1 Y7-�t - -- _-i•.'r_. - - -'r t' -'r-- _ - 1 - L � l_' . I I - ' i -r-1-!-- _ 1 1 t" I I 1 I �-!--�_� ! 1 -1 �- , 1 , -' _ I . - ~ I I � , ' � � F 1 � ` i �-'--'-' � r I �._}� t I �1 - i -• 1 i �' 1 �r� _ - r I �I _ � � - I w I - -t r • , _.,_-, _--�__f-L_ I I I I -L--1-' --L--� - -1 a_ I � ..I__�_ 1 I I 1 r -y_T-. - = t' � 1 , ,-F-�� I r_l. ; -r._ , , l_• 1 -r. -- ___ i- - �_1______ __ �_.r___.,_. __.r_• -L._,-_�_ _ _._ _ _ __i.J._ _ _L_+�iT1__y� _- - __ __,___L I • i,_ !� f t r � I I i� I � 1 I , 1 _ 1 :_ J- i _ _ I-J I 1 i , h i i r I I I �I 1 I I I I I I I I I .I_ _,T _�. _ { r r;-- ` _:_ -'"--...__ , -�'--•_+_•-1 ---+--i- ' - I_J--•_-�__• --i_--_�- 'JA I � i �L�. 1- 71 t T •- -.,__•. ; , I I , —t. , x.-}_-r i _ _-_-r- I _ - - _. .-i- i-� T _ -� �,-�-_`_--i t' "-j-1- � ,_f-�_.j�' r- _ _ _ ��. _ ___J.. _. T i + -`.. _I_.-�-._L_ ! -1 } I I I � - _ _ _ _.�_L. � I l `+ 1 ' I 44r y-i I _' I -1'-r - � -T - t- ' I 1-- �' - 1 -_ _•_ +-�- I ,-7 1 __ i-ll--F- � - -+-T ✓- ; i i i -_ -T-" ---•-�- 7-f--:- - _-•-:_i_ T'1---!- , y-;._ -!- - � - _ 1 - + Wit_.' i � "j «.. ' .j-+--tt- .-I,. ' � I - 1 I-i- l 1-+ I� •- + , . r , I '�F "i- L } __� t 1 - •--r-I•y , -r-'-._ T i_i�JT. -1 I - I - I' '�' a _��' ' � t �' �- - _ I , -rt- _ i T _f -- ^h 7 t -`_+_' - -1 -t -j- 1-, --+-y- -._I + -T'-i--r 1 1- }--T._ y -1 '7 —, -' -'-1- I _,_'_ 1- ._1_ - _ _1-} -+- ~ I - - I -'f'" - - ..i__ -, : I -� - "+_'- i _ - N T t � ��-, - I' -i-- { +-�+ I. - - - I .l._ � .) 1-•- . - I -`-? -"- -'• ��-�_ --i i- __: , �� ' I � T I � -I} I - � �i��_ I I I r � i_• _ - I � - --f- 1 .._�_ I 1-L-J" I I� - - � I --- { I I t ! r- - t 1- ; 1 +`-J- '-" �-�- L..�_ O-� 1 t_y._}_ _!._�---.. ._- '� t ___ F_ _}.1..+ 1 -f�-..�_-'--! •yIYI`L ... _ - _ _ __ - _ I_ 1 1 -r --L- -L�-+ I --'--r- 1 _:-;-�_���. , 1 -� .- 1 -- - i i --}- -;-- r - -'-*- ! �-�----' + - 1 ~-•- i -�- L ! __ - -�- -; L' -.+ -- : - _ -}- r _ -. � �-+ ---�-{--- ! - ---- - -•-- I � - �-I-E- - -- - } = -- -� -- �-1-r-F -- - - it -- - - - '�-"--4--� -� � -�_ � _� ; --� -' ---' -r- _ (mot - - - - -- -1--1 -I t ' L-��_J�r - - !_L� I -;__i_--r-r ? ..I - LrL_ .4-+l L �1_� I 1 i ' rt1 ! I �I iI -a- 1. �I - 1 -+-' - - - ' 1-• - -' -' - � - - -- '_ - + -+' - - �� - J - �--'t --I -- - - -. 5 -I- j-t-�- 11 _• � 1�I ifi r- -i -+-.� I! r I �; ; 1 T' � 1., j- 1111 T-'; - '�. 1 !-1 -! �_1 �'-�' --�"- -{--ti-�-+-T'- -+-ram +1_ i � T � 1� _ I �-I 1 ! I � � i I I -1- J .G_� I I ,_ -T-" i i I � , •wa 1 } I _ _I r .. 1�-L - TF T� I- T t� - I �--i-� 1 -L .tom __ _ I 7 -I__ I - i-i-'---�-r I T -j-1-f- I -f -i_ _«"_ I i ! _-� r - i t-�-�- -J- i I a-ii ,,_y _ r R _ j '1}�.r' _ice_" �- •{ _ •1 1! rY1r_ �!4! �•_-*� i�_ t TI fIi 1�I II L� __L • I 1I j - _L'tr; _ 4-+.1_ ' y 7 -,t y-T T _ _�1�L . r. L__ � ' --t- ' ­4 -4 it IA- .......... T 4 r-4.-f rlr + 4- 1.- Ll ;it T 1L L L 4- L_L _41 ­L4- 66- Of F T 7Z -L if [C J__ Ti 1 —17 t 51[g I JI 1, 4, A I I I I I I I T' I I it I _T L 4-_ _4 r a 71 C tit T T _L_ 4 ETH -I- 4-1- 1 _7_ T_ ------- L I L T� ;it -4-- -7 I I _L I- _j 77,, 4- _J___1_ -4- la -4-- +4 Inn L . _T -r- It T,17 f-H T-t- -A T I _J_ -4- 4 Al� Ll T 144-!> t �T it ir 4- it r 7 _T_ im- 44-1 -4- T_ t - T -1-1. - I T -4-44 !�p I !it I TT It L I i I I I - - !,-Arc I I "T 14-4- 4- +4 -ILL _T L [tit it 7� 4 11 I v it R 1-T411-1-L L 7 _j Jr 1111111 t LL 4- ]*C _ F,�t fT I- ++ j- 4 L4 _T I I I i I _J L 4- 4- _J_ -4- A A tit' --+ La-�_ -�---t- t-�_i L.i-l-_-'_. _ J-_ . _ }--C_i tTr_ _t.J.--}- --i-�--��' - ` i -r'i' -_j�-�, T 1 - _•, ,- _� -r--j- -�' 1 II IT _ ! _t I . f_I + .. _ J. 1 _ � � �i� .� SiYV __ }-� _• 1 t � { _ _, _r-�-r- _1 ,<_� _-� -I t � � i I � L � ,_ 77 -''-f= ��;- ' �-� i- Q "' V���- �� ' I 1 y�yy� ' �__i' 1 I-;-- -'•-�--�" , 1 �� I I � -'}-� � -T : H-� �._ �- ' L L I I �� T 1 � � i I if- 1 I ' I _' 1-� �-i't_ ' _'i. .i-� ' +"J:_. i--I -I r � + - ----I• -�- } _! _�-- �- -�-i--If- 'gn -4 -r;.. I �_ �--j-1 I-I-i.� LH � • Ii ��•'t fjT � � 1 I I-' � 1-- _-`--�.-j'"�--I"-�_ �-{-t _ I � fir.' _ _1._ _, _ i _, -i- _ _ _f__ _ _ , • � � i � � I i I 1 I I I � L� I I i i I 1 I I -L +vie d- —it- � �Y a� 4 _1- � � I "�- iJ�'-'i- - i i -�-}_L. __' 1 ��. !_.1_L-.J--•-_ +-J-..1_ .i_i _r-�:-i 1-i"-+ , 1 I-1- � -- -Y- {f -r-' T F I 1 RPi+_ �- - - - I _ + _-ti #-' i, _ rt; -rl tI -mm 1 • LLL �., U �I i �, .. __ 94 IMP. 1 _ i- 1_ - I -r- It 1 14 _ }. --77 I1I r I r _� 11 _ ,__, t .� . 1 I ,;: _ r E' o1,�2I�,Fi1 / •,.•- I ^ BH-7 r �:•••�� T D.35' A 0,.•�*1 • GW@@32 E•,,.•I I t @30' VTR -I V_`­� I \* *0 \ TA2D 30' 5TR 5 •• •,..-" ii1l \ 21 - . t, L,00 \ I'0 1 j3 ' \ ,� ak F' G' ,:, ♦♦. :`•'\ I'I - x 1 • i s r . N 2 - ,• '` I. ` -'mot \\ \ �: 0 i j r- '_\, .1 �,_ \ . ♦♦ - .- - 4 ` _ . � r� -, \ , _,'.: ♦•�. A i t /F �„`� -- . v to e- "� .� PI 4- ♦ i + GW Q125 \ -1H �F, ,\-10 - - - -'-IIIIIIIIIIIIIIIII-. - - - .. ..�: - ....b-.. GEOTECHNICAL MAP NEWPORTER NORTH PROPERTY, TENTATIVE TRACT 15011, CITY OF NEWPORT BEACH, CALIFORNIA 0 Pr0j.:1851578-004 Scale: 1"=40 Date: 8/9/95 Engineer/Geologist: oP/RM I Drafting By: LAF �•� a t ; ti, ♦• . v �. f_ ;�� v 9 CONSTRUCT PRNATE AN THROUGH CURB PER 6' 6' I LEIGHT NANDASSOCIaTES' ANC. • -� rseo ; '.'-, • 1.3q 0 iz, -'I lr 12' ♦ . �. 4.i. �2,�IIY-__,_ �♦ j ; . `� .. ''yt \ t � .�, \ CITY OF NEWPORT BEACH STD-184-L /- ( i `� k♦ ', - Nam' \` -, , . \ PLATE 1 "' ' �+►♦♦♦ .I . : , / �' �, \ 1,0_ - ti, . /; ... `\ '`_A,t :#`-\�` ~ \ 1© CONSTRUCT GUNNITE DRAIN PER DETAI EON \i" \ . , ! . ` ._ \ \ ( \ :... ;; .. ♦, JAMBOREE ROAD _ LEGEND ,- \ I \ \ --z„ I \ ` 14 CONSTRUCT JOIN OF DRAIN TO EXI NG V-DITCH PER DETAIL HEREON ..i :♦� (m� '." i : - i - `` o f 4� \ 1 �' \ �'` \ 1, EXi �i 24 \ r. , �- / -• + a - , ,_ N ' � ! I '\ \ I \.-. �� ` \�\ 1© CONSTRUCT TE RACE DRAIN �QT L ON SHEET 2 I 3:1 I. SURFICIAL UNITS ♦ �A O�,�, - 1\\ - \ram . i 1 1 �•-�'Q V -i , N i Y p - - • � `.\ .! Ate_, ;,. , `,�•v i ,. , \ :' -- . -, ` . I _ -� `'`,:*�.':..,�V@ CONSTRUC DOW N, - _ _ _ fi� 'ARTIFICIAL FIL \� N�22 ER D AIL ON SHEET 2 „I- L UNDOCUMENTED �• - _ g - \ ` + _ `•,, �`' SUBDBAIN` Q CON UOJ 8� flWALL P DETAIL ON SHEET 2 29. / 1 I _r ` _ - W TERRACE DEPOSITS r i 9; ♦-,, \ _ 1® � PARKWAY ULVERT TYPE C PER \ I _ z Qt r� 7 '. �� ` .�O : ! `, C P 1309 1' n DECOMPOSED "' _. - \ !- : (�< • ♦,♦♦' �I �' T f . \}* \`\ �, , GRANITE SURFACE � f 11, ��+W SLOPE WASH DEPOSITS Q�� i - lil;l s� y;' ♦, * \.. \ �, .- . l%1P SEE DETAIL AT RIGHT ' n 6110 w t LU^G - ♦ •' It n.,♦ `�" 4 g l \ 6 fi'. ; \` \ �Z6 ♦ 6 6- I Vt�I ALLUVIAL DEPOSITS T.D.34` • , • �� - 6 ♦ i • , ��' fib x 7' LONG G.I. PIPE FILLED W1 CONCRETE WELD CHAIN TO PIPE AND INSTALL LOCKING i t - ' SR 04' ♦' 2 I - 6 " % e 12 DEVICE. PROVIDE KEYS TO POLICE, FIRE DEPT. &OTHER EMERGENCY GOVT. AGENgES. IC w ®2s' f V i 77� ra, _ ` ♦! , 1 y\�\ ��?.�a 3:� BEDROCK UNIT u �i s'' �/1 t 2z b T 'VE 1; ' h aF�4 t _ G �� ` 4y £F ,.;` ,, EMERGENCY ACCESS AND ,� Trp MONTEREY FORMATION, CIRCLED WHERE BURIED 1" ;, 1 �J. >L0:1 F YF 1-N, x 2, RCP :,ti `' `9" ~I \� TEMPORARY CHAIN BARACADE DETAIL v' I.\ 1 II [ I I ♦ - -- w x «`''" '�' SEE STORK N ♦ H \ k \ > _ \` SYMBOLS •+♦. GJ tx fSZM$�. t�" '",. PLAN ♦ _ -+ - ` 1 - \ i NTS 3' GUNfTE W 6'x6• `, `uJ'3 q F£Y9 fi ♦. ul` r ` i 8� TS t 4 x 1010 W.W.M. - • • • GEOLOGIC CONTACT, DASHED WHERE APPROXIMATE 3>>a `♦i -.� a is _ 1,S,q '`- ' ExlsnNc X GUN 1TE '� 1. ��: . ,� f < a . ; �_.; _ sx -- N - 4g' RCP APPROXIMATE AXIS OF ANTICLINAL FOLD, DOTTED WHERE BURIED }} 8"I �4 . / �z � .., ,� , s \_ DRAIN DETAIL 12 l ,srK I,�'xzz- ,m.a• - „' '4 - _ - _ ! f' A r- - `~�� " - NTS EUDINC'a-ATTITUDE- DASHED I i WHERE SUBSURFACE '-5 F \. .4+t` 1 1. `ate... cYy" a,"=i i_-x.e .- t'., ; pp oximate Loatr� 1E _"r.+"^---0 `n • ^ ''`` ' 3 'v`i Fs b $S' 1 K"4 ,t+. m . ♦ i '\ _ » 1' 'i �`' - `� - 95, _ . __ � - _ _ - ---'--._.. - "' a }' fit.Il`;R }411>•t' 7 r•, ` +a 6 _ 3 r m '`.`. �'L+. Z \� - - _ _ "` 20 ` ` ` _ \� u- C3 `r", y \ ♦, ` �gi��,- . - ; ' mot tT' • �� I _ l ��_- 1� • APPROXIMATE BORING LOCATION BY LEIGHTON AND Y't tF....r , ,� �'f, v:; \06 ♦: '-�"t�'�°'�eFve - S.7 ..fie,�c,,.' \ -__ - _ - \ \ - `• - \�1• , ♦ , ,, , ;•'4a;) 4q c . y } { �, -'' �„ LB - 4 ASSOCIATES, INC, THIS INVESTIGATION "i _ /; • \K r 'tom. F,� � ♦� ..` 10I .. F y<e'0't .-h ";e : �t "a'i$ a- - . \y r . i - ' ,"O -r_ • ` `- , "`: a, a :.�., ''♦,' _ .*a ,>ktz £,.+=r p8 •fir« - ""#,, ice'" _ _ 1�._. - ---- --.\ - �j �� \\ ; _ f ®APPROXIMATE BORING LOCATION L +; ,n i I �. r�+a- .. n� l, r , v t #' „< +j r: •.. - RO ` ✓ BH-11 BY GEOSOILS, REP 1' '� ..+-. ' e'a` i�r y ♦ �i nQ 7 �', � .rg, a,-. Yr �\ `. ��I \ / 2 / 4 / 91 ORT DATED -- •• '0-t%'tIf.♦<-» .�„� s'-G 23 x. t1 �laiq?r ^„'' "'4-,,. c$- ;+ • -'lb _ ...� AQ \� - r ' O i / " ,+y >.1t q<-';lz; 1� u b' o., i , , Zy. > , u(. OP _ . _ _ -- . _ - - lAi!'. �Ui.., _ i - 'Y' .X.,�t x.:J A� .r . 3 ,i, m .'.. Y' ;, 'aft i 3 - tS - "---_ }� N - 2, , to '`, }`r` `''`Y S _ 4 °' Fyn}, '2,`e -ti., ' i 1 2: 1 3: _ . - - -,--, f w , ? t - f -� " t' ♦ I 1 _ _ APPROXIMATE BORING LOCATION BY GEOSOILS REPORT DATED x �>',;_a.',�: - \ B +y . _ l . `tea,' ^:J'=' �:.'--• u?'r,,, ..-� i . -'r d I12 - ���, - ! 12 I I - `! / -Y -r �'A- _s`.3 ° a.i !1"�� ,a ,a'�<,x. -lam' tr r. a, �/� - 'd _ _ .- `r'--> I+ - ",1'< .- ,?; { `a :e. 1 ip y �`,. �+;iti. - I • J_-! i ' . rztv.r ,i/�V - _ !� \ - - 214191 '�y ■. - .X' 1 •,,^ .. -r .u'r -' l,. +Y', v t'=�'�•,;;u'� !' Y'`J, �" ). �I'+ ,:4..e :„ _ 't, - _ i%•- - - \ ® APPROXIMATE f, t RE(AI N0. 'Tb # ;n :ero »'." ,✓ ,� .-" 11 ¢ ), $ h T.D.3 IIJ _ I� TRENCH L ' �. ' y:_ ? ` '�; < :. x' h r _� ; : , :. , e �.• .'` _ _ - OCATION BY GEOSOILS, �} '' ' L`?,' ? v �' A Y €r. :>,'J d' cv - • �\ _ TR - 9 REPORT DATED L \" ,, ` BUjER SEPARA PERMI� �„ " ...,..s .O c - R __ 2 / a / s1 ' \ i :' .�!"Ty ST0lA PLAN : 1 r �G _ `\ \, : - \ ``' ` Z♦" \'_____ -"'- • i, '-z s '°"J q' -, i `• i 1 - ---,4�-'�e(4• 11i 21. `•� �0P OF �_-�-- _ _ •-- to - _ _ z `' - - - _ - _ . . f♦, t„ \ ' " - t` �' -''Q:, . ` 6 . C .` �81.OPE 1,; _ - _ _ `''� \ - ..? pF "` - - - \�YJ x j F■■ ■■i'' C SS -SECTION LOCATION "_ ,. ■ .<:G .`t _ i,.: - �� ?1 11 �I ' ` �1[S 'Y 1 TOE OF_ "`-�. TD.46' !!y ; .713 - _ �C,�.'510 T1 - ,� f 'A' i ♦ $LQ, /1Vs 128 SGtj 'R y SLOPE yo ! ��' - OF F 5 O� Nj,' l� / /s i -, - �� ® APPROXIMATE LOCATION OF BASE OF SHEAR KEY t _ -, U f TOP eG2l . . _ ♦ �20 SLOEPE a ' f :I F SLOPE . „ , 1 i t2 ` r L , ,(, IIYl. FA F " '� // 7 < \ "�Y P& '''I:° IIk&I& . - - -'' ♦ _ - . - li I �O N 'tio' Its I \°s -"t _ • •' 1 �---,� _. 710 ��(j r 9 / $ APPROXIMATE THICKNESS OF OVEREXCAVATION REQUIRED . _- i" w - ' ' , T. -`�l"� ~, T- - - " - I '� .- N 1 h� 4 - �+-�fIQ� -' " `f0_ �- \ 4% 42' • __ 1 ``� Y .y - I `'` F _ 5 APPROXIMATE THICKNESS OF FILL TO BE PLACED ABOVE +r �tJl �' ... k� ; :-', V-- 'i _i: •f` O t0 1•. +. •`rT - - [ ,x,. - - _ S` 41 46. + 20 / c;__} �� F, ° PL r �, .. CURRENT GRADE Iy. 4 . r \ r �• r % ae-, 'r i� 2V 2 / l T Y �{ �. \� 0 _ \ i_s'. - A o '�`' ram::_,;. '� 6 2 2`'t\R- „ �. o \ c_REMOVE EXISTING 1 - • 120 cgFS'es 3 '<.: , -- f19.42 - - . \ BARS WELDED �3.5 �iAx . D.c. ti , , x ,' b f r ,,: Te / 2.3 122':3 122.4 2.7 �' 1� 4 Z µd r ' * x_ . - / 122.9 ' ^o _ CONCRETE: Y DITCtT< (BIRD 1N ALVANIZED AFTER ASSE�LY) t " 'K°�4�> _-*:^ o o w . ,.�%---� IIVI,.�.-�..,,;I I nee ,"'-� AND JOIN .WFTtf ' 1 ^� f 123.1 -1 �. ,? A \ DOWNyj}� : / 0 /. - . + �,`f'',"z t-1,FF '4£r X.s Fr ,. i. '?• -f "� -4 r / r0 1 .i `� 7� �_� %` '� '� \ \ ;\ - - ;7 -T 1 THICK, STEEL gym..- ^�,, i!'>'. x S a= �} y iK: ' < '%' . r, 119.42 (/�� tiQ O 1 9 \ \ 1. X 5". X 1 �, > w c . TC. `� • • 1 48' y G ! \ \ - -- . -_ - - . / 5 ER '0 4, ANGLE% - : + w-< F .+ ;a. POP y Qom/ (� -- .`- i 's v ,; �, ry •-- ° -., u-Fbyq,; r'+ t1<,,r» 3 d } _9--. - 'r7 1 R ERTI - O_� x �. " \ > STIFFENER , L .8-�": a F: su $,:f 3 'l x=s.. 9.64 � 9a LINES (TYP 9' c? 'Y . \ , + _,l._ -.1 .. M< :. Y, a�g y4 az�r �',`D�A ••<` - . . \"1-) + a - C) a, �+ ST `'\ _ ' , x _ - .w '-1, t 4t4yiJw. r'i' . A �;jii. - - t y i t.. .wer?'i+$:4 ...: V rC e x 4 23.6 i .r' lJ� 9 `` - s l SEE PLAI t �:fi �, . �„ �. �-�A . �, \ - N 5- c, \ `�'` i .S ,=�zn,..t�,.e;;�s.-e�,r„':;',z;:s 'r`" �.., i 119.77 - 6 - 6 e,/yam ` - _, `,e'` - �„c'S+avi4 t.Y. ,g<"=,``un-F�=tsn"a a't.W;m.Yk.•-••' / - • .-� % X ,.Y[ i \ 1 m� A FOR.° _ ..., �' � s. ...�., 8 43' ` i _ t' - o \ "I V 1!- ^ ,..yam ev. -'a ,ie, a `e _`A` tif' - Y: _a-�. , '?k+s>4•' - - - _ _ •s \ - '/. �. SIZE - C:, et ■ ? .t>- .,M 4, ✓1 ry'r,l lr'P`'c,'" Y,.' :u `l i,. ',f,,., - 4 ` -- .. ,- ,�• ` ! <d , _;;>< 3c>F'se k, y„w= ,r .0 ,'`Y.:X, S f`,,w.. N. r,.4 ¢i .',. '�'� 1 - , ♦ . _ / q 123.9 �' `; - {', pR 5' ., _ >sf;.., �a ,,, , "'xa - _ �S' / _ • 1`0ATLERNA - - • EX P DRAIN':.' g C„,•... s, o. o.[ o. .$ g �q \ ISTTN�n/3q"6.9C . - >:,s;,, ' s ' n Rp`AiE11Nt;[i 9 •v lC 4 1V o.5= & ~` S 1 KET h - I l '�j 1� G W �. 4 ' 44PBON &RIP- s, A � Fes, � v - - I ` iq `� �� 0.51 :� / • .� 124.1 4! � \ � � � t 1 ! 10 • ��OVED PER DEi , t - s f a s� ,, , ,, :rip BE BtiC s R ` 82 < '� ` ,% .4 n _�A ti �o 7 F\ c1 « , ?l. miv. fA{pl. v q 119 0 _ m In _ ♦ 1 / _ _ 2% TQ s' s si':- �...., �p� A, J' �! <,q 4 'V` 4 '\� 'y0 G 4 R7 .L�- �'fS , - e . ty r �- { ON SHEET 13. STORM DRAIN, F .'.ri ter,:' ""t".�,y, TC c , ti k � `_ �c 8 \ DOWNDRAIN C / _ s It aby'3;1C a5R3i try 1V S0 124.5 1 ; j ,' - { '! � `r ,,ia "'';rt ,� ^S�+" "' ' ! - _ . .' - - - O) .ti II- \1 ,tI - ' • 44' I 1 6 g - ',� -- \ \ � \ \ � , SDR 35 S€€ - - _ " - ■ i - 't alga ' K '4 -vr�> .r ( O, 1j91 1,R 5' 47 �5y T 2i 1 +9 - \ry,65 B \y 96 7, �3' - \ - `% `l . ..,.i,' � + '*"••.! { _ 1 4z: 4'�"5.4ja> a. ,. TC 4 1 __-•- 4s -_ to ��e I\�c \?y. � 124.s ', - ••\\ \ PLAN _ i I PLAN F R SIZE -_ . ,,. r+ • � _Z \ ti 0. � O BAND COUPLE Fl s . - g.:SS 01' 7 8 3J` I� ^ G 47' S� \�� \ \2� �0 \ \ a - � ` \ 1 _; _ - _ - { - • ., >x r. '§.-: .a c' 'F`°i L W '� \\9' 4 79'g2 f T.D.20' \ _ _ ` �2 �G� ` t� 21 3y ` - y \_ \ - . . '1 1 •' 3 " - .c £ .+,j''ir -\ -TC- i1 BR46' �2,, p ,li� 1 �g J 1 Y , ,fir£ Vim•, r EVC - _ _ 1 ;,, G IT' N. � - _ _ 1, ZcI ,y4 , \ \ ry r ,aa 4 1� 4*a-1"r 63 ; ,1 \ t24.s JOIN OF j1 . / i ;; `z" r_ 4; 41 5 22' 22 .5 In 2 3' S` 4 I,. 5 4 211 260 �' . DOWNDRA(N TO I •I - i $ i,A y 14 1 6 14 N - �� l• p 1 � i tc`/+,42 \ \ \ \ :AP 122.3 .122.3 122.s 122.7 123.0 6 �s ,� ce tc \ ry 4 6 EXISTING' V-DITCH DE" 6". , sF �- �1l �. \ NTS - . e �, . 6 !r �� 7 \yp2 x 123.3 t % X - la ` \ 1 \ �� ti e G�C�/ ?err 1. Tci'2 �tcl� 4 ti� (\/1'2-3.5 s. R 122.s9 5S.3o� 124.9 �,, '. V r 1 $ ia` �;�' YY r.-! .. 7 .,.. a - •�' \ 17 - `� V r+,� �.\ IV• 1�' �%• "V; ` \ t _ _ ',,. ..1 r ,a t - '' -*z ,V £",R f r Y�' K .;.�, t. '" 1 2 O- Oi' _ / - 6. 6"I -,- $; .y �k-, ^,, ` f 1 r¢' , ;::3' ;; t£ 79 1,9.'S .� ^ .o. T \ 12.5. 'C `:>t - - , i 3Ar: " w" I', bs >"`:r;''' d. TC3T >C B' T'\ 47' 26' 20' 4 n 123.8 9 �18 �fr . t� \ t 125.2 h �' \ l <v s IAA ` -- 4 a � ', � s. SDR 35 INLET ..DERAIL = I T .?Tt ' 6' M 3 VARIES 124.0 \\\ ,2 va ti ♦ \ 2X V •\ �I �1 J \ NTS' 't,>, w<µiy +. 5rA"> :. s - �\9os 77 08 �- �� \ ZQ y 13. 8' MIN T N �- tc �ti2 1 2 % t i •.': 1201 , FK Y = ti _ - _ ti o 1 O v 2 t\ t- - _ .. z-a 'r , i3., i.,M w n _ >, , +•'' �G. TC '. 125 '.• \ '. Q ? f OF 1 ON 1 Rj 2 S ',, - .`.I, '7 - 1 // _ • - „aw,- '' _ -< Y i t ; 'a' y,�4te4s r;A' i; _`F'bf'',s, �4,A 'L� w \�y0� 17yC7 •\1�' \�' `Z` _'tG �S' `S(OPf t 1Q' �ts 1.OZ 1' '(Go` \1 ' "� �O , t ` - _ ii _ I /// ' S `3� ;� = c. .,s±,A,^. ".:. .�,i�� �` �&'�,w ,<', e;;,.�3 i i' (t' ie �C '%C 4 1 M 4 '.�O \ I - 3"� 1 25.4 t ` \ - + - / 1 • ,t r.. - a, _ b'k.:£�„#., "tiw''rl'- ._ ! d_y.�'1Ss>Er�k''s:^ a$ :, --- --- 1 \ �J �4' '� - - I z .ft•, ,.�.,�; s J .<,,�';..;'s,'`.>,^•;" ''7 v>s_"i�': ;i:,<.: pd _ 73' O 130 .\`L 0 �� ` 124.4 8 ,mod 9 12?.35 ) - - 4. 23' TYP 0� !? \ y 10 . Q I \229 I«-13' ( R \ \ a �r � .� , I�. I 1,. 1 __�L -_.I.I __1I 1­1 1I-­��._II "I! �. _��. I �_�;_I I� �II r "x�II, I ,� Il;/ �iI_-� l.-_I� , - _I -. 1. �I"1. 4�, I �II � _I � ! Iv ,.� _�_- _ - �� �-II - ". � � .I. - ­� .I�,. , ,­ ,7�I + - j i - 8 "_ r i , 'tom - `' .>-•S,.'ma 3., r t. .5 27 2%' .5 J. 4 135 '�j� JJ' 't �A ` I�j n i -� \ ' i /ji 7.D.25' ram. " '`' � CVC �S,`r --�- \`�� \5 "' h 124.4 11 .tih\� 1+�vc \\ T�4j N A 64' �' 3;ti �� , > V' <, - .. � �-c . ___ - 7 `_­- - -_�__­._ 1� _97_1 p 1-7�'' b___ -.11 . -_- II - C.// - � •, . ''8R Q5' ,`-,:`r:".a':.�a> STA 1+9 �T,.,.�u^,<,,;; - - - 1rz.,,;,_;: , BC "'_' Isplg ,- � !/- _ - - /-- OF OP 1 \� 3 ``t S / I \\ t23.53\ 1 t \i i ; 120.17 n TC "' '� 3:1 14T Pif 140 _�ELfAVE f - - Z \ °!a `'� I IZ. -\ TC l t2s- �� 7 Q c 1 //�� , IV y'?�yA'x t, o II 140 _ -r-_ I3' \ %fit •sal T 66• \ ha 0 'A ° S\'�i .F „ (O x X a y' ;. - 9• og 137 _ I 11� Q r i ��' o/ Of �\\t� wa z.< N + '` t --- -- 135 ! 1• 135 �� 1' Oei \�3 I �■ ' �p �. `t' . < Eve ! / rp Ri 1�' OS• �� \\�I -� tt 1 ��' \3 t 1 } s ,'� _ - �,, ate;-+s.a;# „a - 30' F<n r^� :r s wa'y -. .� c',S •J' `� �. �1, . o� '� ^'�. 1 N I 1� 132 i t t A\\ - *+I . '-;a;,rt'S. - -=g"'`.�:: ss' 1 130 `b 1 12 - i _ _ - _ - - - - o'r �` "° a 4y I - _ram a° ;\�. TC14 . _.� to 1 ( L Q 1 I 1 /� C 4„ „ ,^`< 2 " . ,.ii ,18 1113 - III„ s;: „tc - M 125 125 k i 1 - \1 SI.iALl:. k I 1 , �, r . < - 120 1+I A' 3:1 SLOPE I I 1 3:1 SLOPE `' - .i'' 1 ^� - - - -- - - j - �� BR49,12' �, SLOPE tzo I 120 - 43' IA / !f t� ` I -_ _ - - - - --.._. - -- - _ -_ , ----- - --__----- .._...-_ - - _ -- - -- - - - /I � - _ - -- - - --- --- -- - GW ,-.- ---.--- TRANSITION 2:1 SL TRANSITION ' _ �_. -, - - ..--ram _ - _. r- .-.--�''_-.. c �...- . _ - _ - - .»-� ..�" _.,-- .__----- - 7RgCT= gOUNDjJ3Y - - ' '- _ • r- - --- � SEE STORM DRAIN PLANS - - /PROPERTY LINE 1, J _- - "- - - -'--- RETAINING WALL N0. 5 TO BE, -- FUTURE SOUNDWALL SEE ' ` -- ^ ~ '+ FOR CONSTRUCTION DETAILS -s- - -T S _ FOR CONSTRUCTION DETAILS -_ _ _LANDSCAPE ARCHITECTS PLAN - I _- . , � ERTY DLI� - _ - -- - -- - _. _ - -- - - BUILT PER SEPARATE PERMIT , , . . - - - - -- '-- -- -- - _ _ _- -I •__.._-- ..-- .,• -- -- -- --- ----- - --- - -- • .. - -- - --- - - --. . r JAMBOREE ROAD, _•---- --`, -' ;" _ r 1 -, t ...�.__....-�._.�__. - - t �,.,.,,-_i-- _ .__ _ __ c �•.. ____ - - __ _- - ._ . . - ---- - . _ _ "--- _ _ -. _� _: i : ` + - _ . - - - _ __ i �j, ___ _________ __ _______ _ _ ____ _ __ __ _ _ __ ____ _ _ _ . --- _ _- - - i � T � ; .� � ) -- - - - - - - - -- - - Ill I A 11 I -- - _ --� / , ` , I - i, i s,. �A b „ � - 1i . � 4 1, , ~a I 1, • . . REVISION REVISION FM : UNM TE SLVL1 OF:,+M BY : Roue cR�►n PaN NJvEM ` DATE NTIAL_S APPROVED NL1lv1EER DATE fVT1ALS APPROVED o V4! - j :I II -�. -I- --I ­ -' I ,. -- .I -I - II s�� I Qt10FESS/p ���vwc. �� NOS CONSUL T/N[3 h� - STANDARD PACIFIC, L.P. No. 20596 m VOID RICH SCHULTz TENTATIVE TRACT NO. 15011 , l -- . .. . d* Exp. 9 30 97 *� - - � � - - - - - ` -CIVIL \Q• - 17320 Redhdl Avenue, Suile 350 (714) 251-8821 - _ _ '' - -, - - ..Irvine, -Ca 92714 FAx 251-0516-' -I IS,fS zwS1 �mwaehur bled costa me c�(z' rnia 9,2626 �r - LOT$ I `=.�_49 :.', CAL 6 .. NEWPORT= °NORTH' - STANLEY C. MORSE - RC€, NO, 20596 ' DATE, '. - - ., „ 5, _ _ - - SURVEYING FLAN LNG.,. ENGIN@ERINc. CITY" OF=_`NEWPORT--BEACH ": 3FEETS, , -T.x _ _ .. - - - - . - -` _ - - . - - _. . I - _ - - _ . t - x - - A 32540�RG 4 T6 0&-' , W , Y,. Y ,n. - _ ,.. . 4 .._ .. ...� .. �� x.,, -. ,a _- .,. , ,. -... . «,. _,- i..,2 " t. , ^' .u. - ._ n x: -_.5 - .2 ... ., -„+._ �. M°ic, xa-_. �>� ..a - , ,.af.T=. 6 - _ -� _ - -' *,�' ` a'- - _. � _ ... ... -� - ..»- .d'm 'ea . : s w ..- . - _ _ -, .i i - _._ :. - .. _ . �.., _ ".-_ a S`.'.._ ......, . 1r._:id:`::_✓_ ,-..«,:�'�Yas•'^'."-.....-'"2��1?vL`,:>Yet4. <.: M£, _. ,..$..,,,' . r. r' _� . Qt C1QF-1N�T-PER STORM DRAIN PLAN \ 2 CONSTRUCT SDR 35 INLET ASSEMBLY PER DETAIL HEREON 3 INSTALL 6• DRAIN PIPE ASS SDR 35 l { ,, ® INSTALL 8• DRAIN PIPE AIRS SDR 35 © INSTALL 1Z• DRAIN PIPE ABS SDR 35 \ . - (2 INSTAL!_ 15• DRAIN PIPE ABS SDR 35 `'� , SEWER, WATER STORM DRAIN & EMERGENCY ACCESS EASEMENT 20' ! 10, BAKER I ST. A1, GRADING NOTES .�� a GENERAL NOTES: m ADAMs AVE.ORANGE ,�ID?' 1 z �p ` 1. ALL WORK SHALL CONFORM TO CHAPTER 15 OF THE MUNICIPAL CODE (NBMC), THE PROJECT 1. ALL GRADING RELATED TO THE PROJECT SHALL. BE CONDUCTED IN ACCORDANCE CITY OF COLLEGE ORANGE CO. SOILS REPORT AND SPECIAL REQUIREMENTS OF THE PERMIT. WITH SCAQMD RULE 403. FORCOSTA wRCRouNDs a CITY { w OUGH GRADING -PLANzs �R \ OF 2. DUST SHALL BE CONTROLLED BY WATERING AND/OR DUST PALLIATIVE. 2. AFTER CLEARING, GRADING, EARTH MOVING, OR EXCAVATION OPERATIONS WHILE z Y M ESA �,q. r I RO N E { 3. SANITARY FACILITIES SHALL BE MAINTAINED ON THE SITE DURING THE CONSTRUCTION PERIOD. CONSTRUCTION ACTIVITIES ARE BEING CONDUCTED, FUGITIVE DUST EMISSION n $ a `� SHALL BE CONTROLLED USING THE FOLLOWING PROCEDURES:'TE CT N 1 4. WORK HOURS ARE LIMITED FROM 7:00 AM TO 6:30 PM MONDAY THROUGH FRIDAY; ° GRADED SECTIONS OF THE PROJECT THAT WILL NOT BE FURTHER DISTURBED L� vlcroRLA 8:00 AM TO 6:00 PM SATURDAY, AND NO WORK ON SUNDAYS AND HOLIDAYS PER OR WORKED ON FOR LONG PERIODS OF TIME THREE MONTHS OR MORE O SECTION 10-28 OF THE NBMC. ( ) } INEINP�f E - UNNERscM . SHALL BE SEEDED AND WATERED OR COVERED WITH PLASTIC SHEETING TO10TATIVE TRA F- IN 5. NOISE, EXCAVATION, DELIVERY AND REMOVAL SHALL BE CONTROLLED PER SECTION 10-28 RETARD WIND EROSION. _ OF THE NBMC. U sTH < SL / BAY / U.C.L_, li e GRADED SECTIONS OF THE PROJECT WHICH ARE UNDERGOING FURTHER / J 6. THE STAMPED SET OF APPROVED PLANS SHALL BE ON THE JOB SITE AT ALL TIMES. DISTURBANCE OR CONSTRUCTION ACTIVITIES SHALL BE SUFFICIENTLY AND PROTECTING UTILITIES. WATERED TO PREVENT EXCESSIVE AMOUNTS OF DUST. e r ! / OF ,�yE eoy . PRWECT 7: PERMITTER AND CONTRACTOR ARE RESPONSIBLE FOR LOCATING 3. DURING GRADING AND CONSTRUCTION ACTIVITIES' THE FUGITIVE DUST EMISSIONS ®149 ,f I T f 8. APPROVED DRAINAGE PROVISIONS AND PROTECTIVE MEASURES MUST BE USED TO PROTECT SHALL BE CONTROLLED USING THE FOLLOWING MEASURES: pFI ADJOINING PROPERTIES DURING THE GRADING OPERATION. 9. CESSPOOLS AND SEPTIC TANKS SHALL BE ABANDONED IN COMPLIANCE WITH THE UNIFORM ° ONSITE VEHICLE SPEEDS ON UNPAVED ROADS SHALL BE LIMITED TO 15 T p E ' PLUMBING CODE AND APPROVED BY THE BUILDING OFFICIAL. MILES PER HOUR. ENTRANCES TO ALL ONSITE ROADS SHALL BE POSTED WITH A SIGN INDICATING THE MAXIMUM SPEED LIMITS OF ALL UNPAVED ROADS. SAN i 10. HAUL ROUTES FOR IMPORT OR EXPORT OF MATERIALS SHALL BE APPROVED BY THE CITY ° ALL AREAS WITH VEHICLE TRAFFIC SHALL BE PERIODICALLY WATERED. \ `6 TRAFFIC ENGINEER AND PROCEDURES SHALL CONFORM WITH CHAPTER 15 OF THE NBMC. _`G o 11. POSITIVE DRAINAGE SHALL BE MAINTAINED AWAY FROM ALL BUILDING AND SLOPE AREAS. STREETS ADJACENT TO THE PROJECT SITE SHALL BE SWEPT AS NEEDED TO REMOVE SILT WHICH MAY HAVE ACCUMULATED FROM CONSTRUCTION ACTIVITIES `'G� PO�%� /O \\ � IJ epi 12. FAILURE TO REQUEST INSPECTIONS AND/OR HAVE REMOVABLE EROSION CONTROL DEVICES SO AS TO PREVENT ACCUMULATIONS OF EXCESSIVE AMOUNTS OF DUST. \ i ON -SITE AT THE APPROPRIATE TIMES SHALL RESULT IN FORFEITURE OF THE CONSTRUCTION \ /STORAG € SITE CLEANUP DEPOSIT. 4. NO GRADING (EXCEPT THAT NECESSARY FOR TRAIL ESTABLISHMENT AND IMPROVEMENTS, \ EROSION CONTROL, BLUFF STABILIZATION OR PREPARATION OF THE DEVELOPMENT AREA), 7=,�_ - - DYER I 13.1 ALL PLASTIC DRAINAGE PIPE SHALL CONSIST OF PVC AR ABS PLASTIC AND EITHER STOCKPILING OF SOIL OR OPERATION OF EQUIPMENT SHALL TAKE PLACE WITHIN THE BLUFF C7 }ASTM 2751, ASTM D1527, ASTM D3034 OR ASTM D1785. TOP SETBACK AREA ESTABLISHED BY THE BLUFF TOP SETBACK ORDINANCE. NO GRADING OR STOCKPILING OF SOILS OR OPERATION OF EQUIPMENT SHALL TAKE PLACE WITHIN THE 40 14. NO PAINT, PLASTER, CEMENT, SOIL, MORTAR OR OTHER RESIDUE SHALL BE ALLOWED TO FOOT PROPERTY LINE SETBACK AREA ESTABLISHED BY THE BLUFF TOP SETBACK ORDINANCE _ ` BAY / REMOVED FROMENTER THE SITE NBMC' ORSTORMDRAINS. ALL MATERIAL AND WASTE SHALL BE EXCEPT THAT NECESSARY FOR TRAIL ESTABLISHMENT AND IMPROVEMENTS, EROSION CONTROL, �CE,q /V /L, BLUFF STABILIZATION OR PREPARATION OF THE -DEVELOPMENT AREA, OR. BELOW .THE LESSER E OF 60 FOOT ELEVATION CONTOUR LINE ADJACENT TO JOHN WAYNE GULCH OR 100 FEET EROSION CONTROL FROM A FORMALLY DELINEATED WETLAND IN JOHN WAYNE GULCH FRESHWATER MARSH. ;. �lFOR � 1. TEMPORARY EROSION CONTROL PLANS ARE REQUIRED FROM OCTOBER 15 TO MAY 15. 5. ALL NON -EMERGENCY GRADING RELATED TO BLUFF STABILIZATION/REMEDIATION SHALL OCCUR DURING THE NON -BREEDING SEASON FOR THE CALIFORNIA GNATCATCHER. VICINITY MAP 2. EROSION CONTROL DEVICES SHALL BE AVAILABLE ON SITE BETWEEN OCTOBER 15 AND MAY 15. THE NON -BREEDING SEASON IS FROM AUG. 1 TO JAN. 31, REDUCED SCALE I 3. BETWEEN OCTOBER 15 AND MAY 15, EROSION CONTROL MEASURES SHALL BE IN PLACE AT COASTAL SAGE COLOR THE END OF EACH WORKING DAY WHENEVER THE FIVE-DAY PROBABILITY OF RAIN EXCEEDS 30 PERCENT. DURING THE REMAINDER OF THE YEAR, THEY SHALL BE IN PLACE AT THE END F OF WORKING DAY, WHENEVER THE DAILY RAINFALL PROBABILITY EXCEEDS 50 PERCENT. 1. COASTAL SAGE SCRMS HABITAT SHALL BE REMOVED FROM EAST TO WEST TO ALLOW THE 00p�P rq� I CALIFORNIA GNATCATCHER TO DISPERSE INTO OTHER ADJACENT AREAS OF COASTAL SAGE SCRUB. - IZ 4. LANDSCAPING PLANS SHALL BE SUBMITTED FOR APPROVAL, WORK COMPLETED AND A CERTIFICATE OF CONFORMANCE RECEIVED BY THE CITY GRADING ENGINEER PRIOR TO CLOSURE OF PERMIT, a \O °Olrni� ` UNLESS WAIVED BY THE CITY GRADING ENGINEER. o ! 3' > 2' i 5. TEMPORARY DESILTING BASINS, WHEN REQUIRED, SHALL BE INSTALLED AND MAINTAINED FOR �- L� THE DURATION OF THE PROJECT. o TRANSITION WALL 1' 1' 8" ° 00 00 Q 3' 2' ITE DRAIN PER V) I �� TRANSITION REQUIRED INSPECTIONS GU ON SHEET 2 00 8"x8"x16"x2 COURSES J I � � ��� •` ` ' 1. APRE-GRADING MEETING SHALL BE SCHEDULED 48 HOURS PRIOR TO START OF GRADING HIGH BLOCK WALL � I WITH THE FOLLOWING PEOPLE PRESENT: • : OWNER, GRADING CONTRACTOR, DESIGN CIVIL ENGINEER SOILS ENGINEER GEOLOGIST CITY x I - - GRADING ENGINEER OF THEIR REPRESENTATIVES. REQUIRED FIELD INSPECTIONS WILL bE I - - - - a $• }«Yj OUTLINED AT THE MEETING. I r F` 2. A PRE -PAVING MEETING SHALL BE SCHEDULED 48 HOURS PRIOR TO START OF THE I 133r SCALE 1 "=150' M 35 INLET ER SUB -GRADE PREPARATION FOR THE PAVING WITH THE FOLLOWING PEOPLE PRESENT: I 8""� SDR P EXISTING. OWNER GRADING CONTRACTOR, DESIGN CIVIL ENGINEER, SOILS ENGINEER, GEOLOGIST, °p CITY GRADING ENGINEER OF THEIR REPRESENTATIVES. REQUIRED FIELD INSPECTIONS 134 CONTINUE W.W.M. REINF. STORM DRAIN PLAN GRADE,: WILL BE OUTLINED AT THE MEETING. 132 p ( INTO TRANSITION WALL _ 135 131 �M R%8"x15 x2 COURSES A��F ' { GRADING FILLS/CUTS ( 130 41 40 3s -k- - - - - - - - - - - - - - - 10 ELEVATION =I w w g HIGH BLOCK WALL 1. GRADED SLOPES SHALL BE NO STEEPER THAN 2 HORIZONTAL TO 1 VERTICAL. 136 45 44 43 42 37 .36 35� \ 11V11\J'ZION DRAIN 1 137 129 ` a 2. OUT SLOPES FINISHEDESURFACE.TED TO NO LESS THAN 90 PERCENT RELATIVE COMPACTION 47�j�"" e I `yy �' LE D a1 138 128 ± 3. ALL FILLS SHALL BE COMPACTED THROUGHOUT TO A MINIMUM OF 90 PERCENT RELATIVE I a� 48 . �,y�� 33 PAD ELEVATION a COMPACTION AS DETERMINED BY ASTM TEST METHOD 1557, AND APPROVED BY THE SOILS 139 127 112 111 110 109 108 `e90 V ENGINEER. COMPACTION TESTS SHALL BE PERFORMED APPROXIMATELY EVERY TWO FEET IN I 49 115 1141 113 107 106 32 UlN I TC - TOP Of CURB ELEVATION VERTICAL HEIGHT AND OF SUFFICIENT QUANTITY TO ATTEST TO THE OVERALL COMPACTION EFFORT APPLIED TO THE FIELD AREAS. 140 126 31 I -�C( CF - CURB FACE. 50 4. AREAS TO RECEIVE FILL SHALL BE CLEARED OF ALL VEGETATION AND DEBRIS, SCARIFIED AND 121 122 123 APPROVED BY THE SOILS ENGINEER PRIOR TO PLACING OF THE FILL. I 141 ip16 I 11g 120 124 E'� I 117 118 125 30 ;, � � GB - GRADE BREAK ' 5. FILLS SHALL BE KEYED OR BENCHED INTO COMPETENT MATERIAL. 142 ' r 9 . HP . - HIGH POINT i 6. ALL EXISTING FILLS SHALL BE APPROVED BY THE SOILS ENGINEER OR REMOVED BEFORE ANY ADDITIONAL FILLS ARE ADDED. 143 PVC - BEGIN VERTICAL CURVE 7. ANY EXISTING IRRIGATION LINES AND CISTERNS SHALL BE REMOVED OR CRUSHED IN PLACE, + 51 87 86 85 84 83 82 >: EVC - END VERTICAL CURVE BACKFILLED AND APPROVED BY THE SOILS ENGINEER. 144 52 92 gi 90 9 88 B1 80 7 28 27 26 25 24 2 8. THE ENGINEERING GEOLOGIST AND SOILS ENGINEER SHALL, AFTER CLEARING AND PRIOR TO 21 ` ., I CVC - CENTER VERTICAL CURVE THE PLACEMENT OF FILL IN CANYONS, INSPECT EACH CANYON FOR AREAS OF ADVERSE I 145 53 78 2 19 ` TOW - TOP OF WALL I STABILITY AND DETERMINE THE PRESENCE OF, OR POSSIBILITY OF FUTURE ACCUMULATION 54 99 100 101 102 103 104 �� �" t8 17 I OF, SUBSURFACE WATER OR SPRING FLOW. IF NEEDED DRAINS WILL BE DESIGNED AND 146 93 94 95 g 97 98 105 77 16 CONSTRUCTED PRIOR TO THE PLACEMENT OF FILL IN EACH RESPECTIVE CANYON. I 147 55 76 15 BOW - BOTTOM OF WALL 9. THE EXACT LOCATION OF THE SUBDRAINS SHALL BE SURVEYED IN THE FIELD FOR LINE s * 1 2 3 4 5 6 14 I o - DAYLIGHT LINE AND GRADE. 56 MEET 7g 7 = 8 10. ALL TRENCH BACKFILLS SHALL BE COMPACTED THROUGHOUT TO A MINIMUM OF 90 57 74 �ti I 9 10 1312 ASPHALT PERCENT RELATIVE COMPACTION, AND APPROVED BY THE -THE SOILS ENGINEER. THE 62 65 67 68 69 o o a oa BUILDING DEPARTMENT MAY REQUIRE CORING OF CONCRETE FLAT WORK OVER 58 59 61 ILA 64 70 71 73 11 000gog o - 3/4" GRAVEL UNTESTED BACKFILLS TO FACILITATE TESTING. 72 { I 11. THE STOCKPILING OF EXCESS MATERIAL SHALL BE APPROVED BY THE CITY GRADING ENGINEER. ys► 12. LANDSCAPING OF ALL SLOPES AND PADS SHALL BE IN ACCORDANCE WITH CHAPTER 15 - - - - - -- - SHEET INDEX: OF THE NBMC. - - - - - -5 ^ _ I SHEET 1 TITLE SHEET I . 13. ALL CUT SLOPES SHALL BE INVESTIGATED BOTH DURING AND AFTER GRADING BY AN ---.-- ------ - a --- ---' ----=-- - ----_ ---=---s-- -'-- -- --- - ` � SHEET 2 DETAIL- SHEET ' ENGINEERING GEOLOGIST TO DETERMINE IF ANY STABILITY PROBLEM EXISTS. SHOULD _ ' _ - y EXCAVATION DISCLOSE ANY GEOLOGICAL HAZARDS OR POTENTIAL GEOLOGICAL HAZARDS, r "7 -- _ -. r -- -=---------------------------- ----- ----- _- ._' - I PLAN THE ENGINEERING GEOLOGIST SHALL RECOMMEND AND SUBMIT NECESSARY TREATMENT -- -- �- -- -- -- --� - -- - - - - -- - -- =a =•----- •---- i _SHEET 3 EROSION COPITROL TO THE CITY GRADING ENGINEER FOR APPROVAL - - - -- - _ _-- - -----'--- _.-"_ _ '- `• �" r" -fi -�`- - `� SHEET 4-6 GRADING PLAN SHEETS ~y^ 14. WHERE SUPPORT OR BUTTRESSING OF CUT AND NATURAL SLOPES IS DETERMINED TO BE - - y __ I� I ___ - NECESSARY BY THE ENGINEERING GEOLOGIST AND SOILS ENGINEER, THE SOILS ENGINEER _ - `--- - -- ---------- - WILL OBTAIN APPROVAL OF DESIGN, LOCATIONS FROM THE CITY GRADING ENGINEER PRIOR � - -- - . _. _- - - � , �: PRIVATE ENGINEER'S NOTICE TO CONTRACTOR _ TO CONSTRUCTION. - - - __-- - - THE EXISTENCE AND LOCATION OF ANY UNDERGROUND UTILITY PIPES OR STRUCTURES SHOWN ON .THIS PLAN ARE OBTAINED BY 15. THE ENGINEERING GEOLOGIST AND SOILS ENGINEER SHALL INSPECT AND TEST THE 6. A. AN APPROVED MATERIAL SUCH AS STRAW, WOOD CHIPS, PLASTIC OR SIMILAR MATERIALS A SEARCH OF AVAILABLE RECORDS. TO THE BEST OF OUR I CONSTRUCTION OF ALL BUTTRESS FILLS AND ATTEST TO THE STABILITY OF THE SLOPE KNOWLEDGE THERE ARE NOT EXISTING UTILITIES EXCEPT AS . AND ADJACENT UPON COMPLETION. SHALL BE USED TO STABILIZE GRADED AREAS PRIOR TO REVEGETAION OR CONSTRUCTION. CONSTRUCTION NOTES: -. - INDEX MAP QUANTITIES: UNIT: QUANTITIES: -UNIT: QUANTITIES: UNIT: SHOWN rDUENPRECAUTIO� MEASURES TOO PROTECT THE TO 16. WHEN CUT PADS ARE BROUGHT TO NEAR GRADE THE ENGINEERING GEOLOGIST SHALL B. AIR -BORNE AND VEHICLE -BORNE SEDIMENT SHALL. BE CONTROLLED DURING CONSTRUCTION i DETERMINE IF THE BEDROCK IS EXTENSIVELY FRACTURED OR FAULTED AND WILL READILY BY: THE REGULAR SPRINKLING OF EXPOSED SOILS AND THE MOISTENING OF VEHICLES LOADS. OO INSTALL 12"x12 CATCH BASIN WITH DOME STYLE GRATE INLET 30 EA 14 CONSTRUCT JOIN OF DOWN DRAIN TO EXISTING 1 EA SANDBAG DOUBLE ROW, 2 BAGS HIGH MINIMUM 800 SSHOWN SHOWNONTHESE PLANS, OTHER LINES OR STRUCTURES NOT ] HEREON TRANSMIT WATER. IF CONSIDERED NECESSARY BY THE ENGINEERING GEOLOGIST AND SOILS ENGINEER, A COMPACTED FILL BLANKET WILL BE PLACED. 17. THE ENGINEERING GEOLOGIST SHALL PERFORM PERIODIC INSPECTIONS DURING GRADING. 18. NOTIFICATION OF NONCOMPLIANCE: IF, IN THE COURSE OF FIILFILUNG THEIR RESPONSIBILITY, THE CIVIL ENGINEER, THE SOILS ENGINEER, THE ENGINEERING GEOLOGIST OR THE TESTING AGENCY FINDS THAT THE WORK IS NOT BEING DONE IN CONFORMANCE WITH THE APPROVED GRADING PLANS THE DISCREPANCIES SHALL BE REPORTED IMMEDIATELY IN WRITING TO THE PERSON IN CHARGE OF THE GRADING WORK AND TO THE CITY GRADING ENGINEER. RECOMMENDATIONS FOR CORRECTIVE MEASURES, IF NECESSARY, SHALL BE SUBMITTED -- DOCUMENTATION 1. 2. 3. A GEOLOGIC GRADING REPORT PREPARED BY THE ENGINEERING GEOLOGIST, INCLUDING A FINAL DESCRIPTION OF THE GEOLOGY OF THE SITE, INCLUDING ANY NEW INFORMATION DISCLOSED DURING THE GRADING AND THE EFFECT OF SAME ON RECOMMENDATIONS INCORPORATED IN THE APPROVED GRADING PLAN. HE SHALL PROVIDE WRITTEN APPROVAL AS. TO THE ADEQUACY OF THE SITE FOR THE INTENDED USE AS AFFECTED BY GEOLOGIC FACTORS. REVISION ` NJMBER DATE NTIALS APPROVED 1 2 Z2 i(O-(5biJ15s: Vr�GrTAi1. �flSIAl riv.i- CanlIGUI�RTIo�l, ���E V-DITCH PER DETAIL CONSTRUCT TEMPORARY VISQUEEN SECONDARY OUTLET 130 LF C. AN APPROVED MATERIAL SUCH AS RIP -RAP (A GROUND COVER OF LARGE, LOOSE CONSTRUCT SDR 35 INLET PER DETAIL ON SHEET 4 3 EA 15 CONSTRUCT TERACE DRAIN PER DETAIL ON SHEET 2 715 LF ® L-- ,r .�--,•.•• - _- ANGULAR STONES) SHALL BE USED TO STABILIZE ANY SLOPES WITH SEEPAGE PROBLEMS TO PROTECT THE TOP SOILS IN AREAS OF CONCENTRATED RUNOFF. 0 INSTALL 6" DRAIN PIPE ABS SDR 35 810 LF CONSTRUCT TOP OF BERM SOIL CEMENT 6' WIDE 2160 SF 16 CONSTRUCT DOWN DRAIN PER DETAIL ON SHEET 2 65 LF I ® } ® INSTALL 8" DRAIN PIPE ABS SDR 35 1620 LF 1 EA ® CONSTRUCT TEMPORARY CHAIN LINK FENCE 2550 LF CONSTRUCT SPLASH WALL PER DETAIL ON SHEET 2 1 D. DURING THE PERIOD OF CONSTRUCTION ACTIVITY, EXISTING VEGETATION WHICH WILL BE © OR APPROVED EQUAL RETAINED APPROPRIATE, SIUFFERTE ALL E OROTECVE ETTED FROM FILTER FSTR PS, IC BY HE USAS TALL STANDS OF OF FENCES. IF INSTALL 10" DRAIN PIPE ABS SDR 35 150 LF 18 CONSTRUCT PARKWAY CULVERT TYPE 'C' 2 EA ®9 CONSTRUCT FILTER BERM VEHICLE ACCESS RAMP 1 EA GRASS, CAN BE USED AS AN ALTERNATIVE AND/OR SUPPLEMENTARY METHOD TO PROTECT © INSTALL 12" DRAIN PIPE ABS SDR 35 1800 LF PER OCEMA STD PLAN NO 1309 PER DETAIL ON SHEET 3 AGAINST SEDIMENT BUILDUP. O7 INSTALL 15" DRAIN PIPE ABS SDR 35 200 LF 19 CONSTRUCT TOE DITCH PER DETAIL ON SHT 6 540 LF CONSTRUCT 3" AC OVER NATIVE 120 SF 7. A TEMPORARY BARRIER THAT WILL FUNCTION AS BOTH A VISIBLE WARNING TO CONSTRUCTION ® CONSTRUCT 2' WIDE INTERCEPTOR DRAIN 2200 LF ® CONSTRUCT 4" PERFORATED DRAIN PIPE ABS SDR 35 100 LF 31 CONSTRUCT 3" THICK 3/4" GRAVEL 120 SF CREWS AND A PHYSICAL BARRIER AGAINST CONSTRUCTION ACTIVITIES SHALL BE INSTALLED ALONG PER DETAIL ON SHEET 2 INSTALL ORANGE SNOW FENCING 510 LF THE 60 FOOT CONTOUR ABOVE THE JOHN WAYNE GULGH AREA PRIOR TO CONSTRUCTION OF 121 PLACE SANDBAG VELOCITY REDUCER PER DETAIL HEREON 1200 EA ANY HAVE GRADING OR (INCSITE LUDING EPARALILATION OF LANDSCAP ION AND SHALL IN I PLACE UNTIL ALL SUCH ACTIVITIES 10 CONSTRUCT TRANSITION DRAIN PER DETAIL 10 1 HEREON 4 ® CONSTRUCT STREET DESILTING BASIN PER DETAIL ON SHEET 3 3 EA ® INSTALL SILT FENCING 1050 LF CEASED11 CONSTRUCT 6 BLOCK WALL 2 COURSES HIGH SPLASH WALL 2 Eq 8. ALL REMOVAL, CLEARING AND GRADING WITHIN THE COASTAL SAGE SCRUB VEGETATION AREAS C2� CONSTRUCT GUNITE DRAIN PER DETAIL SHEET 4 475 LF ® CONSTRUCT TEMPORARY DRAINAGE INLET 10 EA SHALL OCCUR IN THE PERIOD BETWEEN AUGUST 15TH AND FEBRUARY 1OTH. ANY REMOVAL OF s�-- �,..• .. .-_.y •.--- - .-•- " - , ® PLACE SANDBAG SINGLE ROW, 2 BAGS HIGH MINIMUM 3000 EA WETLANDS RELATED TO THE SHEAR KEY AND CUTOFF TRENCH SHALL BE DONE AT THE SAME Q CONSTRUCT CONCRETE FLARED APRON TRANSITION TO V-DITCH, 15 SFl TIME. SEE COASTAL SAGE REVEGETATION PLAN. Q ._ PER DETAIL 13 ON SHEET NO. 6 / EMERGENCY TELEPHONE NUMBERS "�1-__`,.--",.,,. -,,"''`,EARTHWORK QUANTITIES BASIS OF BEARINGS BENCH MARK AGENCY NUMBERS SOUTHERN CALIFORNIA GAS COMPANY 634-0251 CUT SOUTHERN CALIFORNIA EDISON COMPANY 895-0221 PACIFIC TELEPHONE COMPANY 611 CITY OF NEWPORT BEACH (UTILITIES) 644-3011 FILL COUNTY SANITATION DISTRICTS 962-2411 COMCAST CABLEVISION 542=6222, AFTER 6:00 PM 542-3975 COMMUNITY 720-4040 UNDERGROUNDBLEVISION SERVICE ALERT 1-800-422-4133 IMPORT PREPARED FOR: I PREPARED UNDER THE SUPERVISION OF: STANDARD PACIFIC, L.P. 9565 Most maearthur blvdloosl¢ mesa, cal2lomia 92626 2629000 C,Y, 2629000 C.Y. 0 C°Y° PREPARED BY: THE BEARINGS SHOWN HEREON ARE BASED UPON THE BEARING BETWEEN O.G.S. HORIZONTAL CONTROL STATION NO. 6249 BEING N 41149'45" E PER RECORDS CURRENTLY ON FILE IN THE OFFICE OF THE ORANGE COUNTY SURVEYOR. MDS CONSUL TING N0. 20596 m MORSE DOKICH • SCHULTZ a Exp. 9-30-97 * * 17320 Redhill Avenue, Suite 350 (714) 251-8821 %q7F CLAUF\P Irvine, CA 92714 FAX 251-0516 1� PLANNING • - ENGINEERING - • SURVEYING HORIZONTAL CONTROL BASED UPON CALIFORNIA COORDINATE. CONTROL SYSTEM CONE VI. VERTICAL CONTROL BASED UPON BENCH MARK NO. 3N-56-77. ELEVATION = 117.59, ADJ. 1985 CITY OF NEWPORT BEACH THIS PLAN IS SIGNED BY THE CITY OF NEWPORT BEACH FOR CONCEPT AND ADHERENCE TO THE CITY STANDARDS AND REQUIREMENTS ONLY. THE CITY IS NOT RESPONSIBLE FOR DESIGN ASSUMPTIONS AND ACCURACY. PUBLIC WORKS DIRECTOR DATE THE CIVIL ENGINEERING SHALL NOT BE RESPONSIBLE IN ANY WAY FOR THE CONTRACTORS' AND SUBCONTRACTORS' COMPLIANCE• WITH THE OCCUPATIONAL SAFETY AND HEALTH REGULATIONS OF THE U.S. DEPARTMENT OF LABOR OR WITH THE STATE OF CALIFORNIA DEPARTMENT OF INDUSTRIAL RELATIONS; CONSTRUCTION -SAFETY ORDERS." SOILS ENGINEER LEIGHTON & ASSOCIATES,; 17781 COWAN STREET IRVNE, CA 92714. (714) 250-1421 " ROUGH GRADING ' PLAN �c SHEET `1 TENTATIVE TRACT NO. 15011 LOTS 1-149� OF NEWPORT NORTH` CITY OF NEWPORT BEACH SHEETS ; - 32540\RG-1 DATE 02-16-% ` ( P MAR 8,'1996 {r ._�_v �-�-.�.�-_� ...-r.�_f-.._�.� -.. __.. '.1 -_ ..�i �`_` 11�`... ..__� _ .:.1_:._ -:_ •�:i- - -- 'iy��_.: ___ v , aa•_.:�4L+���.J-i,c .c