Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutNEWPORT N ROUGH GRADING_NEWPORTER NORTH111111111111111111111111111111111111111111111111
*NEW FILE*
Newport N Rough Grading
I
I
I
I
I
I
I
I
I
'I
I
11
I
ASSOCIATES, INC.
Geotechnical and Environmental Engineering Consultants
GEOTECHNICAL REVIEW OF ROUGH GRADING
PLAN, TENTATIVE TRACT 15011, NEWPORTER
NORTH PROPERTY, CITY OF NEWPORT BEACH,
CALIFORNIA
August 9, 1995
Project No. 1851578-04
Prepared for.
Standard Pacific Corporation
1565 MacArthur Boulevard
Costa Mesa, California 92626
1 17781 COWAN, IRVINE, CA 92714
1714) 250.1421 • (800) 253.4567
FAX (7141250.1114
[J
r�
1
J
I
I
I
L�
11
I!
Geotechnical and Environmental Engineering Consultants
August 9, 1995
Project No.1851578-04
To: Standard Pacific Corporation
1565 MacArthur Boulevard
Costa Mesa, California 92626
Attention: Mr. David Foell
Subject: Geotechnical Review of Rough Grading Plan, Tentative Tract 15011, Newporter North
Property, City of Newport Beach, California
In accordance with your request and authorization, Leighton and Associates, Inc. (Leighton) has
performed a geotechnical review of the rough grading plan for Tentative Tract 15011, known as the
Newporter North property, in the City of Newport Beach, California. The purpose of our review was
to compile the available geotechnical information concerning the site, to evaluate the anticipated
geotechnical and hydrogeological conditions, and to provide recommendations for the proposed
grading.
Our review is based on the 40-scale Rough Grading Plan, Tentative Tract 15011, prepared by MDS
Engineering, revised and transmitted on July 21, 1995.
The scope of our review consisted of evaluation of e:dsting geotechnical reports, maps, and field
conditions; preparation of representative cross -sections portraying our current understanding of
geotechnical conditions; analysis of geotechnical data bearing on specific site conditions; performing
a limited study of ground -water seepage potential, and preparation of the accompanying report
presenting our findings, conclusions, and recommendations for rough grading of the subject site.
Among the key findings of our review, we note the following:
It is our opinion that the rough grading plan is acceptable from a geotechnical viewpoint,
provided the recommendations in the report are implemented during design and subsequently
during grading.
• A shear key and stabilization _fill with a deep subdrain are needed for the slope above San
Joaquin Flips Road in order to meet the generally accepted criterion of a safety factor for gross
stability of 1.5 and specifically to reduce the water -table elevation.
• For the bluff above Back Bay Drive, a setback zone for structures at the top of the bluff is
incorporated into the grading plan.
17781 COWAN, IRVINE, CA 92714 (714) 250.1421 • (800) 253,4567
FAX (714) 2504114
l _l
1851578-04
I
• The loose, compressible, and permeable Quaternary -age slope wash deposits, terrace deposits, and
highly weathered bedrock that cover the top of the mesa should be removed and recompacted
in order to provide adequate support for structures. This cap of engineered fill soils is also an
important element in reducing the potential for infiltration of surface water and for future
seepage from the exposed bluff faces above Back Bay Drive.
• Diatomaceous soils pose a special condition on the specification for compaction criterion for fill
soils at this site.
Additional geotechnical constraints are described in the accompanying report.
If you have any questions regarding our report, please do not hesitate to contact this office. We
appreciate the opportunity to be of service.
Respectfully submitted,
]LEIGHTON AND ASSOCIATES, INC _
Osman Pekin, Ph.D., RCE 49561 No.C4s5st
Senior Project Engineer *�
f1 _ A _ mil_ /96
CIVIL/
' Rosalind Munro, CEG 1269
Principal Geologist
BRC/OP/RM/elr
Distribution: (4)
(4)
II
II
If
I
1'
Addressee
MDS Engineering, Inc.
Attention: Mr. Skip Schultz
Bruce R. Clark, CEG 1073
Principal Geologist
-2-
LEIGNTDNAND ASSDCIATMA INL
1951578-04
TABLE OF CONTENTS
Section
Page
1.0
INTRODUCTION....................................................
i
•
1.1
Purpose and Scope ...............................................
1
1.2
Site Location and Description .......................................
2
•
13
Proposed Development ......••••••••••••
2
!
1.4
Limitations.....................................................
4
2.0
GEOTECHNICAL OBSERVATIONS AND FINDINGS ......................
5
5
2.1
Geologic Setting .................................................
2.2
Bedrock.......................................................
5
2.3
Surficial Deposits .......................
1
2.4
Geologic Structure ... ..................................... .
6
2.5
Seismicity and Seismic Hazards ......................................
7
2.6
Landslides .............................
2.7
Ground Water and Seepage ........................................
9
2.7.1 Ground -Water Seepage Model ...............................
10
2.8
Rippability and Oversized Materials
11
2.9
Slope Stability ..................................................
11
2.10
Expansive Soils .
12
'
3.0
CONCLUSIONS AND RECOMMENDATIONS ..............................
14
'
3.1
General Conclusion.........................................
14
3.2
Slope Stability ..................................................
14
'
3.2.1 Cut Slopes ...............
14
3.2.2 Existing Slopes ...........................................
15
3.23 Fill Slopes .
16
I3.2.4
Temporary Cut Slopes ......................................
17
3.3
Removal and Recompaction of Unsuitable Soils .........................
17
3.4
Diatomaceous Soils.............
17
3.5
Lot Capping and Selective Grading ...................................
18
3.6
Subdrains . .................................................
18
3.7 Surface Runoff and Ponding ...19
3.8 Expansive Soils . • • . •.. • ..... •• ...... • ... • .. • .. • . • ... 19
3.9 Reinforced Fill Slope Design ....................................... 21
' 3.10 Maintenance of Graded Slopes............................21
3.11 Observation and•Testing During Rough Grading and Postgrading ..... • . • ... 21
3.12 Lateral Earth Pressures and Retaining Wall Design ...................... 22
' 3.13 Areas Requiring Additional Geotechnical Input ......................... 23
1
-i-
I
INGNTOMAND ASSDCIATU INC
1851578-04
TABLE OF CONTENTS (Contd.)
' Appendices
Appendix A - References
'. Appendix B - Deterministic Seismic Hazard Analysis
Appendix C - Geotechnical Logs of Borings, Trenches, and Test Pits
Appendix D - Laboratory Test Results
Appendix E - Results of Slope Stability Analyses
Appendix F - Ground Water and Seepage Study
Appendix G - General Earthwork and Grading Specifications
List of Tables and Illustrations
ITables Page
Table 1 - Summary of Existing and Proposed Topographic Conditions
2
'
Table 2 - Summary of Slope Stability Analyses
16
Table 3 - Summary of Geotechnical Parameters for Post -Tensioned Slab Design
20
Figures
Figure 1 - Site Location Map
3
Figure 2 - Typical Section Showing Setbacks from Bluff Edge and Trail
13,
Figure 3 - Retaining Wall Backfill and Subdrain Detail
24
Plates
'
Plates 1, 2, and 3 - Geotechnical Map
In Pocket
Plate 4 - Geotechnical Cross Section A -A'
In Pocket
Plate 5 - Geotechnical Cross Section B-B'
In Pocket
Plate 6 - Geotechnical Cross Section GC'
In Pocket
Plate 7 - Geotechnical Cross Section D-D'
In Pocket
Plate 8 - Geotechnical Cross Section E-E'
In Pocket
Plate 9 - Geotechnical Cross Section F-F
In Pocket
'
Plate 10 - Geotechnical Cross Section G-G'
In Pocket
Plate 11 - Geotechnical Cross Section H-H'
In Pocket
Plate 12 - Geotechnical Cross Section I -I'
In Pocket
' -u-
LEIGHTONANDASSOCIAM INC
' 1851578-04
' 1.0 INTRODUCITON
1.1 Purpose and Scone
' This geotechnical review and the accompanying analyses were performed by Leighton and
Associates, Inc. (Leighton) to evaluate the geotechnical conditions and to provide
recommendations for earthwork construction at Tentative Tract 15011 in the City of Newport
' Beach, California. The Rough Grading Plan, Tentative Tract No.15011, was prepared by MDS
Engineers, Inc. at a scale of i inch equal to 40 feet and delivered July 21, 1995 in three sheets.
The Tentative Tract map was prepared for The Irvine Company by Van Dell and Associates,
' Inc. at a scale of 1 inch equal to 60 feet, dated October 1994.
The 40-scale rough grading plan with topography was used as the base for the Geotechnical Map
to illustrate the geotechnical conditions and proposed remedial earthwork (Plates 1, 2, and 3).
Our work included the following tasks:
• Review of pertinent published and unpublished maps and reports (see Appendix A for
Ireferences);
• Review of historical sets of stereoscopic aerial photographs (see Appendix A for list);
• Drilling of four bucket -auger borings, and review of the logs of twelve bucket -auger borings
drilled in 1986 by Geosoils, Inc. and eleven bucket -auger borings drilled in 1990 by Geosoils,
Inc. (Appendix C);
• Review of the logs of nine trenches excavated in 1990 by Geosoils, Inc. (Appendix C);
' • Preparation and analysis of nine geotechnical cross sections for slope stability (Appendix E);
• Laboratory analysis of representative soil and bedrock samples, and review of previous
analyses by Geosoils, Inc., for in -place moisture and density values, shear strength,
consolidation characteristics, and permeability (Appendix D);
' • Performance of twelve packer tests from three air -rotary borings to a maximum depth of
60 feet, to test the in -situ permeability of bedrock in the vadose (unsaturated) and saturated
zones;
' • Analysis of ground -water conditions and the effect of proposed development and mitigation
measures on the potential for infiltration and related seepage at the bluff face;
' • Development of remedial earthwork measures to be implemented during grading and
earthwork activity,
• Preparation of this report, including the accompanying geotechnical maps and cross -sections
(see Plates 1 through 12).
' 1EIGHIONAND ASSOCIATA INC
1851578-04
1.2 Site Location and Description
Tract 15011 is situated on a nearly flat mesa above the eastern bluff of Upper Newport Bay,
approximately 120 feet above mean sea level (Figure 1) . At the present time, the mesa is
covered by wild grasses, except in a local area in the northern portion of the property, where
a dammed swale downstream of a storm drain outlet has created an ephemeral pond surrounded
by a wetland of low trees and shrubs (Plate 1).
The site is bounded by Jamboree Road to the east, San Joaquin Hills Road to the north, Back
'
Bay Drive to the west, and John Wayne Gulch to the south. The mesa top slopes gently to the
west from Jamboree Road toward Back Bay Drive, but most of the 100+ feet of vertical relief
across the property is localized in a steep bluff along the western margin of the property
immediately adjacent to Back Bay Drive.
Table 1 provides a summary of existing and proposed topographic conditions.
'
TABLE 1
Summary of Existing and Proposed Topographic Conditions
Feature Existing Condition Proposed Condition
'
Lowest elevation 10 feet msl 10 feet msl
Highest elevation 123 feet msl 141 feet msl
'
Elevation difference across developed portion 15 feet 51 feet
Highest natural bluff face 101 feet 101 feet
Maximum structural fill thickness -- 30 feet
internal finished slope height ---- 30 feet
IMaximum
1.3 Proposed Development
The proposed development will be at approximately the grade of Jamboree Road, 110 to
120 feet above sea level, with property lines set back from the bluff face above Back Bay Drive.
' The shallow dammed swale and its wetlands vegetation will remain undeveloped. Approximately
28 residential lots lie to the north of the swale, and approximately 140 lots are to the south of
it. The setback between the top of the bluff and the edges of the perimeter lots is more than
' 65 feet, within which lies a bluff -top trail will be located
A series of graded earthen mounds -is proposed to be landscaped in the strip between the
residential lots and Jamboree Road The mounds will reach a maximum elevation of 141 feet
msl, and in most places range from 10 to 20 feet above the adjacent lots.
Along the southern margin of the property adjacent to John Wayne Gulch, the pads are
proposed to be cut to a finished -grade elevation of approximately 25 feet below the existing
grade. The pads across much of the rest of the site are to be filled to a height of 5 to 8 feet
above current ground level.
-2MW
-
Lr10HTONANDASSOCIATA INC
• ::A ' a, "% ,• 4 � j:•�J '�' �� �,• !Canna del Ma
` m •Par ?; o r,�_?3 •y- •,I NAWN
:9 ✓„^,y ;thy ..��P. ���:� <� •a-+`"�Iy � ' (�lH
v ell
*u; +,. _ sdh C �` 3 i=' 'I a w,J...BIg• ►�
SUBJECT SITE' : A
�'C?Sel' �' .! `;.` low'.• .V eY.� /•P� // O
'_ _ rah 1naa;: i� � •.:• i • It••t
sly. / ��`',•,,,.; .• �•J . (J�r\ \ �� ��.I.
_�QO,� �� ___ 1 _ 101nOn rya �� i 7• � ��\•i •
^•�;, �\ � .'!.. "..:: _ ___`� —'—� � 73: � \ Count i `
arbor /.. = o I • •\ ^r : t
}oflinsc
�, .. W • 34.-._ .-'uen.— 17�R ;.. - �� �T`P e'�5; ' 1 \ �.� "•`'I — \etn
02 o •,14 3�^-. _gym
SITE LOCATION MAP
BASE MAP: U.S.G.S.71/2 Mlnute NEWPORT BEACH QUADRANGLE
NEWPORTER NORTH PROPERTY Project No. • 1BSS78-04
TENTATIVE TRACT 15011
CITY OF NEWPORT BEACH, a/siss
CALIFORNIA Date
Figure No.1
-3-
' 1851578-04
' The bluff face along Back Bay Drive and the westerly portion of the slope above San Joaquin
Hills Road are to be left in their current state per the requirements of various jurisdictional
agencies. The eastern portion of the slope along San Joaquin Hills Road is planned to be
removed and recompacted as a stabilization fill in order to improve long-term stability of that
portion of the slope, and to control the existing seepage of ground water from the slope face.
' A 1.5:1 reinforced (with geogrid) fill slope with a Loffei wall locally within the fill slope is
proposed above the shallow slope along John Wayne Gulch, from an elevation of approximately
60 feet to approximately 75 to 88 feet. Also, portions of the next tier of slopes from
approximate elevation 88 to 116 will be up to 1.5:1 geogrid-reinforced slopes. All other
manufactured fill slopes are designed at a finish gradient of 2 horizontal to 1 vertical or
shallower.
' IA Limitations
' This report was prepared for the sole use of the Standard Pacific Corporation for the purpose
of implementing the specific grading plan referenced above. It was necessarily based in part
upon data obtained from a limited number of soil and/or other samples, tests, analyses, histories
' of occurrence, spaced subsurface borings and trenches, and observations of others. Such
information is understood to be incomplete; differing characteristics and conditions can be
present within small distances and under various climatic conditions. This report is not
authorized for use by, and is not to be relied upon by any party except the Standard Pacific
Corporation. Use of or reliance on this report by any other party constitutes an agreement to
defend and indemnify Leighton from and against any liability which may arise as a result of such
use or reliance, regardless of any fault, negligence, or strict liability of Leighton.
I
I
I
I
I
i
1J
1
i
1851578-04
2.0 GEOTECHNICAL OBSERVATIONS AND FINDINGS
2.1 Geologic Setting
Tentative Tract 15011 lies at the northwest end of the San Joaquin Bills geomorphic province,
an uplifted fault block between the Newport -Inglewood Structural Zone to the southwest, and
the Elsinore Fault to the northeast. The San Joaquin Hills block has been dissected by the
Santa Ana River and its tributaries. The site itself occupies a nearly flat mesa on the east side
of Upper Newport Bay, which was the principal mouth of the Santa Ana River in the early part
of this century. Today the bay is the outlet only for San Diego Creek, which was originally a
tributary to the Santa Ana River. The main Santa Ana River outlet is now a few miles to the
northwest, on the west side of the mesa on which the City of Costa Mesa is now located.
The site is underlain by folded and fractured beds of the Tertiary Monterey formation, capped
by a thin veneer of sandy Quaternary terrace deposits. The base of the terrace deposits is a
wave -cut platform created when this section of the San Joaquin Hills block was at sea level,
approximately 120,000 years ago. The broad uplift of this entire section of the southern
California coast during the past 250,000 years was probably accomplished primarily by
accumulated movement on the bounding fault systems, especially the Newport Inglewood system,
which passes at this location just offshore to the southwest
2.2 Bedrock
Monterey Formation (Mal! Symbol: Tm): The Monterey Formation underlying this site is a
sequence of marine sedimentary rocks of late Miocene age, which is well exposed on the steep
bluff above Back Bay Drive. The rock types are predominantly siliceous and non -siliceous clayey
siltstone, with abundant interbeds of clayey diatomaceous siltstone and fine sandstone. Local
irregular lenses and thin beds of water -laid iufE; commonly altered to highly plastic clay, are also
present. Beds range from less than 1/4 inch to approximately 3 feet in thickness, and bedding
is commonly very pronounced. Joints are common and closely spaced; at least one set is
oriented nearly vertically in the bluff face. They vary from slightly open to closed or filled, but
appear to be the primary source of permeability in the bedrock at this site. Landslides in the
Monterey Formation are generally common, and occur as rotational slumps or earthflows in
highly weathered portions, or as block glide failures along bedding planes where adversely
oriented, unsupported bedding is exposed in slopes. Monterey bedrock is generally rippable, but
may generate some oversized blocks in the highly siliceous siltstone. The presence of diatomite
in the finer grained beds produces very low density soils with very high natural water content.
These materials may be difficult to compact at their existing moisture contents and may need
special compaction criteria for use as engineered fills.
A thin (1 to 2 feet) soil composed of highly weathered siltstone fragments, silt, and sand with
plant roots locally covers the areas where the Monterey Formation is exposed at the surface.
-5-
UIGNrOMANDASSOCIATES, INC
1851578-04
2.3 Surficial Deposits
' Terrace Deposits (Map Symbol: Ot): Sandy beach and shallow marine sediments form a thin
mantle on top of the Monterey Formation across nearly the entire site. The fine sands and silty
sands that compose the terrace deposits are loose, compressible, and permeable. They
commonly contain a basal gravel layer containing fragments of the underlying siltstone and
sandstone of the Monterey Formation. Their maximum thickness on the site is approximately
7 feet. Bedding is generally approximately horizontal and indistinct to massive. Across most of
the site, the top of the terrace deposits consists of a thin (1-2 feet) layer of topsoil (not mapped)
that has developed on the terrace since it was uplifted and exposed The terrace materials are
not satisfactory for supporting structures in their current condition, and they should be removed
' and recompacted during grading. Because the terraces in this area have been rising relative to
sea level at a fairly constant rate, the age of the terrace deposits can be interpreted from their
current elevation of approximately 110 feet msl. This corresponds to a position at sea level
approximately 120,000 years ago.
Tonsoil/Slopewash not mapped/MapSSvmbol• Osw): A layer of medium brown, loose, dry sand
with plant roots comprises a topsoil layer over much of the mesa. The layer is primarily
reworked (for agriculture) terrace deposits. On the slope adjacent to John Wayne gulch, the
topsoil may have moved downslope as slopewash or colluvium deposits and is anticipated to be
thicker. This material has been mapped as slopewash on the Geotechnical Map and on
Geotechnicai Cross -Sections.
Artificial Fill (Man Symbol: AD A thin slope cover of artificial fill was observed along the
' eastern part of the slope above San Joaquin Hills Road The fill was apparently placed during
repair of the slope failure associated with the storm drain on the slope face. This fill is in the
saturated and seeping portion of the slope face. A second deposit of artificial fill comprises the
earthen dam in the wetlands area that is to be preserved The portions of the dam beyond the
wetlands will be removed and recompacted during grading.
2.4 Geologic Structure
' Regional tectonic activity has uplifted the bedrock in the region into an elongated arched fold
(anticlinorium) trending to the northwest beneath the San Joaquin Hills. The resultant
exposures of the Monterey Formation reveal the bedding to be highly folded and locally faulted,
' producing exposures of bedrock with widely varying orientation at the ground surface. The small
scale of folding in the Monterey has the effect of exposing different beds in horizontal cuts
across the surface of the site, and layers with different orientations in exposed slope faces cut
into the bedrock. Since some of these orientations will be adverse to the slope face (i.e.,
u
J
dipping out of slope at a shallower angle than the slope), the internal slopes in the project will
be buttressed for support against sliding failures.
-6-
IEIGHTONANDASSOCIATES, INC
' 1851578-04
There are no known active faults in Tentative Tract 15011. Faults in this segment of the San
Joaquin Hills generally strike northwest with nearly vertical dips, subparallel to the Newport -
Inglewood Structural Zone faults offshore to the southwest. They may be former splays of that
system which are no longer active. Inactive traces of the Newport -Inglewood faults have been
mapped as close as 2,000 feet to the northeast and southwest of the site. A second set of faults,
' with a north -south to N10°E strike, was observed in grading of the Newport North property
approximately three miles to the north of this site, at Jamboree Road and MacArthur Boulevard.
These faults were interpreted to be part of a right step in the ancestral Newport -Inglewood
Structural Zone, and they were also found to be inactive.
The Monterey bedrock contains abundant closely spaced fractures which, along with local sand
and diatomaceous sand layers, appear to be responsible for most of the permeability in the
bedrock. The fracture sets vary from open to filled to closed, as observed in the steep bluffs
adjacent to Back Bay Drive.
2.5 Seismicity and Seismic Hazards
The two principal seismic considerations for most properties in southern California aie: a)
surface rupturing due to the presence of active faults beneath the site, and b) damage to
structures due to intense seismic ground shaking. In addition, large earthquakes may be
accompanied by secondary hazards including liquefaction, earthquake -triggered landslides,
subsidence or settlement of fill or loose soils, and tsunami and seiches.
' No active faults have been mapped crossing the subject site. Since the surface rupture hazard
is limited to the surface traces of active faults, the likelihood of future fault rupture directly on
the site is very low. The site is not located in an Alquist-Priolo Special Studies Zone.
The locations of earthquakes of Magnitude 5.5 or greater that have occurred within 100 miles
of the site since 1800 are shown in Figure B-1 and listed in Table B-1(Appendix B). Figure B-2
' shows the frequency of recurrence of earthquakes of different magnitudes within that same 100
mile radius since that time. It shows that a Magnitude 4.5 event occurs on average about once
a year, but a Magnitude 6 event occurs only about once every ten years.
rl
II
1
The Newport Inglewood fault system, approximately 2.5 miles (4 km) to the west of the site, is
considered active and likely to generate the most damaging levels of ground shaking in the
future. The March 1933 Long Beach earthquake resulted from movement on a segment of this
fault system. Its epicenter was approximately 5 miles west of the Newporter North site, and it
produced an estimated 0.33g peak horizontal ground acceleration, or PGA, at the site (Table
B-1). Another earthquake in 1812, which severely damaged the mission at San Juan Capistrano,
produced an estimated PGA of 0.40g at the site. During the past 195 years, these two
earthquakes produced the most intense shaking at the site. Based on this historical data set
only, the probability that PGA values will exceed O.1g in the next 50 years is approximately .53,
and the probability of exceeding 0.2g is approximately .40 (Table B-2). However, the historical
record of 195 years is generally believed to be too short a period of time to determine the
probability values accurately.
.L_L
1851578-04
In addition to the Newport Inglewood fault system, the Chino, Elsinore, Palos Verdes, and
Whittier faults are capable of producing ground shaking levels of 0.15g or higher at the site, if
a major earthquake occurred along any of these active faults (Table B-4).
A deterministic analysis of the intensity of potential ground shaking from future earthquakes
calculates the peak horizontal ground acceleration (PGA) to be expected if an earthquake were
to occur on any of the known active faults at its closest point of approach to the site
(Table B-4). The methods of estimating the largest earthquake for a specific fault are generally
based on the length of the fault or of individual fault segments that are believed capable of
rupturing during a single earthquake. The "maximum credible" earthquake is the largest that
could be expected if the fault ruptured along its entire length in a single event. The "maximum
probable" earthquake is the maximum earthquake that is likely to occur during a 100 year
interval.
The analysis shows that the most intense shaking at the Newporter North site would result from
the maximum credible earthquake (M7.0) and the maximum probable earthquake (M5.75)
occurring on the Newport -Inglewood fault system. Those earthquakes would produce PGA
values of 0.50g and 0.18g, respectively (Table B-4).
By comparison, the maximum credible earthquake on the San Andreas fault produces an
expected PGA at this site of only about 0.1g. Although the maximum credible earthquake on
the San Andreas would be much larger (M8.3), the nearest,point on that fault to the Newporter
North site is more than 50 miles away (Table B-4). As the seismic waves propagate away from
the earthquake source, they "attenuate" or diminish in amplitude. At a distance of 50 miles
from the fault, they are approximately one tenth of their amplitude at the fault. Figure B-3
shows the attenuation of PGA with increasing distance from the source of the earthquake to
the site. Beyond 50 miles from the site, earthquakes are not capable of generating ground
accelerations much above 0.15g.
The most active fault in historic times in southern California has been the San Jacinto fault
(Table B-4, "Hot Springs -Buck Ridge"), approximately 57 miles to the east of the site. The San
Jacinto fault has experienced several earthquakes greater than Magnitude 6 in historic times, but
the ground shaking from a maximum credible earthquake along this fault (M7.0) is anticipated
to be only 0.04g, because the fault is so far away from the site.
The deterministic analysis does not consider how likely or unlikely an earthquake on a specific
fault would be. It simply calculates the maximum acceleration that could be expected if the most
severe earthquake actually occurred along each of the known fault systems in the area.
The site lies within Seismic Zone 4 of the Uniform Building Code.
111GNrONAND ASSOC1AM, INC
I
2.6 Undslid_es
' There are no landslides mapped on the property that affect the proposed development directly.
The proposed development is confined to the nearly flat mesa top, with setbacks from the bluff
faces of 65 feet or more. There is a suspected steep bluff failure at the southern edge of the
' steepest section of bluff facing Back Bay Drive, approximately 600 feet south of the intersection
of Back Bay Drive and San Joaquin Hills Road (remainder is mapped as Qsw, Plate 2). Based
on review of the aerial photographs from 1953 and 1980, the failure appears to be two adjacent
' features with a combined width of approximately 250 feet, and a maximum original horizontal
thickness of a few tens of feet. The failure appears to have been modified extensively by
erosion due to surface water flow over the head of the original scarp to the base of the bluffs
' below. An embankment of debris apparently derived from the failure is still present at the base
of the bluff adjacent to Back Bay Drive, but the toe of the debris has been removed for
construction of Back Bay Drive.
' 2.7 Ground Water and Seenaee
Ground water was encountered in 24 of the 27 borings drilled at the site, at depths from 6 to
more than 70 feet below ground surface (Plates 1, 2, and 3). The presence of ground water
beneath the site currently, and the potential for future buildup of ground water due to landscape
' irrigation is a significant factor in the design of remediation measures for development. The
ground -water conditions are described in more detail in Appendix F. In general, the shallowest
ground -water levels are in the vicinity of the wetlands in the northeast portion of the site, and
' they decrease to the north, west, and south with distance away from the wetlands. Along the
slope above San Joaquin Hills Road, the water table intersects the slope face, and seepage from
that slope face has generated a thick stand of vegetation and runoff to the surface drainage ditch
' adjacent to the road.
The primary source of water, and the current control on the elevation of the water table
' beneath the site is the ponded water in the dammed swale adjacent to Jamboree Road. The
swale is located on approximately 5 feet of Quaternary terrace deposits, which are highly
permeable. Water which ponds there infiltrates into the terrace sands and spreads laterally.
' The dammed swale creates a nearly continuous source of water to the property at an elevation
of approximately 115 feet msl.
Other sources of ground water include underflow onto the site from beneath Jamboree Road
' and the higher topography in Newport Center to the east, and seasonal rainfall infiltration
through the highly permeable terrace deposits that cover the top of the mesa. In addition to
seeping out onto the San Joaquin Hills slope, ground water exits the site into Upper Newport
Bay beneath Back Bay Drive and John Wayne Gulch.
In the borings, ground water was observed seeping from the thin sand and diatomaceous sand
' beds of the Monterey Formation, along the numerous fractures in the siliceous siltstone beds,
and through the pervasive fractures that cut across bedding. Testing for in -situ permeability of
the bedrock gave hydraulic conductivity values in the range of 0 to 5 feet per day (Appendix F).
The loose terrace deposits are presumed to be more permeable, and appear to stone water
-9- Ot
' LEIGHTONANDASSOCIATH, INC
'
1851578-04
briefly during the winter storm season. In fact, nearly all rainfall generally infiltrates into the
site; evidence of recent surface runoff from the bluff top is rare.
'
Ground Seepage Model
2.7.1 -Water
'
The field conditions and conservative assumptions about the ground -water regime at the
incorporated into an analytical model of the site, based on the mathematical
site were
solution of the Depuis equation for steady flow in an unconfined aquifer. The site was
modeled as a series of three two-dimensional flow models along the three cross -sections
(Cross -Sections 1-V, 2-2', and 3-3') shown on Figure F-1 in Appendix F. These
cross -sections extended from the pond area through the bluffs to San Joaquin Hills Road,
I'I
Back Bay Drive, and John Wayne Gulch, respectively (Appendix F).
'
The current ground -water conditions were established on the basis of the wells that
encountered ground water during the exploration of the site. They demonstrated that the
'
piezometric surface is controlled largely by the infiltration of water from the pond area, and
its exit from the site through the San Joaquin Hills Road slope, through the bedrock
beneath Back Bay Drive and into the bay, and through bedrock into John Wayne Gulch
and thence to the bay. In addition, the model assumed that the present rainfall of
'
approximately 12 inches per year onto the site was completely absorbed and infiltrated to
the water table.
Future ground -water conditions were postulated in two different ways. First, we assumed
that the site would have 84 inches of combined rainfall and irrigation, and that the entire
amount was available to infiltrate to the water table ("maximum irrigation"). Second, we
'
assumed the presence of a thin cap of compacted fill, which had a hydraulic conductivity
value one order of magnitude less than the bedrock, across the entire site. The 84 inches
of rain and irrigation were applied to the surface of the cap, but only a small portion of
'
that water seeped through the cap and into the ground -water system ("conservative
irrigation"). We then evaluated the change in ground -water table as a result of these two
assumptions. The details of the model and assumptions are given in Appendix R
'
The first assumption, of 84 inches of infiltration per year (maximum frrigation case),
produced a steady-state rise in the water table of several feet (Figures F-9, F-10, and F-11).
It further showed that the water table would intersect the bluffs along both Back Bay Drive
and John Wayne Gulch, and the seepage situation would worsen along San Joaquin Hills
Road. It is this pattern that we believe has occurred at several other sites adjacent to
'
Upper Newport Bay, where irrigation is widespread and the developed area sits atop
permeable terrace deposits which absorb the irrigation water and conduct it to the bluff
faces.
The second assumption, of a low permeability fill cap of sufficient thickness that it is not
penetrated by utility trenches or plant roots, produced a steady state water table level
' (conservative irrigation case) that was indistinguishable from the present condition (pond
only), which is being driven primarily by the presence of the ponded water in the wetlands
area. In the model, we used a fill cap that was eight feet thick, because some of the utility
trenches, future swimming pools, and aggressive tree roots may extend that deep. However,
M&W
-10-
' IEIONrONAND ASSOCIATES. INC
1851578-04
' the cap is effective even if it is very thin, provided it is not breached by an excavation that
can become a major source of future ground -water infiltration.
' In summary, based on this model, it appears that a low -permeability soil cap will
significantly help in controlling the effects of the expanded irrigation anticipated after the
' development has been completed. The presence of subdrains in conjunction with specific
slopes further improves the conditions from the present case, even after the proposed
development. Some areas, such as the more westerly parts of the San Joaquin Hills Road
' slope, are still likely to be impacted by the presence of the pond and related wetlands,
which are proposed to remain, even after development. These areas cannot be remediated
because habitat restrictions preclude any grading or earthwork on the slope (Plate 1).
' 2.8 Riouability and Oversized Materials
' Earth materials encountered during grading of the subject site are expected to be rippable using
conventional earthmoving equipment. Oversize material may be generated locally in the
siliceous siltstone beds in the Monterey formation, but these beds are highly fractured where
they have been observed onsite, and oversized materials are expected to be of limited quantities.
' 2.9 Slope Stability
Natural slopes are present on three sides of the proposed development. At the southwestem
' end of the property, a fill slope is proposed above a gentle natural slope into the bottom of John
Wayne Gulch (Plate 3). The natural slope, to be left in place, has a maximum gradient of
approximately 3:1 (horizontal -vertical), but most of the slope has a gradient of 4:1 or shallower.
' Beds dip into slope or are neutral along the eastern half of the slope (Cross -Sections A -A'
and B-B', Plates 4 and 5, respectively) and they dip out of slope in the western half (Cross -
Section C-C', Plate 6). Conditions are best illustrated in the logs for Borings BH-5, BH-4, BH-
' 11, and BH-3 by Geosoils (1991) reproduced in Appendix C. Stability analyses have been
performed for Cross -Sections A A', B-B', and C-C', and are presented in Appendix E.
' The west -facing bluff above Back Bay Drive is underlain by siltstone, diatomaceous siltstone,
claystone, and sandstone beds of the Monterey Formation which are folded and fractured. It
is considered grossly stable with respect to bedding plane failures, since most bedding in the in -
place bedrock is neutral or into slope. However, these bluffs are subject to shallow rock falls
and slides. Specifically, the viewpoint at the top of the bluff near the corner of Back Bay Drive
and San Joaquin Hills Road, is not acceptable for structures. Property line setbacks of at least
65 feet or more from the top of the bluff are being proposed. These are behind a 2:1 projection
from the base of the bluffs, and are considered appropriate. The conditions are illustrated in
Figure 2 and in Cross -Section D-D' (Plate 7).
' The north -facing slope above San Joaquin Hills Road has a gradient of approximately 3:1
(horizontal. -vertical) at its western end, and transitions to a 2.5:1 gradient to the east of the steep
drainage channel cutting the slope face (Plate 1). This slope is also underlain by Monterey
III ' siltstones and sandstones, with a thin cap of silty sands of the Quaternary Terrace deposits at
' 1EIGNTONAND ASSOCIATES, INC
' 1851578-04
the top. Folding in the Monterey bedrock produces into -slope bedding dips in the upper part
of the slope, but local out -of -slope dips in the lower part. Several zones of seepage are also
' visible on this slope. Slope stability has been analyzed (Appendix E) for five cross -sections
through this slope (Cross -Sections E-E' through I-1) and a shear -key buttress with subdrains has
been designed for placement behind the slope face, to accommodate the requirement that
vegetation on the western portion of the slope face be left untouched. A stabilization fill with
subdrains is recommended for the remainder of the slope. Further details are discussed in
Conclusions and Recommendations, Natural Slopes, Section 3.2.1
t Fill slopes within the proposed development are a maximum of 30 feet high and will be
composed of engineered and geogrid reinforced fill constructed with a slope gradient of 1.5:1
(horizontal -vertical) or shallower. Engineered fill will be used for 2:1 or shallower slopes and
geogrid reinforcement will be added for 1.5:1 slopes or transitions between 1.5:1 and 2:1 slopes.
There will not be any slopes steeper than 1.5:1.
' There are two rows of such slopes at the southern end of the development, upslope from John
Wayne Gulch. The lower of the two slopes is a fill -over -natural slope to be created by cutting
a key into natural ground at approximately elevation 60 feet, and constructing a side -hill fill up
to approximately elevation 85 feet. Segments of this slope are proposed with Loffel walls in the
bottom of the fill slope. The upper level of slope is to key into a cut at approximately elevation
85 feet and ascend to approximate elevation 115 feet. Both fill slope levels are to contain
subdrains along their entire lengths.
' Low fill slopes (less than 10 feet high) will be constructed as 2:1 slopes around the edges of the
' wetlands area. After overexcavation of the unsuitable soils in the area to receive fill, the slopes
will be created to reach final grade. Along the southern margin of the entry road, and along the
edges of the causeway that crosses the wetlands, the slopes grade into walls to limit the impact
on the wetlands area. These walls will be constructed as Keystone walls or equivalent, in
accordance with the plans. These walls will be partially submerged during periods of wet
weather and high runoff from the ofEsite drain that replenishes the wetlands. The design of
these walls and their backfill takes into. account the variable water levels that may exist in the
' adjacent pond from time to time. The details of the design are given in a separate report.
There are no cut slopes on the site that will expose bedrock. All cuts shown on the grading plan
' will be overexcavated and backfilled with an engineered fill cap or will be buttressed by a
replacement or stabilization fill.
2.10 E_px ansive Soils
LI
Fills created from the Monterey Formation bedrock may vary in expansion properties from low
to high. Fills created from the Quaternary Terrace deposits will generally have a low expansion
index. Foundation design recommendations should be based on testing of soils at or near the
ground surface at the conclusion of rough grading.
301M
LEIGHTON AND ASSDCIA74 INC
m a m m a a a a m a a m to a 111a a is a s
,toe
�o�ec
2
26.60
TraiMea Drain Inlet
back x
Whin ProoertY Setbackx
xGreoW Distance of
Two Cases WillApply
P/L
1;.{�,/ EGrade
2' Typical
Tao of Bluff NEWPORTER NORTH TYPICAL SECTION
BLUFF EDGE AND TRAIL
BLUFF SETBACK CRITERIA PER CRY OF
IEWPORT BEACH GENERAL PLAN
N.T.S.
TYPICAL SECTION SHOWING SETBACKS FROM
BLUFF EDGE AND TRAIL
Project No. 1851578-04
Scale NOTTOOPIRWB C �W �I
Eng./Geol. OP/RM/BRC �IILLJJ,'"'LLJJII�
Drafted by LAH
Date 8/9/95 _ Figure No. 2
1851578-04
3.0 CONCLUSIONS AND RECOMMENDATIONS
' 3.1 General Conclusion
We conclude that the subject grading plan is geotechnically acceptable for the proposed
development, provided the recommendations of this report are implemented.
' It is important to understand that the conclusions and recommendations of this report are based
on preliminary subsurface conditions as interpreted from limited exploratory borings, trenches,
and test pits at the site. They should be reviewed and verified during site grading, and revised
accordingly if the exposed geotechnical conditions vary from our preliminary findings and
interpretations.
' All grading should be performed in accordance with the General Earthwork and Grading
Specifications (Appendix G) and in accordance with all applicable requirements of the City of
Newport Beach, unless specifically revised or amended below.
3.2 Slope Stability
3.2.1 Cut Slopes
Stabilization fills are recommended for the cut slopes proposed near the top of the
' existing natural slope above John Wayne Gulch, from approximately elevation 85 feet to
elevation 115 feet. The stabilization fills have a design key width of 20 feet or greater,
with a subdrain at the heel of the key. Areas of these slopes which are steeper than 2:1
(up to a maximum of 1.5:1) will be geogrid reinforced. Design specifications will be
submitted in a supplemental report for these slopes.
' A replacement fill is recommended for the existing cut slopes for approximately 600 feet
along the eastern portion of the slope above San Joaquin Hills Road, where seepage from
the existing slope face is present (Plate 1). At this location the slope has an approximate
3:1 (horizontal vertical) existing grade, and will be reconstructed to approximately its
current grade, except that the reconstructed slopes will contain terrace drains. The
stabilization should contain subdrains at the heel of the key, and at 30-foot-vertical
intervals, or more closely spaced if determined by the geotechnical consultant, along the
' backslope of the buttress excavation. The backcut is proposed to be cut at a 2.5:1 grade,
or as specified by the geotechnical consultant in the field.
' A shallow cut along Jamboree Road for surface -drainage control is in an area where the
near -surface soils will be overexcavated and recompacted to a depth greater than the
design cut. Therefore, it is anticipated that the finished grade will be engineered fill.
' No cut slopes will expose bedrock on the site. All cuts shown on the grading plan will
either be built with the engineered fill cap, or be buttressed by a replacement or
' stabilization fill.
' -14-
' LEIGHTONANDASSOCIATES, INC
1851578-04
3.2.2 Existing_ Slopes
' Based on the subsurface information available, the natural slope facing John Wayne
Gulch is grossly stable. The slope stability analysis for Cross -Sections A -A', B-B', and
GC' are attached in Appendix E. The fill to be placed above the natural slope should
be keyed into competent bedrock, and subdrains should be installed in the key to control
the presence of ground water.
The natural bluff facing Back Bay Drive is subject to surficial rock falls or steep slides,
due to the extremely steep local topography. Bedding surfaces generally dip into slope,
but failures along joint surfaces can be anticipated A minimum property setback of
40 feet from the top of the bluff or 2:1 from the base of the bluff at Back Bay Drive has
been conditioned by the City of Newport Beach for this bluff feature. Structure setback
requires an additional 20 feet (minimum 60 feet total). We concur with this condition.
The proposed plan meets or exceeds these criteria.
The existing natural slope facing San Joaquin Hills Road exposes local, out -of -slope
bedding conditions, in addition to seepage from the slope face. The slope is grossly stable
for its total height, except at the most westerly end where a fold in the bedding produces
a locally unstable condition at the location of Cross -Section E-E' (Plate 8). The stability
analysis for that section, and for the adjacent Cross -Sections F-F (Plate 9) and G-G'
(Plate 10) are included in Appendix E. A deep shear key is proposed at the top of slope
behind this natural slope in order to control ground water and improve the gross stability
of this portion of the slope. Along the trend of Cross -Sections F-F and G-G', the slope
satisfies gross stability but it is not adequately stable for localized toe failures. This area
cannot be further remediated due to the requirement that the existing vegetation be
preserved. The remainder of the slope is preserved in front of the proposed shear key,
which transitions to a stabilization fill east of Cross -Section G-G' (Cross -Sections H-IT
and I -I', Plates 9 and 10, respectively).
Results of stability analyses for Cross -Sections A -A' through I -I' are summarized in
Table 2.
-15-
LfIGNIONAND MOCIATA INC
u
1851578-04
I
1
1
11
t
TABLE 2
Summary of Slope Stability Analyses
Section
Static FS
Seismic FS
Remarks
A A'
1.51
1.47
B-B'
1.55
1.25
with 30' key
C-C'
1.54
1.33
with 30' key
D-D'
1.55
1.22
E-E'
1.68
1.16
with 30' key
F-F
1.42
1.57
1.84
1.14
1.17
1.41
toe (habitat)
mid -slope
gross
G-G'
1.20
1.43
1.77
1.05
1.17
1.44
toe (habitat)
mid -slope (habitat)
gross
H-H'
1.65
1.55
IT
1.85
1.53
3.2.3 Fill Slopes
Reinforced 1.5:1 (horizontal. -vertical) fill slopes are proposed along the existing natural
slope above John Wayne Gulch, at the southern end of the tract (Plates 3, 4, 5, and 6).
The base of the lower slope will be at approximately elevation 60 feet and rise to
approximately elevation 85 feet. A toe key is recommended along the entire slope, with
the key widening from 20 feet at the eastern end to 30 feet at the western end to
accommodate the local Loffel wall backfill. Subdrains are proposed for the entire length
of the key. Additional design considerations for the reinforced slope and Loffel wall are
given in a separate report.
' In addition to the fill slopes created by the stabilization fills for slopes, shallow fill slopes
are proposed along the western and northern margins of the site. Our analyses indicate
that the proposed fill slopes will be grossly and surficially stable as designed.
' Fill slopes should be graded in accordance with the General Earthwork and Grading
Specifications of this report (Appendix G), following typical toe -key excavation and
benching procedures. During construction, conventional compaction procedures will be
necessary so that the specified compaction can be achieved out to the slope face. These
procedures may include sheepsfoot backrolling of the slope face at frequent intervals of
' 2 to 3 feet in fill elevation gain, overfilling and cutting back to the compacted core,
1 -16-
' LEIGHTON AND ASSOCIATES, INC
1951578-04
backrolling of slope faces after construction, and/or other proven methods. Oversize rock
should not be placed within 10 feet vertically of the slope face.
' After compaction has been achieved to the slope face, the owner may wish to loosen the
outer 2 feet for landscaping purposes (in particular, habitat restoration as recommended
by the biologist), to 85 percent relative compaction. The loosening increases the risk of
surficial failures on the slope face, and is not recommended for fill slopes with a 2:1
grade.
' 3.2.4 Temporary Girt Slopes
' The temporary cut slopes that will be created during construction of stabilization fills and
keys have a potential for failure during grading. The likelihood that temporary cut slopes
will fail may be reduced by: (1) keeping the time between cutting and filling operations
' to a minimum; (2) limiting the maximum length of a cut slope exposed at any one time;
(3) cutting at no steeper than a 1.5:1 (horizontal vertical) inclination (and locally flatter
where recommended) in locations of adverse geologic conditions and below structural
areas, and a 1:1 inclination in other locations; and (4) for excavations below ground -water
levels, providing an adequate dewatering system.
All temporary cut slopes should be geologically mapped during grading before buttressing
to identify unforeseen potential instability and/or seepage conditions.
3.3 Removal and Recomlaction of Unsuitable Soils
Complete removal of collapsible/compressible materials such as topsoil, colluvium, terrace
deposits, and highly weathered bedrock will be required prior to fill placement and/or
construction of improvements.
Our estimated depths of removals for unsuitable soil range from 4 to 8 feet below the existing
ground surface. Overexcavation and/or stripping will be required over most of the areas which
will receive additional fill. Actual depths and the extent of the required removals will be
determined in the field based on grading observation and testing. Estimated depths of removal
are shown on Plates 1, 2, and 3. Additional removals below those required for geotechnical
suitability may be required to construct the low permeability soil cap with a minimum 8-foot
thickness (see Section 3.4).
3.4 Diatomaceous Soils
Fill soil created from the Monterey Formation bedrock may contain high percentages of
diatomaceous silt. This material is much less dense than other soils, and commonly much higher
' in moisture content. As such, it may be extremely difficult to compact to 90 percent of
maximum density, the standard criterion for engineered fill soils. Due to distinctly different
characteristics of diatomaceous and non -diatomaceous materials on the site, grading operations
' should be carefully monitored. To the extent possible, selective grading should be performed
-17-.
' LUGHTONANDASSOCIATES, INC
1851578-04
using terrace deposits around subdrains and in the bottom of keyways and less permeable
materials for the cap. Thoroughly mixed blends of these materials can be used for the cap,
provided their suitability is verified in the field by additional testing. The standard compaction
' criteria (90 percent of maximum per ASTM D1557) would apply to all but the predominantly
diatomaceous materials. For predominantly diatomaceous fill materials, a modified compaction
criterion would apply (95 percent of maximum achievable dry density at in -situ moisture content,
where achievable dry density is in accordance with ASTM D1557), subject to fmal.approval by
the geotechnical engineer based on field performance.
3.5 Lot Carmine and Selective Gradine
A cap of low permeability soil is recommended for all residential lots and other areas which will
receive landscape irrigation after development, including any areas to be irrigated outboard of
the proposed bluff trail. The bluff -top turnaround area will not be capped since it is outside of
' the proposed irrigation area.
The minimum thickness of the cap should be 8 feet, or a minimum 2 feet deeper than the
deepest proposed postgrading excavations. Fill materials constructed of combinations of the
Quaternary terrace deposits and Monterey bedrock in which the Monterey bedrock is no less
than 25 percent by volume, are expected to form an appropriate low -permeability soil cap, when
' compacted to 90 percent relative compaction. The actual proportioning of the soil mix will be
based on field conditions and testing during grading. The soil cap should have a laboratory
hydraulic conductivity value of less than 0.01 feet/day. Diatomaceous soils (if compacted to a
different criterion) or very clean fine sands should be tested in place, or in the laboratory, to
confirm their acceptability for use as a lot cap at this site. The geotechnical consultant should
evaluate the suitability of the capping materials during grading.
' After the low -permeability soil -cap requirement has been satisfied, fill materials in the upper
1 to 2 feet of the non-structural landscaped mound areas along Jamboree Road may be placed
at 85 percent relative compaction, except in zones within a 1:1 projection to competent bedrock
from the adjacent lot line or structure, where the fill to 90 percent compaction criterion will be
required A low permeability soil cap should also be constructed beneath the desilting basin at
' the southeast comer of the site (Cross -Section A A', Plate 4).
3.6 Subdrains
All slope stabilization or replacement fills should be provided with subdrains in accordance with
the General Earthwork and Grading Specifications (Appendix G). Locations and elevations of
the installed subdrains and outlets should be surveyed for line and grade by the civil engineer
prior to burial. Additional subdrains may be needed; the specific locations of the subdrains
should be determined during grading based on actual field conditions. Seepage areas
' encountered during grading should be mitigated with subdrains where outlets are practical.
We recommend that a subdrain with outlets directly to the Back Bay be constructed along that
' portion of Back Bay Drive which is adjacent to the toe of the steep bluff of exposed bedrock
-18-
' 1EIGNTONANDASSOCAM INC
1851578-04
' (Plate 2). The subdrain is considered to be an important mechanism for improving the natural
flow of ground water away from the vicinity of the bluff to the bay. The subdrain should be
protected from damage during routine road maintenance, e.g. by placing a paved cap over the
top of it to prevent damage from a grader blade.
I3.7 Surface Runoff and Pondin
Ground surface and landscaped areas should be designed and graded to promote effective runoff
of excess surface water and to eliminate ponding. We recommend that all surfaces be finish
graded with a minimum 2 percent grade to an approved storm drain or catchment device.
All building structures should be fitted with gutters and downspouts to collect and conduct roof
runoff through closed pipes to the approved storm -drain system.
Ponding of water from the offsite storm -drain pipe entering the wetland areas should be
minimized and a means should be provided to conduct excess water to an approved storm drain
or catchment device. The storm drain inlet adjacent to the causeway which crosses the wetlands
Ishould be placed such that it acts in that capacity.
3.8 Expansive Soils
The soils which will comprise the near -surface soil cap exhibit a variety of expansion index
values, from low to high. In general, fills composed primarily of former Monterey Formation
bedrock have higher expansion potential than fills composed of Quaternary terrace deposits.
The expansion potential of the near -surface soils cannot be predicted prior to grading.
However, it is estimated that a medium to high expansion potential is likely to result for fills
derived from onsite materials. Consequently, the owner has elected to use post -tensioned slabs.
For design purposes, the recommended geotechnical parameters are as provided in Table 3.
' These need to be verified by testing of near -surface fill samples upon completion of rough
grading. Precautionary notes are as included in Table 3.
,I
I
I
I
1851578-04
LJI
11
it
IF
I
TABLE 3
Summajy of Geotechnical Parameters for Post -Tensioned Slab Design
ITEM
TYPICAL VALUE(S)
Allowable Bearing
q = 1500 psf
Subgrade Modulus
k = 40 pci
Soil Modulus of Elasticity
E, = 1000 psi
Soluble Sulfate Content
<0.015 (Use Type H Cement)
Plastic Limit
PL = 36% to 40%
Plasticity Index
PI = 579o' to 619o'
Percent Clay (21L/#20(Y)
49.4% to 52.2%
Type of Clay
Montmorillonite
Edge Moisture Variation Distance
for Edge Lift
em = 2.9 ft
Edge Moisture Variation Distance
for Center Lift
ern = 5.9 ft
Soil Suction
pf = 3.6
Depth to Constant Suction
7 ft
Velocity of Moisture Flow
0.7 in/mo
Estimated Differential Swell for
Center Lift Condition
Ym = 3.5 in
Estimated Differential Swell for
Edge Lift Condition
Ym = 0.92 in
Notes:
1. It is recommended to presoak the slab subgrade and to maintain
reasonably consistent moisture levels during and after construction.
2. Excessive changes in ground moisture levels can create conditions
beyond those assumed for design which can adversely affect the slab
and the structure.
t
1851578-04
3.9 Reinforced Fill Slope Design
' Geogrid-reinforced slopes are recommended in areas steeper than 2:1, up to a maximum of 1.5:1
slope. Grid spacing, length, and strength should be as provided in the separate report on wall
designs.
3.10 Maintenance of Graded SIoues
• Surface water should be directed away from slopes and toward the street, or directly to
suitable catchment devices. Water should not be allowed to concentrate and run down slope
1 faces.
• In order to reduce erosion and slumping potential of graded slopes, it is recommended that
all manufactured slopes within the development be planted with ground cover vegetation
(e.g., grasses) and deep-rooted vegetation (e.g., trees and shrubs) as soon as practical. Prior
to planting, the finished slopes may be sprayed with a protective coating or covered with jute
mesh to reduce the potential for erosion and slumping before landscaping has become
' established. Erosion damage should be repaired prior to planting, hydroseeding, or placement
of jute mesh.
• All subdrain outlets should be kept open and free of debris to allow proper drainage.
• Oversteepening of slopes should be avoided during construction and landscaping.
• A rodent -control program should be established and maintained, in order to retain the
compaction level of the slopes behind the slope face.
• Trenches excavated on a slope face for utility or irrigation lines or for any other purpose
should be properly backfilled and compacted by a vibratory plate or its equivalent, in order
to obtain a minimum of 90 percent relative compaction in the slope -face soils.
3.11 Observation and Testing During Rough Grading and PostUading
Geotechnical observation and testing should be conducted during the following stages of the
grading and postgrading operations:
• Upon completion of clearing and grubbing;
• During all phases of rough grading, including removals, benching and fill operations, key
excavation, pad excavation, and cut slope excavation;
• During construction of Loffel and Keystone walls and geogrid-reinforced slopes;
• During subdrain construction;
jig 4
ZROMMANDASSOCIAM, INC
r-
L
1851578-04
r
r
r
I
I
I
F-1
I
1
During all backfill and compaction operations including building areas, trenches, and
impermeable cap areas;
• When any unusual ground conditions are encountered during grading.
A final report of rough grading accompanied by an as -graded geotechnical map should be
submitted to the City of Newport Beach at the conclusion of the grading operations.
3.12 Lateral Earth Pressures and Retaining Wall Desien
Our recommended lateral earth pressures are provided below as equivalent fluid unit weights,
in psf/ft (or pcf). These values do not contain an appreciable factor of safety, so the structural
engineer should apply the applicable factors of safety and/or load factors during design. A soil
unit weight of 120 pcf may be assumed for calculating the actual weight of the soil over the wall
footing.
The recommended lateral earth pressures for the anticipated fill material with drained
conditions, as shown on Figure 3, are as follows:
F,4uivalent Fluid Pressure (ysf/ft)
Condition Level 2:1 Sloae
Active 43 75
At Rest 63 100
Passive 330 120 (sloping down)
Coefficient of Friction 0.35
If a retaining wall is backfilled with clean sand having a sand equivalent of at least 30, in
accordance with Figure 3, the equivalent fluid unit weights of 30 pcf (level) and 43 pcf (2H:1V)
' may be used for active conditions, and 48 pcf (level) and 73 pcf (2H:1V) may be used for at -rest
conditions.
All retaining structures should be provided with a subdrain system as shown on Figure 3. N
proper drainage cannot be provided over the full height/length of the wall, additional lateral
force, due to water accumulation behind the wall, should be taken into consideration for design
of the wall portion retaining the undrained zone. For undrained native backfill, the equivalent
fluid unit weight of 85 pcf (level) and 95 pcf (2H:IV slope) for active conditions, and 100 pcf
(level) and 115 pcf (2H:iV slope) for at -rest conditions may be used.
To design an unrestrained retaining wall, such as a cantilever wall, the active earth pressure may
be used. For a restrained retaining wall, such as a basement wall or a cantilevered retaining wall
with restrains such as being curved or continuing around comers, the at -rest pressure should be
I used. If tilting of wall segments is acceptable, and construction joints are provided at all angle
points, at 20 to 30 feet spacing along straight wall sections, and more frequently along curved
wall segments, the active earth pressure may be used.
r
r . 22 -
1EIGNTONANDASSOCIATES, INC
I' 1851578-04
In addition to the above lateral forces due to retained earth, surcharge due to improvements,
such as an adjacent structure, should be considered for design of a retaining wall. Loads applied
within a 1:1 projection behind the heel (or back) of the wall footing should be considered as
lateral surcharge. We also recommend using at -rest pressures for design of walls supporting
sensitive structures, such as a building. To minimize the surcharge load from an adjacent
building, deepened building footings can be considered.
Passive pressure is used to compute .lateral soil resistance developed against lateral structural
movement. In combining the total lateral resistance, either the passive pressure or the frictional
resistance should be reduced by 50 percent. In addition, the lateral passive resistance is taken
into account only if it is ensured that the soil against embedded structures will remain intact with
time, and the horizonal distance between multiple foundation elements providing passive
resistance is at least three times the depth of the elements.
' Retaining wall footings should have a minimum width of 24 inches and a minimum embedment
of 12 inches below the lowest adjacent grade. An allowable bearing pressure of 1,600 psf may
be used for footings at the recommended minimum dimensions. The allowable bearing pressure
may be increased (but not exceed 3,000 psf) by 400 psf per additional foot of foundation
' embedment or by 200 psf for additional foot of foundation width.
All retaining wall designs should be reviewed by the project geotechnical consultant to confirm
that the appropriate soil parameters are used.
3.13 Areas Requiring Additional Geotechnical Input
The following geotechnical parameters and designs will be provided in a separate report:
• Loffel wall and Keystone wall designs
• Geogrid reinforced slope design
''
u'
I
I
r
L
I
I�
SUBDRAiN OPTIONS FOR NATIVE MATERIAL BACKFILL
OPTION N2: Pipe Surrounded OPTION Ni: Gravel Wreooed in OPTION N3: Geolextile Drain
whh Class 2 Materiel Fiher Fabric
With Proper Surface With Proper Surfacer . With Proper Surface
Drainage Drainage Drainage Sloe or
Slop a or v
Slope or Level 6t' to 1 1. R Level
Level Fabric Fla -\\IM-
i t'
Waterproofing
Membrane
(Optional)
Weep Hole-..,
Level or�
Slope rpm
y
1-•
p\
Native Behind Core `T
Native
Waterproofing
Backfill
�1� Waterproofing
Backfill
Membrane
v Filler Fabric Membrane
(Optional)
•°, (Optional)
1•
— Class 2 Filter
V. to IV. inch Size Gravel
Permeable Material Weep Hole
—
a.4 Wrapped in Filter Fabrie Weep Hole —
Level or{'
Slope ,
Level or�
Slope'
lope
4-Inch Diameter Perforated Pipe
Class 2 Filler Permeable Material Grading
Per Cattrans Specifications
Sieve Size Percent Passing
1' 100
3/4' 90.100
3/8. 40.100
No, 4 2S4D
No, 8 1833
No, 30 S-15
No, SO 0-7
No.200 03
With Proper Surface
Drainage
TH
VaterproofinMembrane(Optional)
Level c
Slope
2' oc
Heel '
Proper Outlet Should be
Provided for Gravel Subdraln
(See Noteb)
Slope or Level
• H/2 or teal Width, Wticbmw Is Greeter
Clean sand baekfrll
having sand equivalent
of 30 or greater (can be
denslfed by water jetting)
Subdrain Ootion S1:
1 tLo/ft of Y. to 1 W size
gravel wrapped in filler fabric
(see notes for outlet)
Wlachererla Greeter
Backfrll
Miradrain 6D00-
J Drain 100, Hygrid
Drain 1, or equivalent
r Fabric
4-Inch Diameter
Perforated Pipe
Fabric Flap •.
Behind Core
'Miradrain GOOD or J Drain 1DO for
non -waterproofed walls' ,
Miradrain S200 or J Drain 200 for
completed waterproofed walls
**Peel back the bottom fabric flap,
place pipe next to core,
wrap febde around pipe and
tuck behind core,
Subdrain Option 52•
4' diameter perforated pipe
surrounded with 1 tt3/fl. of
Class 2 fitter materiel per
Cahrans specifications as above
Subdretn Option S3
..•
for Corrugated Pipes Oniy:
4' diameter corrugated perforated
;';
pipe wrapped In filter fabric
(this option should not be used
for non -corrugated, smooth pipes
r
because fine particle earth materials
`
may accumulate at the perforated
holes and reduce the flow of water
Into the pipe)
Notes: Pipe type should be ASTM DiS27 Acrylonhrile Butediene Styrene (ASS) SDR35 orASTM D1785 Polyvinyl Chloride plastic (PVC), Schedule
40, Armco A2000 PVC, or approved equNalent. Pipe should be installed with perforations down.
• Fitter fabric should be Mirafi 140N, 140NS, Supae 4NP, Amoco 4545, Trevim 1114, or approved equivalenL
• All drains should have a gradient of 1 percent minimum.
• Outlet portion for gravel subdrain should have a 40•diameter pipe with the perforated portion inserted into the gravel npprozimalely 2'
minimum and the norlperforated portion extending approximately 1' outside the gravel. Proper sealing should be provided at the pipe
insertion enabling water to run from the gravel portion Into rather than -outside the pipe.
• Waterproofing membrane may be required for a speck retaining wall such as a stucco or basement wail.
• Weephole should be 2' minimum diameter and provided at PT minimum in length of wall. 9 exposure Is permitted, weephole should be
located al it' above finished grade. it exposure is not permitted such as for awall adjacent to a sidewalk/curb, a pipe under the sidewalk I
to discharge through the curb face or equivalent should be provided, or for a basement -type wall, a proper subdrain outlet system should
be provided.. Open vertical masonry joints (.e., omtt mortarfrom joints of first course above finished grade) at32' maximum intervals may
be substituted for weepholes. Screening such as with a filter fabric should be provided for weepholes/open joints to prevent earth
materials from entering the holesloints.
RETAINING WALL BACKFILL AND SUB -DRAIN DETAIL
Figure No. 3 3D672sz
_9n.
' 1851578-04
APPENDIX A
References
Geosoils, Inc.,1991 Preliminary Geotechnical Investigation, Newporter North Development Area (No
Tract Number), City of Newport Beach, California, W.O.2152-A OC, dated February 4,1991.
Leighton and Associates, Inc.,1994, Supplemental Geotechnicai Investigation and Remedial Design
of North Facing Slope Adjacent to San Joaquin Hills Road, Newport North Property, Tentative
Tract No. 15011, City of Newport Beach, California, Project No. 1951578-02, dated
October 26, 1994.
' Morton, P.K, and Miler, R.V.,1981, Geologic Map of Orange County California, Showing Mines and
Mineral Deposits: California Division of Mines and Geology, Bulletin 204, Plate 1.
Morton, P.K., and Miller, R.V., and Evans, J.R., 1976, Environmental Geology of Orange County,
California: California Division of Mines and Geology, Open File Report 79-8 LA.
U.S. Department of the Interior Water and Power Resources Services, Ground Water Manual, John
Wiley and Sons, New York, 1981.
' Aerial Photographs Reviewed
Scale Source
Date Flight No. Frame No.
1953 AXK-6K 4,5 1"=1667' USDA
1990 80033 213,214 1"=2000' Am. Aerial
Surveys
I
I
1
I A-1
N
fig
DATE: Thursday, August 3, 1995
+++++++++++++++++++++++++++++++++++++++
+
* E Q S E A R C H
+
* Ver. 2.01
+ *
* +
+++++++++++++++++++++++++++++++++++++++
(Estimation of Peak Horizontal Acceleration
From California Earthquake Catalogs)
SEARCH PERFORMED FOR: STANDARD PACIFIC CORP.
JOB NUMBER: 851578-004
JOB NAME: STANDARD PACIFIC TRACT 15011
SITE COORDINATES:
LATITUDE: 33.622 N
LONGITUDE: 117.883 W
TYPE OF SEARCH: RADIUS
SEARCH RADIUS: 100 mi
SEARCH MAGNITUDES: 5.5 TO 9.0
SEARCH DATES: 1800 TO 1994
ATTENUATION RELATION: 1) Campbell (1993) Horiz. - O=Soil 1=Rock
UNCERTAINTY (M=Mean, S=Mean+1-Sigma): M
SCOND: 1
FAULT TYPE ASSUMED (DS=Reverse, SS=Strike-Slip): DS
COMPUTE PEAK HORIZONTAL ACCELERATION
EARTHQUAKE -DATA FILE USED: ALLQUAKE.DAT
TIME PERIOD OF EXPOSURE FOR STATISTICAL COMPARISON: 50 years
SOURCE OF DEPTH VALUES (A: --Attenuation File, E=Earthquake Catalog): A
TABLE B-1. HISTORICAL EARTHQUAKES GREATER
OF THE SITE SINCE 1800.
THAN
M5.5
OCCURRING WITHIN 100
MILES
I I I
I TIME I
I
I SITE
ISITEI
APPROX.
FILEI
LAT. I LONG. I
DATE
I (GMT) IDEPTHIQUAKE
1 ACC.
I MM I
DISTANCE
CODEINORTH
I WEST I
I H M Secl
I--------I-----
()an)I
I
MAG.
------
I g
I-------
IINT.1
I----I-----------
mi
[kml
----
DMG
I------I-------I
133.000-1117.3001
------------
11/22/1800
12130 0.01
3.01
6.50
1 0.016
I IV 1
55
[ 88]
DMG
133.7001117.9001
12/ 8/1812
115 0 0.01
3.01
6.90
1 0.402
1 X 1
5
[ 9]
DMG
134.0001119.0001
9/24/1827
1 4 0 0.01
5.81
5.50
1 0.005
1 I 1
69
[ 1111
T-A
134.8301118.7501
11/27/1852
I 0 0 0.01
3.01
7.00
1 0.007
1 II 1
97
[ 1563
MGI
134.1001118.1001
7/11/1855
1 415 0.01
3.01
6.30
1 0.029
1 V 1
35
[ 57]
MGI
134.0001117.5001
12/16/1858
110 0 0.01
3.01
7.00
1 0.051
1 VI 1
34
[ 55]
DMG
132.7001117.2001
5/27/1862
120 0 0.01
4.01
5.90
1 0.005
1 II 1
75
[ 121]
DMG
133.4001116.3001
2/ 9/1890
112 6 0.01
3.01
6.30
1 0.004
1 I 1
92
[ 1491
DMG
134.1001119.4001
5/19/1893
1 035 0.01
5.81
5.50
1 0.002
1 - 1
93
[ 150]
DMG
134.3001117.6001
7/30/1894
1 512 0.01
4.01
5.90
1 0.012
1 IIII
50
[ 801
DMG
132.8001116.8001
10/23/1894
123 3 0.01
0.01
5.01
5.81
5.70
5.50
1 0.003
1 0.009
1 I 1
1 IIII
84
49
1 136]
[ 781
DMG
134.2001117.4001
7/22/1899
1 046
DMG
134.3001117.5001
7/22/1899
12032 0.01
3.01
6.50
1 0.018
1 IV 1
52
[ 83]
DMG
133.8001117.0001
12/25/1899
11225 0.01
3.01
6.60
1 0.019
1 IV 1
52
[ 841
DMG
134.2001117.1001
9/20/1907
1 154 0.01
3.51
6.00
1 0.009
1 III]
60
[ 971
DMG
133.7001117.4001
5/15/1910
11547 0.01
3.51
6.00
1 0.033
1 V 1
28
[ 461
MGI
134.0001119.0001
12/14/1912
I 0 0 0.01
5.01
5.70
1 0.005
1 II 1
69
[ 1111
DMG
134.7001119.0001
10/23/1916
1254 0.01
5.81
5.50
1 0.002
1 - 1
98
[ 1581
'
DMG
133.7501117.0001
4/21/1918
1223225.01
3.01
6.80
1 0.022
1 IV 1
51
[ 831
DMG
134.0001117.2501
7/23/1923
i 73026.01
3.01
6.25
1 0.019
1 IV 1
45
[ 721
DMG
133.6171117.9671
3/11/1933
1154 7.81
3.01
6.30
1 0.327
1 IX 1
5
[ 8]
DMG
133.6831118.0501
3/11/1933
1 658 3.01
5.81
5.50
1 0.083
1 VIII
10
[ 17]
'
DMG
133.4081116.2611
3/25/1937
11649 1.81
3.51
6.00
1 0.003
1 I 1
95
[ 152]
DMG
133.6991117.5111
5/31/1938
1 83455.41
5.81
5.50
1 0.032
1 V 1
22
[ 351
DMG
134.2671116.9671
8/29/1943
1 34513.01
5.81
5.50
1 0.005
1 II 1
69
[ 1111
DMG
134.0171116.5001
7/24/1947
1221046.01
5.81
3.01
5.50
6.50
1 0.003
1 0.006
1 I 1
1 II 1
84
89
[ 1351
[ 1431
DMG
133.9331116.3831
12/ 4/1948
1234317.01
DMG
132.8171118.3501
12/26/1951
1 04654.01
4.01
5.90
1 0.008
1 II 1
62
( 991
DMG
133.3431116.3461
4/28/1969
1232042.91
4.51
5.80
1 0.003
1 I 1
91
[ 1461
DMG
134.4111118.4011
2/ 9/1971
114 041.81
3.01
6.40
1 0.012
1 IIII
62
[ 1001
DMG
134.4111118.4011
2/ 9/1971
114 1 8.01
4.51
5.80
1 0.007
1 II 1
62
[ 1001
DMG
134.4111118.4011
2/ 9/1971
114 244.01
4.51
5.80
1 0.007
1 II 1
62
1 1001
DMG
134.0651119.0351
2/21/1973
1144557.31
4.01
5.90
1 0.006
1 II I
73
[ 1171
'
PAS
133.5011116.5131
2/25/1980
1104738.51
5.81
5.50
1 0.003
1 I 1
79
[ 1281
PAS
133.9981116.6061
7/ 8/1986
1 92044.51
5.41
5.60
1 0.004
1 I 1
78
[ 1251
PAS
134.0611118.0791
10/ 1/1987
1144220.01
4.01
5.90
1 0.025
1 V 1
32
[ 521
GSP
133.9611116.3181
4/23/1992
1045023.01
2.91
6.10
1 0.004
1 I I
93
[ 1491
GSN
134.2011116.4361
6/28/1992
1115734.11
3.01
7.60
1 0.013
1 IIII
92
[ 148)
GSN
134.2031116.8271
6/28/1992
1150530.71
3.01
6.70
1 0.011
1 IIII
73
[ 1171
GSP
134.2131118.5371
1/17/1994
1123055.41
3.01
6.70
1 0.018
1 IV 1
55
[ 891
GSP
134.3261118.6981
1/17/1994
1233330.71
5.41
5.60
1 0.005
1 II 1
67
[ 1081
GSB
134.3791118.7111
1/19/1994
1210928.61
5.81
5.50
1 0.004
1 I 1
71
[ 1141
-END
OF SEARCH- 42
RECORDS FOUND
MAXIMUM SITE ACCELERATION DURING
TIME PERIOD 1800
TO
1994: 0.402g
' MAXIMUM SITE INTENSITY (MM) DURING TIME PERIOD 1800 TO 1994: X
MAXIMUM MAGNITUDE ENCOUNTERED IN SEARCH: 7.60
NEAREST HISTORICAL EARTHQUAKE WAS ABOUT 5 MILES AWAY FROM SITE.
NUMBER OF YEARS REPRESENTED BY SEARCH: 195 years
TABLE B-2. PROBABILITY OF EXCEEDANCE FOR ACCELERATION, BASED ON HISTORICAL
EARTHQUAKE OCCURRENCES ONLY
TIME PERIOD OF SEARCH: 1100 TO 1994
LENGTH OF SEARCH TIME: 195 years
ATTENUATION RELATION: 1) Campbell (1993) Horiz. - 0=Soil 1=Rock
*** TIME PERIOD OF EXPOSURE FOR PROBABILITY: 50 years
INO.OFI
AVE. IRECURR.1 COMPUTED PROBABILITY OF EXCEEDANCEI
ACC.ITIMESIOCCUR.IINTERV.1 in 1 in I in I in I in I in I in
'
g IEXCEDI
#/yr I
years 10.5 yrI 1 yr( 10 yrI 50 yrl 75 yr1100 yrI*** yr
------ 1------ 1------ I ------ I ------ I------
---- I -----
0.011
I
181
------ I -------
0.0921
I ------ I
10.83310.045110.088210.602710.990110.999010.999910.9901
0.021
91
0.0461
21.66710.022810.045110.369710.900510.968610.990110.9005
0.031
61
0.0311
32.50010.015310.0303►0.264910.785310.900510.953910.7853
0.041
41
0.0211
48.75010.010210.020310.18551'0.641410.785310.871410.6414
0.051
41
0.0211
48.75010.010210.020310.185510.641410.785310.871410.6414
0.061
31
0.0151
65.00010.007710.015310.142610.536610.684610.785310.5366
0.071
31
0.0151
65.00010.007710.015310.142610.536610.684610.785310.5366
'
0.081
31
0.0151
65.00010.007710.015310.142610.536610.684610.785310.5366
0.091
21
0.0101
97.50010.005110.-010210.097510.401210.536610.641410.4012
0.101
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.111
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.121
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.131
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.141
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
'
0.151
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.161
21
0.0101
97.50010.005110.010210.097510.401210.536610.64i410.4012
0.171
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.181
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
'
0.191
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.201
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.211
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.221
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
'
0.231
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.241
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.251
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
'
0.261
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.271
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.281
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.291
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
'
0.301
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.311
21
0.0101
97.50010.005110.010210.097510.401210.536610.641410.4012
0.321
21
0.0101
97.50010.005110.010210.097510.401210.5366I0.641410.4012
0.331
11
0.0051195.00010.002610.005110.050010.226210.319310.401210.2262
0.341
11
0.0051195.00010.002610.005110.050010.226210.319310.401210.2262
0.351
11
0.0051195.00010.002610.005110.050010.226210.319310.401210.2262
0.361
11
0.0051195.00010.002610.005110.050010.226210.319310.401210.2262
0.371
11
0.0051195.00010.002610.005110.050010.226210.319310.401210.2262
0.381
11
0.0051195.00010.002610.005110.050010.226210.319310.401210.2262
0.391
11
0.0051195.00010.002610.005110.050010.226210.319310.401210.2262
0.401
11
0.0051195.00010.002610.005110.050010.226210.319310.401210.2262
--------------------------------------------------------------------------
' TABLE B-3. PROBABILITY OF EXCEEDANCE FOR MAGNITUDE OF EARTHQUAKES WITHIN 100
MILE RADIUS OF SITE, BASED ON HISTORICAL OCCURRENCES ONLY
INO.OFI AVE. IRECURR.I COMPUTED PROBABILITY OF EXCEEDANCE
MAG.ITIMESI000UR.IINTERV.I in I in I in I in I in I in I in
IEXCEDI #/yr I years 10.5 yrl 1 yrl 10 yr1 50 yrl 75 yr.I100 yrl*** yr
5.501 421 0.2151 4.64310.102110.193810.884011.000011.000011.000011.0000
6.001 201 0.1031 9.75010.050010.097510.641410.994110.999511.000010.9941
6.501 111 0.0561 17.72710.027810.054810.431110.940410.985510.996510.9404
7.001 31 0.0151 65.00010.007710.015310.142610.536610.684610.785310.5366
7.50I 11 0.0051195.00010.002610.005110.050010.226210.319310.401210.2262
----------------------------------------
'
RICHTER RECURRENCE RELATIONSHIP:
GUTENBERG a
a -value= 2.878
b-value= 0.644
beta -value= 1.484
i
I
I
1
I
DATE: Thursday, August 3, 1995
* *
* E Q F A U L T
*
* Ver. 2.01
*
* *
(Estimation of Peak Horizontal Acceleration
From Digitized California Faults)
SEARCH PERFORMED FOR: STANDARD PACIFIC L.P.
JOB NUMBER: 1851578-14
JOB NAME: STANDARD PACIFIC TRACT 15011
SITE COORDINATES:
LATITUDE: 33.62 N
LONGITUDE: 117.883 W
SEARCH RADIUS: 100 mi
ATTENUATION RELATION: 1) Campbell (1993) Horiz. - O=Soil 1=Rock
UNCERTAINTY (M=Mean, S=Mean+1-Sigma): M
SCOND: 1
COMPUTE PEAK HORIZONTAL ACCELERATION
FAULT -DATA FILE USED: CALIFLT.DAT
SOURCE OF DEPTH VALUES (A=Attenuation File, F=Fault Data File): A
I
TABLE B-4. DETERMINISTIC
SITE PARAMETERS FOR FAULTS WITHIN 100 MILE
RADIUS OF
'
SITE
-----------------------------------------------------------------------------
I
I
IMAX. CREDIBLE EVENTIIMAX. PROBABLE EVENTI
'
I
I APPROX.
I -------------- ---- II--------------
----
I ABBREVIATED
IDISTANCE
I MAXI PEAK I SITE II MAx.1 PEAK
I SITE I
I FAULT NAME
I mi. ()an)
ICRED.1 SITE IINTENSIIPROB.1 SITE
IINTENSI
i
Ali
I I
I
MAG.IACC. gI
MM II
MAG.IACC. 91
MM I
I-------------------------- I
IANACAPA 1
-
---------
56
I
( 90)I
----- I------
7.001
1------
0.0221
II
IV II
-----I------
5.001
I ------I
0.0051
II 1
----
IARROYO PARIDA - MORE RANCHI
91
---------
(147)1
I
7.501
----- I
0.0131
------ I ------
III II
II
5.251
----- I
0.0021
------I------I
- i
I-------------------------- I
(BLUE CUT 1
96
(154)1
7.001
0.0061
------
II II
II
6.001
----- I
0.0021
------I------I
- I
I-------------------------- I
ICAMP ROCK-EMER.-COPPER MTNI
---------
99
I
(159)1
----- I
7.001
----- I
------ I
0.0051
------ I ------
11 II
II
5.751
----- I
0.0021
------ I ------
- I
I
I-------------------------- I
ICASA LOMA-CLARK (S.Jacin.)I
---------
51
I
( 82)I
7.001
----- I
0.0201
------ I ------
IV 11
II
6.751
----- I
0.0171
------ I ------
IV I
I
I--------------------------I---------
ICATALINA ESCARPMENT I
32
I
( 52)1
7.001
-----
0.0421
------ I ------
VI II
II
6.251
----- I
0.0241
------ I ------
V I
I
I -------------------------- I---------
ICHINO 123
I
( 37)1
I
7.001
-----
0.0891
------ I ------
VII II
II
5.501
----- I
0.0301
------I------I
V I
I--------------------------I---------
[CLEARWATER 172
I
(116)1
I
I
7.001
----- I
0.0141
------ I ------
IV II
11
3.001
----- I
0.0011
...... I ------I
- I
I -------------------------- I---------
ICOYOTE CREEK (San Jacinto)I
79
(127)1
I
7.001
----- I
0.0091
------ I ------
III II
11
5.751
----- I
0.0031
------ I ------
I 1
I
1 -------------------------- I
ICUCAMONGA 1
---------
35
( 56)I
7.001
----- I
0.0491
------ I ------
VI II
11
6.251
----- I
0.0281
------ I ------
V I
I
I--------------------------- I---------
IELSINORE 124
I
( 38)I
7.501
-----
0.0941
------ I ------
VII II
II
6.751
----- I
0.0561
------ I ------
VI I
I
I--------------------------I---------
IELYSIAN PARK SEISMIC ZONE 132
I
( 51)I
I
7.001
----- I
0.0561
------ I ------
VI 11
II
5.751
----- I
0.0231
------ I ------I
IV I
I--------------------------I---------
IFRAZIER MOUNTAIN 197
I
(156)1
6.501
----- I
0.0051
------ I ------
II 11
II
3.001
----- I
0.0001
------ I ------I
- I
I--------------------------I---------
IGLN.HELEN-LYTLE CR-CLREMNTI
46
I
( 73)1
7.001
0.0241
------ I ------
V 11
II
6.501
----- I
0.0171
------ I ------I
IV i
I--------------------------I---------
IHELENDALE 177
I
(125)I
I
----- I
7.301
----- I
0.0111
------ I ------
III II
II
5.751
----- I
0.0031
------ I ------
I 1
I
1-------------------------- I---------
IHOLSER 167
(108)1
6.601
0.0121
III II
5.751
0.0061
II 1
----------------
IHOMESTEAD VALLEYI
97
(156)1
7.501
----- I
0.0081
------ I ------
III 11
11
4.001
----- I
0.0001
------ I ------
- I
I
I-------------------------- I---------
IHOT S-BUCK RDG.(S.Jacinto)1
57
I
( 91)I
7•.001
0.0171
------
IV 11
6.001
----- I
0.0081
------ I------i
II I
I-------------------------- I---------
[JOHNSON VALLEYI
I-------------------------- I---------
92
I
(148)1
I
----- I
7.501
----- I
------ I
0.0091
------ I ------
11
III 11
11
5.251
----- I
0.0011
------ I ------I
- I
I
I
1
I
1
TABLE B-4, CONTINUED
IMAX. CREDIBLE EVENTIIMAX. PROBABLE EVENTI
I
APPROX. I
-------------------
II
-------------------i
ABBREVIATED IDISTANCE I
MAXI
PEAK I
SITE 11
MAX.]
PEAK I
SITE I
FAULT NAME 1
mi
()un) ICRED.1
SITE IINTENSIIPROB.I
SITE IINTENSI
I
I
MAG.IACC. gl
MM II
MAG.IACC. 91
MM I
I-------------------------- I
ILA NACION 1
---------
69
I
(111)1
I
----- I
6.501
----- I
------ I
0.0101
------ I
------ II
III 11
------ 11
----- I
4.251
----- I
------ I
0.0021
...... I
------ I
- I
------I
I -------------------------- I---------
ILENWOOD-OLD WOMAN SPRINGS 186
(138)1
I
7.301
----- I
0.0091
------ I
III II
------ II
5.251
----- I
0.0021
------ I
- I
------I
I--------------------------I---------
ILOCKHART 197
(156)1
I
7.301
----- I
0.0071
------ I
II II
------ II
5.751
----- I
0.0021
------ I
- I
------I
I--------------------------I---------
IMALIBU COAST 148
( 78)1
I
7.501
----- I
0.0421
------ I
VI II
------ 11
6.501
----- I
0.0201
...... I
IV I
------ I
I -------------------------- I---------
IMID-CHANNEL 186
(138)1
I
7.501
----- I
0.0141
------ I
IV 11
------ II
5.501
----- I
0.0031
------ I
I I
------ I
1-------------------------- I---------
INEWPORT-INGLEWOOD-OFFSHOREI
2
( 4)1
I
7.001
----- I
0.4981
------ I
X 11
------ II
5.751
----- I
0.2571
------ I
IX I
------ I
I--------------------------I---------
INORTH FRONTAL FAULT ZONE 153
( 85)1
I
7.701
----- I
0.0321
------ I
V 11
------ 11
5.751
----- I
0.0071
------ I
11 1
------ I
I -------------------------- I---------
INORTHRIDGE HILLS 154
( 87)1
6.501
----- I
0.0161
------ I
IV II
------ II
5.001
----- I
0.0051
------ I
II I
------ I
I -------------------------- I---------
IOAK RIDGE (Offshore) 185
I
(136)1
7.201
0.0121
111 11
5.501
0.0031
I 1
----------------
IOA.K RIDGE (Onshore) 172
(116)1
7.201
----- I
0.0161
------ I
IV 11
------ II
6.50I
----- I
0.0091
------ I
111 I
------I
I--------------------------I---------
IPALOS VERD-CORON.B.-A.BLANI
14
I
( 23)1
7.501
----- I
0.1741
------ I
VIII II
------ II
6.751
----- I
0.1081
------ I
VII I
------ I
I ------------------ - -------I---------
IPINE MOUNTAIN 186
I
(138)1
7.001
----- I
0.0091
------ I
111 II
------ II
4.251
----- I
0.0011
------ I
- I
------I
I--------------------------I---------
IPINTO MOUNTAIN - MORONGO 178
I
(126)1
7.301
0.011I
III 11
------ 11
5.751
----- I
0.0031
------ I
1 I
------ I
I-------------------------- i---------
IRAYMOND i
37
I
( 59)1
I
----- I
7.501
----- I
------ I
0.0651
------ I
VI 11
------ II
4.001
----- I
0.0051
------ I
II 1
------I
I--------------------------I---------
IRED MOUNTAIN I
95
(153)1
7.301
----- I
0.0101
----
111 II
------ 11
5.251
----- I
0.0021
------ I------i
- I
I-------------------------- I---------
]ROSE CANYON i
43
I
( 69)1
7.001
--1
0.0271
V II
6.001
0.0131
III 1
------------- --
ISAN ANDREAS (Coachella V.)I
80
(128)1
8.001
0.0191
IV II
7.00I
0.008I
111 1
---------------
ISAN ANDREAS (Mojave) 152
( 83)1
8.30I
----- I
0.0521
------ I
VI II
------ ]1
8.00I
----- I
0.042I
...... I
VI I
------I
I -------------------------- I---------
ISAN ANDREAS (S. Bern.Mtn.)I
51
I
( 82)1
8.001
----- I
0.043I
------ I
VI II
------ II
6.751
----- I
0.0171
------ I
IV I
------I
I--------------------------I---------
ISAN CAYETANO 175
i--------------------------I---------
I
(121)1
I
7.501
----- I
0.0191
------ I
IV 11
------ II
6.251
----- I
0.0071
------ I
II 1
------ I
I
ITABLE B-4 CONTINUED
'
1 ---------------1
----- 1MAX. CREDIBLE
EVENTIIMAX. PROBABLE
EVENTI
I I
APPROX. I -----------
---
----
- II-----------
---
- --
- -
1 ABBREVIATED (DISTANCE I MAX.(
PEAK I
SITE 11
MAX.(
PEAK I
SITE I
1 FAULT NAME I
mi (km) 1CRED.1
SITE IINTENSIIPROB.I
SITE IINTENSI
1
I MAG.IACC. gi
MM II
MAG.IACC. gl
MM I
------I
i-------------------------- I---------
ISAN CLEMENTE - SAN ISIDRO 1
I ----- I ------
55 ( 88)1 8.001
I
0.0381
------ 11-----
V 11
I------
6.501
I
0.0121
III 1
'
--- -- ---
ISAN DIEGO TRGH.-BAHIA SOL.1
---------
44 ( 71)I 7.501
I ----- I ------
0.0371
I
V 11
------ 11-----
6.251
I
0.0151
...... I------i
IV I
I -------------------------- I
ISAN GABRIEL 1
41 ( 65)1 7.001
0.0291
V 11
5.751
0.0121
III I
--- - --
1SAN GORGONIO - BANNING 147
( 75)I 7.501
------
0.0441
I
VI 11
------ 11-----
7.001
I
0.0301
------ I
V I
------ i
I --------------------------I ---------
ISANTA CRUZ ISLAND 192
---------
I ----- I
(148)1 7.401
1----- I ------
0.0111
I
III 11
------ 11-----
4.751
I
0.0011
------ I
- I
------ I
'
I --------------------------I
ISANTA MONICA - HOLLYWOOD 1
40 ( 64)1 7.501
----- I ------
0.0581
I
VI 11
------ 11 -----
5.251
I
0.0111
------ I
III 1
------ I
I-------------------------- I ---------
1SANTA SUSANA1
I
58 ( 94)1 7.001
I ----- I ------
0.0211
I
IV 11
------ 11 -----
6.001
I
0.0101
------ I
III 1
------
I -------------------------- I ---------
ISANTA ISANTA YNEZ (East) 1
88 (142)1 7.501
I ----- I ------
0.0101
I
III 11
------ 11 -----
5.251
I
0.0021
------ I
- I
------
I-------------------------- I ---------
ISIERRA MADRE-SAN FERNANDO 1
36 ( 58)1 7.501
----- I ------
0.0671
I
VI 11
------ 11 -----
6.001
I
0.0221
------ I
IV I
------ I
I-------------------------- I ---------
ISIMI - SANTA ROSA 1
I
65 (104)1 7.001
0.0171
IV 11
------ 11-----
5.251
I
0.0041
...... I
I 1
------ I
'
1-------------------------- I---------
[VENTURA - PITAS POINT 1
I ----- I ------
88 (141)1 7.201
----- I ------
I
0.0111
I
III 11
------ 11-----
5.751
I
0.0031
------ I
I 1
------ I
1-------------------------- I---------
IVERDUGO 137
I
( 60)I 6.701
0.0351
V 11
4.501
0.0071
...... I
II 1
------ I
I -------------------------- I---------
IWHITTIER - NORTH ELSINORE 120
I ----- I ------
( 33)1 7.501
I
0.1131
------ 11-----
VII 11
I
6.001
0.0401
V I
I-------------------------- I--------- I -----I------
I
------ 11-----I...... I ------I
'
-END OF SEARCH- 52 FAULTS
FOUND WITHIN THE
SPECIFIED
SEARCH RADIUS.
THE NEWPORT-INGLEWOOD-OFFSHORE FAULT IS CLOSEST
TO
THE SITE.
'
IT IS ABOUT 2.2 MILES AWAY.
LARGEST MAXIMUM -CREDIBLE SITE ACCELERATION:
0.498
g
'
LARGEST MAXIMUM -PROBABLE SITE ACCELERATION:
0.257
g
I
1851578-04
I
lJ
' ' ►Ir ►i0
Seismic Analysis References
Blake, T. F., 1989a, EQFAULT, A computer Program for the Deterministic Prediction of Peak
Horizontal Acceleration from Digitized California Faults, User's Manual, 79 pp.
, 1989b, EQSEARCH A Computer Program for the Estimation of Peak Horizontal
Acceleration From Southern California Historical Earthquake Catalogs, User's Manual, 94 pp.
1993, Procedures for Selecting Earthquake Ground Motions at Rock Sites, National
Institute of Standards and Technology, NIST GCR 93-625, 9 pp.
Ploessel, M.R. and Slosson, J.E., 1974, Repeatable High Ground Accelerations from Earthquakes,
California Geology, vol. 27, no. 9, pp. 195-199.
Real, C.R., Toppozada, T.R., and Parke, D.L., 1978, Earthquake Catalog of California, January 1,
1900 - December 31, 1974, First Edition, California Division of Mines an Geology Special
Publication 52, 15 pp.
' Seeburger, D.A. ar
Prepared for
Berkeley.
n
H
1
7
i
1
I Bolt, B.A., 1976, Earthquakes in California, 1769-1927, Seismicity Listing
National Oceanic and Atmospheric Administration, University of California
Sherburne, R.W., Boylan, R.T., and Parke, D.L., 1985, "Seismicity of California, April 1979 through
October 1982," California Geology, vol. 38, no. 4, pp. 75-80.
Toppozada, T.R., Real, C.R., and Parke, D.L., 1981, Preparation of Isoseismal Maps and Summaries
of Reported Effects for Pre-1900 California Earthquakes, California Division of Mines and
Geology Open -File Report 81-11 SAC, 182 pp.
Wells, D.L., and Coppersmith, KJ., 1992, Analysis of Empirical Relationships Among Magnitude,
Rupture Length, and Surface Displacement, [Abstract], Seismological Research Letters, vol. 63,
p. 73.
Wesnousky, S.G., 1986, Earthquakes, Quaternary Faults, an Seismic Hazard in California, Journal of
Geophysical Research, vol. 91, no. B12, pp. 12,587-12,631.
Working Group on California Earthquake Probabilities (Agnew, D.C., Allen, C.R., Cluff, L.S.,
Dieterich, J.H., Ellsworth, W.L., Keeney, R.L., Lindh, A.G., Nishenko, S.P., Schwartz, D.P.,
Sieh, K.E., Thatcher, W., and Wesson, R.L.), 1988, Probabilities of Large Earthquakes
Occurring in California on the San Andreas Fault, U.S. Geological Survey Open -File Report
88-398, 62 pp.
Ziony, J.I. and Yerkes, R.F., 1985, Evaluating Earthquake and Surface -Faulting Potential, in Ziony,
J.I., ed., Evaluating Earthquake Hazards in the Los Angeles Region - An Earth -Science
Perspective, U.S. Geological Survey Professional Paper 1360, pp. 43-91.
11
[1
CT�J
GEOTECHNICAL BORING LOG
H
1
F
1
I
I
I
II
I
I
Date T4qJ94 Drill Hole No. L8-1 Sheet I of I -
Projeet lkogorler n/or ffi Job No. 185'1518-02
Drilling Co. Bi�Jo4+,n 's 1rit9,` Type of Rig euc.R....E- A�a!'
Hole Diameter A4-` Drive Weight 4soo Ibo . Drop 12 in.
LIYI
YY�V.•
Vi/ •
..
"e
GEOTECHNICAL DESCRIPTION
c
tic
o
z
oo
ie
rov
+y+ ++
°'
a
a
sH
.
w
G
.•
u u
4)
4.3
w
'
.d
-1
•4
o As
In d
M a
•
N
Logged by Q '.
O U.
0
•+
F cL
m M
..
I •4Ja
c
y
Sampled by ae-
w
0
G
a
A m
;`
loG.O
B•s
�r�
2
.,
b.0
1.0
1
S4
:: ;;�:'
� 3
Z
roa.�
Y•1
yL;c�G••t•fy dtnw� Porowo� ro°+e'.t'
-tv &t 6%,u t.
5
animu.l i.w'ro.d'a .
Ct% �j.0, . �i 11 � nC SA^J bro om ,
Jtis 66 porost** .
-%tom dcPt h : 4 {eeh
hiv $ro wed
4a eauln9 .
SooA (2/77)
I
I
1
1
GEOTECHNICAL BORING LOG
Date g129J44 Drill Hole No. "-2 Shoot/of 2-
Project 4eragerler Nord'+ __ Job No. 185/578-02
Drilling Co. "Sia l� j(=r{,q, - Type of Rig BucKeJ- Am_gic
Hole Diameter 24" Drive Weight AS'00 A4 . Drops/ a in.
r,^I n_C ns�,.w el L L_ i Ao_I%LD PA"
x
v
GEOTECHNICAL DESCRIPTION
X
w+ .+
0.0
O, s
rd
7
«+
zo
0
.o u
y-y�
y o
2 0
o V.
r. W
N u
ow
41
u a
oU
.-.
c� v
Logged Y
Lo edb Q%
0
W
$4
I
Ham
a
a
ro
Sampled by Q1G
O
;
� /* : •:i
$aid
@ 0.1 / : Si 1� �•nr Bard -ho
,.•: • .
)
3
GG.'3
HS ci
st f b i ftw � -Fo 31 deep �
-
po•roun .
RE
— —
—
T•$r
�����
2
2
N4.y
91.3
'grilmce- Mon .E'or,,.,G,{•r'tin-('im�
0 3. WGaiitrecQ Si l{�� e`�R t�''
g: NSWr
-4o -6rorwn, ,,,P,
^-�
JAM
cn4er•bt,4 AAJ } ie
- •
_n-_-
3
3
30.1
q5.1,
u,f LGd wt•I?, 4ewr XA ete_postba
1
SIa' d porous, clwi o`yu °`a O
P
Mor:at iv
15
_—
— =
15.21
$
N2
r r1Gcu-vuiiaa<Q dr� t 'ch++t.Q
� •8: Sk�4, io r.o lof '�
oKt.l.o
— _
bN£
S'f:iti rv.a uti'f'p� v�.�,•� a^d
rj awpQ. recou+,rd . tF.rIA AritA.'.�-mrt.Q
_-_
IS!
--_
1b Iv. er S•uiP. Wry
'20
15,9 ': Ctrrvr,•Fed 2vv t S /r ..}{,a'efc
waeA•
nor•tfi
—_
li41: �OP'�' rr� noriKnanb wacJ2 Fa!'
o.� i"-d.ta..t4r*' ,.r`•rY"�'`
,.Iwwred out
.26
ao
500A (2/77)
Leighton & Associates
GEOTECHNICAL BORING LOG
Date Drill Hole No. L6^2 Sheet 2 of 2-
Project Ne.4pornFu nlor4f, Job No. 18515-78-O2-
Drilling Co. 64� .Jo4,^n!4 *hriQL,4 __Type of Rig �waktF
1 Hole Diameter L,e Drive Weight ASoo Ib. Drop t2 in.
ci...a.;..., T.... nF u,.t. irni Ref_ or Datum Snn. 6Qo4eel..u:ca.0 t-i" .
1
1,
1
1
1
I
J
I
1
C
1
I
'11
i
1
1
H
a x
GEOTECHNICAL DESCRIPTION
�o
0
H e
t o
th
q W
41 u
++
♦+ a
vs
.•,
U U
04
d
N
.,
.O 0
O w
Ac
a
h u
4 •
Logged by 4K
e
a.
:2
Sampled by 6?K.
I
o
y
3p
'De�•K.:
Tpta.P 3O•
DnwnF.oPt Rord�cf 'ib 24�
•
��„d u)af•cr ec � G�
h� o fAut`v�
f3ark.�+t2ed
500A (2/77)
IGEOTECHNICAL BORING LOG
Date
W2 10-
Hole No.
L -3
Sheet I of 2--
Project
McWgr•er
-Drill
t4or•IA
Job No, 1851578-02-
Drilling
Co.
13iq JoA^^;rS •b#- III`na
Type
of Rig eucicet
Hole Diameter
24// Drive Weight
P5 o16.
Drop 12 in.
c•_
m__
_O 1IQ 1;:6 D-R n" nntnm
C.. NiGn
I
I
I
I
I
I
LJ
I
I
I
I
II
I
n
I
.,1
d
o
N
4
IVx
I,
GEOTECHNICAL DESCRIPTION
.0
44 4+
x COn O
W pp
3
'O
O
Z
O
O
i O
W
In
C W
d U
Ir •
7 4J
44 C
'1 N
.r
U U
a d
d
O
14
451
,i
.O 6/
o •,
O
•+
a 0
%n O
Logged by QK_
I
a
a
c
'o
Sampled by Qk
W
E
`y/
Tcrrarr 'Dcpoa,''�, - (Qb�
y^�•
`, �� •
da-.rp � s-1''t�+`•F�j 51'� i ••Pnrocw � c.,etf
oco�o
,�P )
Abu .AA+t C='BD
.., .e •'y
V
sa.v�d ..,a'M'x . ri.'M'x h ._P..`�h+= 6ro,+++ /
=
'`�
da..�..p , ca•�A,+� ot,•M.a � p cry u.o .
Z
3
(r`•`i
y�•R
3.�i-/: ^x•li� f;•N SaneQ -Fo �'..e sa.,d� Oi [{-/
medtur� {d da.rk brow+
¢/ ; $.'I•h� .�i',v Sa,.d! � •C.'�irt a,^a.,.� -brown /
to
q 4/
Ll�, roC: - Menlu��
Fi
'
8:�4Nw�
3
2
64.1
u(.•�
� ¢,�r: tJCa.�a sPlkalvr.m� t,�;�lt �.c.Fo,.h
SB1
a`g1
brow»o n oi�t� sh'd�(� pnro��tL-y.
�,
O-' •1YY,L� 1
13.3/
tvi f2 TuraU 3�po ti makn'
`�
p;N5oH7/
ta+
/ 11r+Nreal�t/ccP lb+Vne / d
'1', ue^J
54-' j.
605
59.E
.Q
+o cry+ 6`d.lcd
st5'j
�
jd
1. J•�•r^'•"a'Q
'�:�
• N3lui
8. /
�cd. Si If�trn2 '
gL0.{iGrGiQ 51 �U.
�.
(a 8.9 ; s2 �E t uopa$e c n
��.
C� 10.8/:rrl.tare4f eQay
;,o
\�•;1
t? f1.4/: SI carEd day
�•
P At '
/ , ed LQu� /J4° 4t%er k
� l3.G : 5-t+�0.
(` 18.S1: gjQ:u+rsl g.rl}>-Ftrn< (?alyr 3" •tkx'cic. ,
25
A1.5/: ieep&-v W" W40 We..l.!
5
5
b6 •Ii
St(•�'
25.b1: Cemen•kd Zane. 8//
30
SooA (2/77) Leighton & Associates
F
GEOTECHNICAL BORING LOG
i
J
i
11
I
I
1
I
11
I
I
I
Date 8JA9J94 Drill Hole No. 1-6 3 Sheet 2 of 2-
Project 1Jra.3vor4er 1Jortk Job No. 1961649—DA
Drilling Co. Biq�_n;s ' r; CU.,;.-Type of Rig 6M.akx-1- Au -A sLr
Hole Diameter R4" Drive Weight ISDOlb,*. Drop 1,A in.
_c n_._ 1141i' UDC n� M,t D
.u+
0
o
a+
u x
vyi
GEOTECHNICAL DESCRIPTION
.0
u ,�
.0 b0
G.
'O
7
Z
L
A O
z O
V)
044
� �
4+
M y
.
C1. d
d
ld s
H
4+
M
.o 0
o .,
O U.
.r
u u
o a
u a
d
U U
•
Logged by QK
�' a.
C)
I
a+
e
p. tL
to N
a
o
.r .+
io
.. N
y
Sampled by 0
30
►� DFfA ;
TotrP �}C.: 35�
Do.✓n1w2 ?.oad iro SL4V.
u341*r Cz s2 S. S ,
rJo co.�.'n9
35
b
to
(R.8
S79
gack,FitAisl 91'29 9¢
500A (2/77)
Leiqhton & Associates
1,
I
1
I
1-
I
I
1
1
I
I`1
r
I
GEOTECHNICAL BORING LOG
Date 8/ag194 Drill Hole No. L8-4 Sheet 1 of 3-
Project Mewger-4u Mor-If. Job No. 18615:F8-o2.
Drilling Co. 18,'gr_n� -D;•l/fi�+� Type of Rig gAc*_et Auk
Hole Diameter cA4-" Drive Weight NA Drop.] 2- in.
ri aa u..i- halt Rwf- nr ❑atum n eek'Itea.Q M"
._r--
0
i.
,4
�,
_
ro
GEOTECHNICAL DESCRIPTION
c
J 4J
.e eo
g
:3
M
z°
d
a
H o
o
O U.
u u
wa
4dJ
a
to
.+
.
.r
a
.z1
m N
ca
H
N
.. v�
Logged by Ge-
I
,F
e
�
a
c
4
Sampled by Qk
W
c°e'
In
0
Tarracc '�t,PoF+''la (cztt)
.�:�ii
. ;/
ei Oi: zinc S&rA3 sil{ l dark �rs� t9 Lrnwn,
OAPorotxoL,
wi K. roo+ .
b°poo e
vt�aa4 y
@ 2.1 Abutidaai fra D� t
u''Zf - -
'oPti
Tn L•t mA+fe !x . ra✓GQ
y�py
e7.41
(li 4.,5'
ENE
eet,:4SArock - Mo^
�.
lJGtc'l•P��cQ 4i l�irA
-enB /-r.,oah't+
10
^
l"' G .�•�{ _L.,.G{.,.vK� 5+-.•new
1j;, 'l )"�ifP. iur�u
al NO
�� n rootlel> / no Jn4il.•Q-�-
fi+
�i
Poro Cn'G{ . .}..rl.•eltd•c°l U; li•.•1+++�
�10%'
Spa `c"'a°y .g,•A�•�• ,
-to I" fi iG `QAae�Q
and 3s+aincd
oxide A-14
-> ✓� R' � l t
•-•"�,
brslcEa• Si tjw_e. 0 iani.W.k�l
S � i
bm,
brown
@2o.4�
N eq-0
Ca 4.x 1•. Sitic {tcA sili�ix4 ao.� / •Ilu`ck .
�rne
��•�
V.
INN
rt. o.v rs
�_�a -_J
GfW�^
L,
\` \
1. ID .�I: I�O�f 1 - W"�•+y' T✓
M°�� "
s�
(y la'-Iss
,�rytci•w•e�
11dJ1
3a.y
°p.a.riL.
@ l5. I / : Sheared ctatl i,
S
•
� ,20. ¢ l : S.i,Gare..Q a¢ay scicrn , dark ray , `!a"'P ,
A4�-ASI: S-hGa.ed 4^4 l.rore—n.
\��
a.G.S r : M.iaa.ouo ri !•h4•r.e Qa�er, '�.3"-Yi�ie.IC .
3p
��ti
SODA (2/77) Leighton & Associates
GEOTECHNICAL BORING LOG
Date $.1a9'9+ Drill Hole No.
1-6-4
Sheet A of 3-
Project ►.ler+e.
Job No. I$515S-o2-
Drilling Co. 'Girl Jokft^4 .s
ype
of Rig SUCJCa.i• I�r
Hole Diameter Z4-" Drive Weight
►JA
Drop 1a in.
T7l.vnr4nn Tnn of Nnl. itsr -t Ref_
or Datum
See UeoieehM%edt M"
I
I
11
I
1
I
I
I
I
I
I
H
41
H
x
GEOTECHNICAL DESCRIPTION
♦+ a+
:C
b
z
a o
544
41
cc y
r
L
eN
ro34a
,
a d
�
o U.
.4
V
4w C
N e
U U
ti
Logged QK
by,
I
u
6
EN. a
m=
le+
a
c
4W
y
Sampled by QIL
30
" 50.9 Sheared eb%j t+ca.m dark.. &rw J �
` \
•B'•NQSIJ
clay s,ea�� �/4"-Fhiek..
33'-341': S;e+u cd Si Ik�t++
55
� •��.
'� 36'
141t
$t5/�
�
@ 36': SRew.recP � seasy Jn•1'y+i�•
`? .
g�.l
3G.4': s►xa'ed elnf wt^+i /Z " fhtak
:1J84£�
39.91; �F.careA cQa�r+�
+0
`
41.4: sheared e141 ata'. Y4-11 fyibK
4A.6-43.41: $df:ei fled
`i
--T
4S
=_
4}.2'
S: NaaE
NLJ
tp
%-'
(cJsl � 55': AbLt.ula.nt St�c:.�•ieA, b�tis'f+'^4'
r s bece.ry+ unox'.li�eel
@55.'fi Si I�a•Fen
./yam•
.a`
dark- tr t Act,., p -M me ist 1 st+' i
S:uSI45
49NtJ
r" .
Ca 55•�'F:ncsar d Rgpr,tr aR rm..��L(-br,w n�
SODA (2/77)
Leiqhton & Associates
iGEOTECHNICAL BORING LOG
Date 812R 1 R4 Drill Hole No.
Le, -
Sheet 3 of 3 -
Project t ewPorlu ► 0r4-A
Job No, t8515'*S -Da
Drilling Co, 3144nh^47 1>rqat,2v
Type
of Rig 84.eke.f At!e
Hole Diameter 24" Drive Weight
WA
Drop i2- in.
ci _...,w:- •r.... ..a u..t- 11311 Rwf_
nr nafum
Q,. Gi rl7..l.ner aD Ht
I
I
I
I
1,
u
II
11
II
I
If
`J
!.
• _
GEOTECHNICAL DESCRIPTION
4N ✓
W o
o
7
z
0
H o
2 O
C W
{e�
,tee vi
1.L a1
ea .i
4r
? a
o U.
d U
,.+ C
o a,
U U
Logged by lQK
IT
a
a
c
MQ
+N
Sampled by QK
W
E
to
60
��
60.1
S wt!
601 CFa sea.., ^ o trL� sf,�i P p ey }�•e� s Htry e
\�\$:N
1P31
II,N,
zA)z
i„_tick.
Ng7.IJ
b].21: Sheared CI&S se.1m d�ac
13 N1
^_
8 IEN /
64 9�: Si.eared etas un.*+� '�It,�-tfi�cfc .
6S
=
;•`
1. showed ice.
GG.S .
��
1
-
s.jcrt acep�aa e+ Sochi waQl .
►.. _.
Q L�•q
1J65/�
$•13NE
�12
� L9.31: Shooed c� bt�+� .
''ua'v. .
I
� (cfi.5� : Shta,red �
do•frs_
TotaP clePtf+ : '�21
1
7>ownha{t �5�d -to ✓'O8
,
Mo
'Baek.�lD�.ed S/Zq�R4-
SODA (2/77) Leiqhton & Associates
G
Ca. BORING LOG E44-1
CLIENT .TRyfNP_ TActFic. W.O. -pr•DATE DRILLEb Z- D LOGGED BY )-n:-562
PROJECTNEwppgr-Ek .UDQ7+ SURFACE ELEV. //5'* DRIVING WT. O-Z::' 277 or-
DRILL RIG
gurXEr tuyF'x�, BORING DIAMETER 24
3
W
_
W
c
a.
O
GEOLOGIC/ENGINEERING DESCRIPTION
as
�vF-
N
O.
p
v
�WW
�3
am
O<
cam
iwCa=Cv
W "
G a
c
W
'W
m l^
TE44ACE aEP2s/,::s -0
S/LTJ FINE SANG + AAW-4FIV5E. L7'.-BZN/- DC-7
d73'.dEco07,5-S oisT
mLr CONG^GU 6rEK.iTlL LA`JER.
MO�VTE.eE9 %'p,�MAT/oN�fi+•i) :
CLAJE= SrL r_7bNE' r YAlE- 011 YF 7t) LT (!Ay r
71 MaD. lfA.CD , rrrvrs T, w Er17N . DlaT'O nr� .
CEOUS. LAM1N6T'C7)
c -7—4rOMC:, MOD. P144D . L.ESS 4)Og7HE2i=:u
Lb to ' FEW -RIN -'WA&Y LAJEQ , BCca...c s �c7D-i._
rwLT GLlq,SCA^ , Morl�. ?LA STic . oUvE-W/�
Gib SCEPN l�6
Mlbk' 14AaA SlUCL- aaS LAyF,2
a 19 V. mof s7 TU wE r
M2,o' 6 0.
SM
GM
4
c
'11D
5 '�
IS
''
ID
IS
zo
TD = zl
r
30
Tma lop a 8 fvOrGI MAllon of subsurface conditions at the time and pi
puupe 01 time Of at any other Iocatlon then may he consequential
I
CLIENT=Rv/NEP/tc'c'c W.O.z'lz2-A-^"^^ATE DRILLEDLZ=L- O LOGGED BY-22 FA15b
PROJECTMEWAOR-gMge7w SURFACE ELEV. 1121+ DRIVING WT.0-25 Z7ba*
DRILL Rig
puCKFT
=yA-Ex tIWMIMU IJIAMC f CK f -7
io—
w
H
w
S O
6. 0
-�
co
GEOLOGIC/ENGINEERING DESCRIPTION
co
yV
O.�
CD
H
Wu.
W
'
z3a
am
W
O4
ism
z
W "'
O n
c
f.
' W
N N
W
Sf}NDYS/LT, L,G,tTP.12OiJM-lcfc'AY L''Ynu.)N.L111SE,
PrY, PO,L'OUS.
VVj9AJ-T-gSreEV1- RM4 7MI:
D/RTOMRGf=OI.L . � 1P27L£. OGF-WN/7�, SOFTi DAY
TO SG/L<rr�Vr/n/.:T,Pun/KY,H/6NL5/ INEA;�•/6,eLD
TO 7'
51h�1e.°, Mt;O/LLM. � �Y-6iCFf/ B/`OeJ,J, Mc9F�ATf1�/
NAt^A rGlW /TZY HD/�T- Alz>
@/s'BEOD/,��;N�aw,2ovE
@ /S' YEt?'/ S'Af2D, fJoDct14Q W .aG , Alo uA ., 2W.001
CLAY6?DMC, OL,VE RAOWAJ, MoDeeATELY hWMI,
MO/Sf LA1lWATE jore-.RAED51LIGFbut 4AYEtc
@22'BBDD/A,-NEE, ls"er-
ce 30'BEDo/e.U; A/ 5, /o-,r—
'0?3 , A'A' C r1 me £0us lRYBR
3
z
rJJ
/0b•9
,
39'
50.0
5
G
IO
/5
c
25
This log Is a faPfOantalll
passage of time of at art
I,
• BORING LOG 961-2.
CLIENTZRUIUEPAGIFu- W.02161-A-ac.DATE DRILLED/2M-90 LOGGED BYSP 14-5B
PRWECT/VF-wPcteTF-R %VtIIZ'1'4 SURFACE ELEV. IIZ't DRIVING WT.
I A .
DRILL Rig
+-�V-C�T
n"'bF-K tVNINU UlAhttItti
0.
W
0
o
GEOLOGIC/ENGINEERING DESCRIPTION
@�fCi33eG.57ti�'D'r.J6, FcEOra�Da/ira��.�4�� �.NN�5S�Gftil,,118So5NuE E
�E Gey �fADD��y
MDTL.- Uar't
ai
o�h V
to
1`
WmV�"
w3c
z
am
W
0a
0123
Zto
c o
c
W
I-
w
w
z
0
z c
qpw
T. D. = Nl ' /Vo w,arae. Alv C.4alj ,1
Aloe.,-- WAs L�FrfIF/CLE.D,
�5
' Thla log 18 a tePrastntatlonot subsurface conditions at the lima and place of drilling. With the PLATE ^~
puupe of lime or at any other location there may De consequential changes In eondlllont.
�I
1
• BORING LOG BH--3
CLIENTSfzvrNRr PACIFIC W, p 2r52-A-ocDATE DRILLED ! _/ - o LOGGED BY FA ap yP
PROJECT 1VEWP4rTBR /Yof?TN SURFACE ELEV._IQFt DRIVING WT. 0-2.5 27D0*-
M"11I Olt_ RLLf__KP'T- L4,uc0. fi(1pwrIIIAMFTFR 2y" 2S/-Ng, /(DS'D=
3
saw-
,.,
w
c
= co
GEOLOGIC/ENGINEERING DESCRIPTION
ad
yV
o
(no
F70
w
zo
am
;gym
vm
z
Wa.
o
fee
w
m t`-
z
c o
x v
O
1
TRRACE 2£POsin (60
S/LTY SRN9. (.DOSE.9RY� ih'IaY Q3(?au.I�. V ECLY
PDR.Dus .
rn 2' RF4 'AFS MEOItuI DEAISE,, Swe-HTLY Nol ,r
yECLOcJ E:P.ow/J.
M4,AJ1SZEY FovzMA77,0M LTM� ;
SIUc aHHLE�NRICD, I:+P/�E/ PLATYi�DD/N(�
!� 7 '.BEDDIA." NS'DE.9SE
C^ DI'..=/JTB2Ci6 DDE'D St LtG AND SILTY
&LAySrOIJ1:.DEN'oE.hlat5T,612AV CiRewa tit
o FehtlE cve I aI_% .
@//'BSDDau.c N/Oc% SNE
@/6'$EAD/nJ6 /�//.SE856
�22'C3EDD/ub /V/Sh/.1D/JE
@23'BF�ortES .9/ATaHRCCOL• r.
Cc�25�.5/LlG SfIAGES rl-i.1D CNE+2T.'
C�21o'BEDD/ ub /✓F06,9SE
92q 'BE7?D/tiNA itlSoW, 2D5W aa-r T3Y H/NOR
FAULT -reWPAJ6 NlvoE,VSFrr)t:AL.
@3o'S/��' c�.aYsrd.uFS,HAfeD.rto/s7-,
Y�ct04i B,t'o wti1.
CC 32�G'cAl�s7'oc/ES h�/ sitrc S/iAZE
/NT6,t'L'E,OS.
SM
ELLL,
3
5
G
ND
RWY
-73•/O
31'5'
5
!O
/s
c B
I'T
25
�,
'
—35— 1
This too Is a representatlon of subsurface conditions at the lima and puts of drilling. With me
Passage of time or at any other location there may be consequential cnanoes to conditions.
FLAIL r__
CJ
�Gz
G* 'a E30RING LOG 1314-3
RD-
T -
CLIENT.TRI12E AAc,F,c W.0.&J-2--64MATE DRILLEDILIA-40 LOGGED BY12
PROJECTNEwaoPtrE.P Alorrsl SURFACE ELEV. 14?11 DRIVING WT.
. , o,rz 0/10IUr MIAUMTCA ZLf 1/
IZ
W
4
3
UJIv~i
L6
V
!_-
W
0
35
a c
�J
O
GEOLOGIC/ENGINEERING DESCRIPTION
@38/z'CLAY SE'A�1,Sf{�L'F�D AGOA)b l3EODnJb
AT E-W, 27 5, 6 "rH1cX. 1-1/Gy4Y.5VA4e6rD AUZ
paG/SN6D.
C0NI'CLAYSTDA,E,MDD, H,1RD,MDAST, DA0< ReDWAJ,
O GG. SILK LAM l,JA•noA)S
cd�13Ya'CLAY �Ff , �-�J1cK,Pa�1sH�a,PAeEYL�G
T� .SFDD/�U6 N.50W 2le•SW
C 1/!n'/2/Nofc' FOLDS AA1D &F Q V EAL-
3E,Z. DI
C-V7'CCAYEY z-,fLT,"TDD/E. HT?2D- v.P41 v. 611va
SIPOWN,/RON rrBSIDu del FP./IGTct,2E.� .4N!/,
ALcN6 LiE00 / J6 ,LAM /Al r7 p 77Z, 7if7NLY arMO.
es►/z'GvPsurl L/,UED L3EDD,AY�,NSOh/,(oSW
c5N REsl�unc o/L.l�Arz�snn�s.
C�5!D,OLAV S'6AAt PAJ?ALIEL 7D G'WOMI. A7'
,NNDE, /2 NW
196v ,61AY .SEAM . Y8'- Ti!/c , 9A2411 EL 'Tn
$EDD/.U6 1V20W, /YSW
@60�L'CG9Y SEAM., %B°otticl�. PA2ALGEL Td
NOTE 'DID A1417- ",0WA MOLE 3EL L-J 601&'
DUE Iry BAD AIR -LACK OF arY,6EAb
� 65 ' V. NRPD Sr uc LAyFQ
GS G7 SN1aLY S-u nsTD.UE Wl DCG .: ANDy
m
yv
In
d.
O
(9
Vi
W U.
2
Lilac
am
lO
OQ
vm
cam
rn ..
o
�
o
'
� y
W ...
HH
o a
= v
yD
G
This ID0Is
DAOps 0
('jr C. • BORING LOG B -3
CLIENTMEVINEPAC' Ele- W. Oja;-A o(DATE DRILLED - - 0 LOGGED BYFASPB NDP
PROJECTNF-k/AMreR A)oP--rN SURFACE ELEV. /09'' DRIVING WT.
n A ,1
DRILL RIG
-LDLkr-KE' n"b�K dVKI► U DIAME ILK �T
W
4
3
W
WU
W
o
=
< J
GEOLOGIC/ENGINEERING DESCRIPTION
m
5-007
tom=
co
H
C
W
s W
w'i
amWo
�p
F
,Z
W u
a
c
Z
P. W
y Z
=v
70
E7H' HAZD 6tLIC UlySeS
078SILTY 444YS=-Ajr—HA2D,MDIs VA.Pi(4WA.,
Mtn1A7�D b T'N»JLY 3MDE1�
CA2 �t1tY Sf.Anl,d7tFF MQtDi , 62AY StILAeE,D,
C S3'St uc LAYE9,V. HAiM, ZARK 6PAY•
�90'SAAta GF.�1L5 wl SGEPRGE
&91'44AY eBAM
@92'S�zei.ue ,avD �uc.�cEnL:incs.
75
85
9D
95
TD=9S'
B2 =5'
SEEPAGE AT 90'
Thls lo0l. � nanlmutl000l n
pal
tuuoo of fim. or q o" ofMt
(T'� j C. • BORING LOG
CLIENT rrylh� 1�G+L��L W,0, LI52A DATE DRILLEDIZIZL5 LOGGED BY rIV
PROJECT VEhIM97FP-AZOfzru_ SURFACE ELEV. llbDRIVING WT.2ti -SIP
erg -T,
non R.., ✓c-r tlui rD Gr1A 11lC f11AhAFTRR 241,
W
h-
3
W
.W.
►-
a
a
_�
a O
C J
G'
GEOLOGIC/ENGINEERING DESCRIPTION
@
N�WWW
=�
p
cc
t=
y�
tL
war
z
am
Ica
oat
W m
ism
r
~
�...
W
n
s•
o
w f
=.Z
W
N (-
G z
= cii
TE22�1GE nEr�-ss/r'sCc�t:t
�/ T_ SAf.•� : /it. . L.:L•/✓.. 1_4ese
Lei s.c: rr�N_ Ad Ac-I-/e_A7_ .; 400Ts.
1 fl?bNfE � �nFnic � Irrt LTM)
SnrSTs/✓E � t/tJLD � L,�a�l _ wNfTE , DR. ,
LAAMVArebD N/&//" FAAC_lrU ED/sjLlLEouS
/
®4CL1L'•LJSfLT.:.-n1/c � 7ALe-@LIVE , /jlbD•
fr.q/_V, SG/, A70/STD LA/+'f//1/NlEO 77J 7///N.L,S'
.BEDDED jrGALiU'LFS�� 6C/dNl�C.>:H/NS
D 5 (E) /✓75' G..S-N
E17 Hnou? .5/6ic600 L/ ler- ^/zow/ oNE
/
B Iliy (v v35-w,y /✓
e. ,r, FeLDEU �riv.H� , PDssrBLE � A��.r
iBi N¢a w � 14'N -
UP r* Xf/•p v.rtaeinr vANTL�I srL/G�oUS sNr1LE W/
FEW s, AJDs furstBZaz
(E)
®Lz" C!-kJF..y s.t_r��.�NE Mom. HNC
6/y�
, M"' L SAND fnti I/Z.•
ez�•` �E) N4eE. )os�
cozy' Sarvy u3yER wl -rAx
116) N/760, V'"o
G"3►'(G) N/sue'• ti_E
SNP
L}-
i$7
68•�
34�
e
S
ID
�'
3
This Io01s
psusps a
' G�&s C. • BORING LOG
CLIEHT='RVINF- PArLtPIC W.0?�4'-DATE DRILLED fZ� LOGGED BY FA 56
PROJECTNEWPoR75RNo»H SURFACE ELEV. llo't DRIVING WT.
DRILL RIG .BucKei- A"psR BORING DIAMETER !�y'�
W GEOLOGIC/ENGINEERING DESCRIPTION id UPC
W
4W. = t9 HV �� N H
r. W Z Z
W < J 4.� frt? G t+i F'� W
a w p x3IX wj c�im �. a o z
B
�Es! sLi, sse�av�
Q4-3 A&.Ph04raT 5G45F/V.S1D5 j,�If.C//Y�
FAULT,4°oFF-SET' , N75w3 7SNE
SN
, 1
N. w t] LL
©So CD) 14/2SE IZZSE
C�SI/y ,�gn.D_.id:3f3NE, V.dN�tt:, �nCrLL` �
' `D�t, w/GLHNC s.t,a,cr,+,in'�.lifT"DNS
l�s4' c8� ,vtsw> � NE
.4ALL11s/L7"SC61VE TDGLAJSti6NC,DL.pC.toCtU
' nrnD. -41" ro S>7r F � m7ls : st.i T— rzo-
Fa Dus . Tutvt-m znDEa 7'o -AFiI V47-64> w/
,
ht YAAD SILlLr�ovS
G 76r Sancy GfL:.ci_ :�,�__ !,i_L. �L_ Cam;•:•'„ •CS ID'L•$ 2Z'z
' Thu too is arepresentation of suosurtacs conditions at the time and place of drilling. With the .. PLATE.! - Y
passage of time or at arty other location more may be consequential charges In conditions.
r
i
i
wC� —
BORING LOG JW-*
CLIENTMU1*1E PAciatc W.O "o6-DATE DRILLED /2-17-Rc LOGGED BY F SB
PROJECTNEwPvzmp &o -1`114 SURFACE ELEV. HD'* DRIVING WT.
1 A
.11
)RILL RIG
pucKET
/tucET( BUKINU UTAMETER r-t
W
t
a
3
�
a
w
0
75
n
= co
< J
co
GEOLOGIC/ENGINEERING DESCRIPTION
m75 � �Rys�GTSTsn�E , DK• Car+q'J • XiG`�
aic15T cN/ �++*�' S•enOJ Lffru/n•/rTio.t/5
t ski iL�i r/G
T•A. Ss
14&-Avs jar 4f! 51
-- ff°GE wks. LoI�C,En NP__ m Sg
14oLe ceA5 ZAcl Ficl�i
cd
r�
N
p
y
S 0
x3
am
tJ
cam
ism
��
H
W �"
>-
o
W
ae F-
= W
O Z
n
�5•
H-L
This log Is a representation of subsurface condlllons at the time and place of drilling. With the
passage of time or at any other location there may be consequential changss In conditions.
PLATE C -
I
(� — Ce, BORING LOG 89-5
CLIENT rRVIVE`XIFIC- W.0. JLZ-A DATE DRILLED/Z-/8-90 LOGGED BY_
FROJECTNFayib.PT"ER A4M SURFACE ELEV. IIOf DRIVING WT.jL
.0 yTr:
zavcO ��'
/6 8'
)RI
W
F-
LL RIG
1-¢
a
G
bUC
J
i'J
L-1- Au(=tIL_ WWMIMt7UTAMCICtt
GEOLOGICIENGINEERING DESCRIPTION
ci
NV
�=
pzo
co
H
WW
W ca 3
Q w
W
Ca
V m
t7m
lr
z ,.
a a
0
W
= Z
N FW-
C
= t7
O
•
TE2)ZpC�'I7EP.asirs (r2tl:
SANLLIS/LTi .a,CN• LoaSE. D1e1 , RaoTS
SiLTSTb NE F.CArvMEN7.S
MON7826 `J Fo1Cyv,ATloN (-Ti-, )
CLAyEy S/LTS7b1VE, so FT, VALVE -OLIVE. M015T
FRAc.-tuea-sa , D,A7DM4CEov.5,W/LITiLP -SpNoy
LAM(KAT/ON
Os' .BECOMES HARDER
®6� (6) N6ow �Z 5 l . MiaDeFSIULTiNv,FOmw
07 1 sANOJ Lti:E2 (B) IV 96E 8 N
OS 11S#7AL.. FAULT N306 S4 W
•D 10 7z' SAND 1-tUEll N 7D W ) 6 N � UNEVEn,Cd?A
a U !" 11A2D SiLiCfOus LAYER . 1•1(oSW , S/V
013=L5'sAAIb.,s LA.yt'E., MEp. DENSj• a LT. LolAS
SL/. Nro,ST, ceANt�E_S7-A4Vd
LB) N70E , 16 A1W ,( F) 1V3sW, SZS
0IS- Ito uNEvc u",vi14CT DuC 7'> xo LCWG.•
1L=1¢ a4A-4cV LAI(E,C, so FT, v-lnOltr
0 /S' SAA104rbNC L>S aM A3 . MEG. DENSE
•SL/, inaiST . FErr, oeANG�sTA/ASS. Fii✓E
cs.e..a-,n,co
r
,(d V %�CLAYEY LAyE2 CB) ,t/(po to , 29 S
,.
24 I SIL(CEouS LAy Ell. UKEVE,vGOn( �'(1C.T DUL-
•ro FAIXT(KG
(da3o Lai NZSw, LS.Sw
�
3
3
91,2_
(b3.3
%o'�
-T!�
,�
3.Z
,,t{-n,�
'P-�� q I
Ll-1 �
$
��a
C
1D
IS
o
a
D
GS
•
' This log IS a represantatlon of sub&urlace condition& at the time and place of drllllno. With Ina
puuoe of time or at any other location there may be consequential changes In condltiorIL
rbP1, r
G-� C. BORING LOG II_r
CLIENT22RV11,IEPAclatc W.0?LGz-,4-xDATE DRILLED /229 50 LOOQED BY Fq
PROJECT A&WPOM9 A6,9774 SURFACE ELEV. /10't DRIVING WT.
DRILL RIG
r'UUrcinli UTAmtltrc T
4
3
U.
W
0
E a. G
O
GEOLOGIC/ENGINEERING DESCRIPTION
m
U)Q
O
C
H
Np
W W M
=3
Wam
W
CQ
vta
Uta
N
O p
a
o
W .:
2
N F
D O
= w
4b371 I 6141Va=-844, S11,VG 4A.9E/4- (B) N6SEj3,M
f
®AID ABUUDANr &LYPSUM D6A04iT74N ALO.Vz, BiDO/NG
Lb) Nzsw ,3/Af
&Y3>•—c6vER—saCkfNLe ?oL/sHEo s..eva�r
694-4 fD) Nssw> 40N
,
a49 cLA9c'_l s,4.l-smvc j v.AIARD SDK` LopA1
sLf M&Z7' m AYOfsrJ T/HNZ-q P.CDDED Ta
LAMINAi ED , sG/. PBrKor,-,wa5 , w/
FEW L71• 64A3.3ANDy LA W A/%
aSo h HA,eD .5/L/C LAyEA , uNEVEffCONrAGr
N7S6 >/oN
05z> 3N silk LA9ElZ
05V 011N04 3EEPA&-
&51 GLAYSGAM ,V 6o E 20 NW t • rHERIUNb
Obo> �5) NSO tJ > ??-IJ J ALON(, 6r,9D/A/L,
-fD = %Q
NO CAVfN6
SEE rVAC>6 _. SP
ROJ-6 Lu A3 IBAcL•F>LLci)
1-4
ry�
(5�•3
�t 2
T`T
Y.
Lip
4•s
v
6�
6S
.�
��C
This log is a representation of subsurface conditions at the time and place of drilling, With the F LA I C L�
passage of time or at any other location there may" consequential changes In conditions.
11
1
CLIENTIEV/NE• Pfaur-fc W.0Q-,5 A=DATE DRILLEb 12-19-90 LOGGED BYSPB/FA
PROJECTNEWPOR7ER/✓Rn1 SURFACE ELEV. IID1± DRIVING WT. o-26' Z7o0
T1
DRILL RI
Q uK.c..no,
/ti.4.bGK 13VMIN%D UTAmC I CI\ �-
W
F-
3
u,
-..
!-
0.
c
a o
49
GEOLOGIC/ENGINEERING DESCRIPTION
m
yv
_=
p
0
ai
inw
W3
cLw
W
pC
090
I
in
W 'u
G n
>-
a
t
W
to=
O
—rE22AG O /T
S AAI'DY S/L7; A14A1-r As%KE,
@ Z' 73EGoMF_25 ?LILL/TLY
@3yz LtouccoMEtllrL t.:y e Cr r.CXJA=K[a
fci_" - I C Ml
C4,Q S LIGE1v0. ,/
CSM013T, DfA7b MAGPGf15,
IE 7 Yz BEDD/A�L N3//W,18/UE
Al-,-SW,22NE
ar^/2 JiirnvrlAt�c t S CGAY67A,JE.'PAle Ot/rIE,
ABUAjaAMT O/CAAJAE JrA�AJ/ J6.
&v/6' C4AySMA..9, AWeD, V. MG/sr u6,rr4e w_r
l31POwA/
011.Yz CW sj%4,+ti sieoA.V. 7MrA2hi 04
N25 tn1, 3yn1E, /z
Ca20 BEOD/A iG /V2/1W, 28vV,E�,�n
@'2! ' ,5A AADS'rm NE . NAM - V. RAPM , I Z" i-A tcK ,
uN£uw ^TAP AAJD SD7710 l,DIP A/C.
NOTE: J)ID Nor ,mbw) l4DLE LiELbLi 21
Du£ -m wATER.
E'26' eOAJ7—. CLAyS'7DAJE hJ/ OtG -SAODY
LAM/ A)A77DA.L5.
@30�CtAY� 1,M0/371, PGAS-,X--.OLIUE
SM'
3
II5''-
--
14
774
Y - - -.
B
5
D
-
2D
25-
5
Thlt log It t nprasentttlonol Mountee
passage of Ilme or at eery other loutlon I
• BORING LOG B#4
CLIENT=QviuE PA-e-4PAr-W 0415P•A-0- DATE DRILLEb 12'I 'Qo LOGGED BYSPl3 FA
PROJECTNEWPORTaz NoreN SURFACE ELEV. IID'* DRIVING WT._��
I A ...,
DRILLRIG
Q`-ZN 1JUMINUUMMC 11111 !F
W
F—
4
3
W
a
W
c
C7
2 ..1
m
GEOLOGIC/ENGINEERING DESCRIPTION
to
a.'
p
fx
co
y
NO
WV'
wagU�m
W
am
W
O4
1 1
cam
~
U)
x ,�„
Cl o
>-
cr
o
cc H
= x
N F"
x
V
35
r_
Ti7 = SR'
GW = 28'
y0
h
Thlsfog lsarspresametlonolsmurtacecondtllonsstint time anoptaoeorctitltng.1711nins rL.M I c
passage of time or at any other looatlon men may be consequential changes In condlllons.
' G C. • BORING LOG 8L7
�v
CLIENT .LRy//ys7- "IFIG W.0.&E2—A-0rDATE DRILLED I2--0-2 LOGGED BY FA/SPB
PROJECTNEwpe>, F Alo=W SURFACE ELEV. /07 �* DRIVING, WT. O-Z5 " 2.700=
)RILL RIG BORING DIAMETER 24!/
GEOLOGIC/ENGINEERING DESCRIPTION � Wo W
U.tD
F- a p =0 cem >. 0—=
4 W IX W r r Cr O
C W am tam O = V
ML
ARTla=lG,aL F-IL.L LCcF� ; G
GLAvcn SILT > LDDSE Cr. Ca2Ay DKy TD DAMt'>,
SiLriTeNE F2ACoMEiYT3, DIA7'oM0.=EJU3 I C 39�� 4'g�
T ERRA L.E .DEPDS/TS
5 ML
.SAMLY SILT •. -46D• DENSE , MCD. l3ZN. ,sL,•.Clo,G�
3ILTSTDNE FG4GO MEJVTI
Mbn?EQI=Y FO,cmATroNLTi.�)
' CIA _IsrDNE > twD• N6XD . M41vr--89N• . MO/57-
Io DIATDM4GEOU.c , TIf,NLk to LwMi vATED
NSOVJ , ION
' ®7 Ld) N 40w, ZINE
I�
�] E/L %L cLAYSERM RLONL>BEOD,NGo ,NSE'�20Nc
'I 15 mIL L3) N3l+l �/5 NE
I ® IZ' GLAD St M , THIN, ALONv 9EDDINC�
' ® 17' 13EL.Ow1ES ifw1T 7C ✓. matT
r9 f7 MlNhC FAULT . NSE, SOE
r,
. a 17�L GB) N4-TW a '¢NE
2D ®!9' DrsGpN. cLAys¢nrvt N30 W j 71VE
' 0& LB) N/7W.�/a NE
I� i
B 2��s L NARD . NODUL.42. LA.9EP— >CB] N fOWAaNE
' 0 LtS L:LAJS,AM YHiN, PbLLS/IEL> N4W&d i 17 NE
O2A' Ls) NOSE, 1F6NW �.bC"MES V, WAr-
3� Ig 3o Saa Tq r;E . NA40 5,L/GEcx1S LA.YEX.
Gut = 3Z
This log lea representational subsurlacecondlllons at the time and olaceof drilling. With the PLATE
' puesps of time or at any other location there may be conaeouentlal changes In conditions.
C. BORING LOGS
..� aria r TIL1/iArc �RUF/� W n 2L57-A-00ATE DRILLED /2-7-0-90 LOGGED BYPill=
PROJECT NEwl-wen PAlORTH SURFACE ELEV. /09'+ DRIVING WT. 0-25' 2-
)RILL RIG
O���I NVU9G./tH V(9GR VVISINV UIMMCIGR
Us
!-
3
W
1Z-
O.
c
=
a.0
4J
GEOLOGIC/ENGINEERING DESCRIPTION
m
w(j
n'�
p
to
us
qk
x3
am
W
Cox
I
ism
N
W "
92 na
>-
a
IY :.
�W
N H
Z
O
/�FJ/F/G/AL F/LL (0-Q
LL
CLA.2 . -sILT� LDo3 E , LT. (i4A•i , DU To -VAMP
MON7'EREy FnGMA1-i�N�Tn+i
Jr
CLAY.STONE, scPr TD MOD• HAFD . ?ALE d(J✓C
D/H S'O MACEOUS, ma,.tT, LAM/NArED
64•r CY) N65-E
eG' Ca) Ne'o�, �s3w
®(�r %1," 11.AJSl?AM AILONG7 .BcZ LYN(o
I
SI.3
4h�
c
��
©S TK/N GLAJ3EAM., oFFlcr-d F9ULT' ,(F)/y/S6'•
63E
a/
®n Sm.444 rr 4117- , L,"oFr--SET , n/Ss W , 47E
M /D rlAJ.SFitrl % Tb /� MCA , ?oUsNEo ,
15
A160W , 27.S &u TLASiI C Gc,N%/NU6o✓5
m 12'4' GLAJS&ca,r/ ., iz'rG J TfH[iC / MULTiPL¢
oFF-SErs , E-W, 2R S
Sc/f7Tf wALL .SNEG/NO.a , ,V3T� � ¢P/Vr''
u�) E-w , ZOS
zo
'
®I4• f/ay scAM , G411V771V4095 AtoyNO THEwALL,
8/9'' SL/• SEEYAL£, AAWALL
®110/Z cAAMIMOea1.S, NSSW,
ZJILS
zs
®/9� NOV. Se45FA;CGE
®20� SHEALiAim AND N roW, (o¢N
�
•. GL LrNEVEN A/ 80W )LDS
tr
®L//z 7-if/,V CLf/y-':EA,n, N7pE, 47--'75 S
30
A/7SW i f.3 S , V. NEAVJ SeEPAL�E
® ZS/z HA-D S,L, GEaus LAJE.2,
' ThlslogisanpresentallonofsubsurfacecondltlonsatthellmeandPlaceofdrllling.Withthe PLATE ^ '�
passage of lime of at any Pinar focallon there may be consequential changes In conditions.
• BORING LOG bN-8
T
CLIENT-71VIAE P'`KrF'e- W. O1 2-A-oc.DATE DRILLED 12-22-90 LOGGED BY FL} SPS
PROJECTNE/wlAcrge /1,I1:77-1 SURFACE ELEV. /09'r DRIVING WT.
DRILL RIG
BORING DIAMETER gl
Q
3
W
u.
=
W
0
E m
4J
GEOLOGIC/ENGINEERING DESCRIPTION
m
r IN
NVWWW
O
IX
ni
0:7I-
Z
am
cam
wm
~ W
p 6 y y
r 0
IX s
6) Z 2 8E-0MC.0 V. molt- YD WCT
6 30-!r11kAZJNLD AN,0 ABUNt] Aiv0 Fou&q sc:
Su�C.FAGES
TD =3D
Gat < 2A
BR: Z,
45
This lop is a represemstlon of subsurface conditions at the time and place of drilling. With the PLATE H _f a
Passage of time or at any other loeatlon there may be consequential chanpee in conditions.
I
I
II
•
BORING LOG34-9
CLIENTZRVIWF- PauFlc W. O,2j 2-A C1DATE DRILLED 12'221- .o LOGGED BY -�>I`8
PRWECT NEWPORTER /VaRTN SURFACE ELEV. 113"t DRIVING WT.
DRILL RIG
LP"KCT
ruvtK IJUKIK1i UTAMtItK F,r
W
1
3
W
.�
.
h-
w
c
U
=CJ
¢ J
0
GEOLOGIC/ENGINEERING DESCRIPTION
cm
T
HVWW
n'O
o
cc
M
0
Vic
¢
Z3
w.J
am0rm
OQ
Ow
�'
N
Z
O to
:0--C
o
^
i
W ...
�Z
CM►�
z
=n
O
TERQA=� pF14OSrrS
SAAlDY iii 104SE, 1J i GQAY Mieb anI.
@3/z' C3FLOMES DENSE, ICED 302Dwr.!
@5Yz BzsAL C6A14LDMERATELR£k/6KKED CMMr
ArID SILiiiiii S SA4ALe),
WQA 67�Z
SILTY CLAYS DN>`.MEDiLLht flENSE,Aaa1�
MEbILLnL 62AY. WF.AT#E2 ESQ.
E*9'BIDi>1G N75W,2.8'/VE
iRA CLAY BEAi••LCALOAfG SF�D, �iN73W,23iJE.
SEA,.t fs oFFs6Y !3Y SAfi FAULT TREaJD,Av-
/i ✓E.E77GFlL.
L/Z%2B40D11i A.L51611i2E/J
Lm21 'LI6N7' SELF-AA&.E.AIe0LL&3n Not 9
.4+ 22' BEODI.LIG /1,�7W, 2�/ iVE
026:3w1.1' &NBoW, 25iJE.NEAuy sEEA9GE
AuD SMRTS.
@31 S7AUDIt16 W4Me LEVEL OAIF //owe
AFTER DZU/Pi
Ghl = 26'
ism
AM
5
io
15
20
25
3
' This log Is a representallon of subsurface conditions at the time and place of drilling. With the PLATE Y ''
passeps of time or at any other location there may be consequential chanpse In conditions.
I
• BORING LOG M-/o
CLIENT XF-MI= PACIFIc- W.0,7-152A-OcDATE DRILLED 12-U-10 LOGGED BY FA/5
PROJECTIVMysn i gMaC77/ SURFACE ELEV. 12o't DRIVING WT.
DRILL RIG
-nucf-W 6+u[1,P7C tlVK I►U VIAML ILK zu'
Uj
#
uW
....
w
C
O
L
c�
aG
GEOLOGIC/ENGINEERING DESCRIPTION
cd
r
win
Cal
Co
vi c
War
IIW.m
W
ca
�m
Um
F
h
o p
y
G
W
a t-
N z
o
2 U
TEkta[.E DEl�osrTS LGtt) :
s/LT.y F/NE SA.1/p . MCO..DeNs6. , LT•dGN.,
r7/'i-51 , 70MOU C � SL/. rE 07--D
noo Bf2cwvGi _s1./...n,./sT T'a MaST , w/So�++E�LA�
MONTER.E� • FOc/nhiTZON LTfi)
CLFLI E�3r/TSTVA/t: , ..SOFT, L,T G,a•4y /MU/ST �
Hi- WEATUELED
0 9' CLAy3TDNE 3ofY, PRL£ 011l/E, MO/STt
'DtA7'r,r+AC�aVi � �,r„.=rn,ATca
M TO WET, SEE?AIpG
SA/VDJ LAYER J LT• 610As , SAfL.cn7'ED
®� NAkD S/L/cEoiLf LA.Sf.Eh=
SM
5
1 �
_77
16
T.D - /K
Gta = a,
R
' This log le a nproePoatlonof tulleunace conditions at the time and place of tltlllinp. With the FLAIL
c
panaoe of time Of at my other location theta may be consequential eha gve In contllltona.
• BORING LOG
CLIENTMEWME PAUFIc W.0.2/52-A-OcDATE DRILLED /Z-Z/- a LOGGED BY -528
PROJECT/V=k/PprMRMO)M SURFACE ELEV. /09'f DRIVING WT.
0R IIILL RIG
tlVKINV UTAMtItK' �'+
W
4
3
W
F
w
0
O
¢J
`�
GEOLOGIC/ENGINEERING DESCRIPTION
ad
ti
o
co
h
x3
ara
CEO
OC
ulic
iota
w
0 a
a-
a
Nt�
C =
'TER2AC /'OS,T
SAn1DyS/LT,LpOSE, 10oRouS.
SNL
/MAr.24Y.SR0WA,
MbN7F'Cry FORM
.rAMIZ.8Eaa151) SI1.ICeZU5 SHALES Aut, Z1rA-M-
MAf�O��AsS SMALCS.
a- y' 56DD,A 4 n/ %sW, y'/JE
P S LEDD/N6 AOSE.7%fW
a l'.XNCR-A-SI .U. 51LICEOLLS SMALQ, HAlktAe RrIE
is/2' LiEDDIAM. MOM 2 :5W
@.l5'CGAYSTDNE.MEDIKA4 D£AlSE.MoIST. MEDIIU.I
462AYI MIwOR a2A,s6E 4)x,085.
@!7'SluCeotLS 6NALe.NA9,P, BE177G2;LAM/.u4=.
SEMAJ6 G /✓?SW, /4/'.5W,
@ 2/'SAA�as�w>=., v�Y s#►ae�-�EAISE.
� 23'86n�/ILtc.1J5E.30-�60'14i4� /1/crE � D, P
- Pr�AIS Tb 7P1G NW tD0W Q D,P) .
0 2R'BeoalN6, N/5W, 53 SW
La32'1,1rEet3Es�D6a SILICGOu.S SAlPILE AAM
DIATDA AfW 0U-S -SHALe , 4cz, SA^2DY L/iM -
/NA'f)O,.LS.CdMhloL1 OIClbE ST7?�,.l G., HEDdII.K
n15LJ, 70'Stnl,
)r
/O
/5
25
35
This lop Is a representation of subaurlace condlllona at the time and puce of drilling. With the PLATE m -' —I
passage of time or at any other location then may be-consepuenliat Changes In conditions.
I
I
IL
II
II
1
• • BORING LOG BH-11
CLIENTTRywE PhGIPIG W. O9ff3:A=per DATE DRILLEb r2-zt-90 LOGGED BY SPL'
PROJECT/VeW,00eEP /1/oertl SURFACE ELEV. /OR'* DRIVING WT.___._
n �.. a
DRILL RIG
-r'K67-
/+Kc t,K VVM IPIV UINmG I CR
a
W
16— Q
3
U.
=
F
W
c
's5
oz c
aJ
W
GEOLOGIC/ENGINEERING DESCRIPTION
Lp�i/ BEDD//.G NSWr IZSW. MoM; MWoR
FO Ll) I L16.
a VZISPEA12 /J(.DE.SoSE
t'MN6';ftoa1 uG N25W,33'SW
C �15+�i rTE�es��Ed m4 ecl 51 uceet.t_s SI141W
AND SIL-f-s-w e-
@�19'G'aMrto,� 'IN-Iti1 SkiJD Lsilsas.
ad
V
ors
0
to
Wk.
W
z3
am
Cd
ow
cila
z
a o
o
7~C
HN
o 0
H
'f7
No GW
' Thls top Is a tepresentetton of subsurface conditions at the time and place of drilling. With the P LA l
postage of time or at any other location there may be consequential change& In conditions.
U
II
U
CLIENT Irvine Pacific W.O. 1492-2CDATE DRILLED 10/27/86 LOGGED BY M
SPORTED 0-25' 2400#
PROJECT NOFdH APAR'IS1EiuS SURFACE ELEV. 118' DRIVING WT251+ 1550#
W
�-
3
W
U.
a
c
V
0=.. O
z '�
(D
2
5.0
y CO V
5=
c
CC n
fA W
W3
=
am
W
ca
cam
0m
VJ
W
G n
>-
c
W ZR
F-
z
vIW-
c z
0
TERRACE DEPOSITS:
Silty Fine Sand, slightly reddish-
biown, dry to slightly rroist, loose
in upper 1 foot, medium dense
@4' increasing amounts of. tan -white
shale fraguents, dark brown,
clayey sand
SM
4
3
B
C
C
118.4
104.2
6.3
18.
5
BEDROCK:
Siltstone, clayey white to tan,
thinly bedded, rroderately cemented,
damp to roist
@8' - silioeous layer, 6-8"
@10" - beanies grey and tan
@11' - petroleum odor -'
@18' - moderate to heavy seepage
3/611
2
2
C
B
C
C
88.2
60.8
85.4
13.5
58.
52.1
10
15
20
25
30
. TOTAL DEPTH: 30'
'.SEEPAGE @ 18'
JENOR SLOUGHING BEIC W 18'
10-DAY WATER LEVEL @ 13'
3
C
59.2
69.1
LN.-Pam _
• BORING LOG BB_2
CLIENT Irvine Pacific W.0.1492-02 DATE DRILLE1510 27 86 LOGGED BY JRM
Newporter
PROJECT North Apart a is SURFACE ELEV. 117' DRIVING WT. 2400#
x
F
Q
3
w
..
a..
W
c
O
O
�aN
yO
VWW y
7
w
0
W i
W
am
t07m
cam
2y ,O
c
y a
c
2
W
cn Z
O O
20
0
TERRACE DEPOSITS:
Silty Fine Sand, slightly reddish-
brown, dry to slightly moist, medium
dense, occasional shale fragments,
caliche; upper foot loose
@4' medium brawn; increase in shale
fragments; beccnies clayey
SM
1
3
C
C
102.9
84.5
6.9
38.2
5
2
C
B
C
69.2
48.3
48.5
89.4
BEDROCK:
Siltstone, tan -grey, moist, moderately
cemented
@8' - grey,white diatomaceous
09! - B: N40W, 35SW
@13' - moderate seepage
1
15
0
TOTAL DEPTH: 20'
SEEPAGE @ 13'
NO CAVING
10 DAY WATER LEVEE @11'
PLATE AA-L
• BORING LOG B-3
CLIENT Irvine Pacific W. 0.1492-OC DATE DRILLEb 10 27 86.LOGGED BY IRM
Newporter
PROJECT North Apartments SURFACE ELEV. 119' DRIVING WT.2400#
W
►-
a
=
a
w
V
0.0
-CJ
c�
m
5-y
CoH
a.=
C
co
N
W
�w
4i3
zo
O.m
¢C9
OQ
cam
Vm
f'
w
n
>.
C
wU. a
F- w
y
o z
U
0
TERRACE DEPOSITS:
Silty Fine Sand, slightly reddish
brown, dry to slightly moist, medium
dense, upper foot loose
@3' - grades to dark brawn, clayey
sand, moist dense
3
C
89.5
33.8
5
2
1
1
C
C
C
45.0
53.2
79.0
7
98.0
81.
38.8
BEDROCK:
Siltstn.ne, clayey, tan -grey, mist,
moderately cemented, massive
@10'h' Seepage
@20'-approximagtge bedding fran
BQW ,;gS�'le
10
15
20
TOTAL DEPTH :21'
SEEPAGE @10;1'
NO CAVING
10-DAY WATER LEVEL @ 9'
5
30
PLATE AA-3
Y
• BORING LOG B-4
CLIENT Irvine PPoacific W.0. 1492-OC DATE
DRILLED
10 27/86LOGGED
BY �M
Neap
PROJECT North Aprartments SURFACE ELEV.
119'
DRIVING WT.
2400#
H
4
3
W
U.
=
O~.
W
0
SO
O. O
J
c9
m
yVWLL
a0
C9
H
w3
Q.m
W
Mcp
OQ
vd
OM
y
z ,,.
0 a
}
0
o
W .°�.
�F
M z
y F
z
O
U
0
TERRACE DEPOSITS:
Silty Fine Sand, slightly reddish
brawn, dry to moist, medium dense,
upper foot loose
@4' - becomes dark brown, clayey
SM
3
C
116.7
12.7
5
BEDROCK:
Siltstone, grey to tan, laminated to
thinly -bedded, moderately cemented,
upper two feet highly weathered,
damp
@7' - B: N60E, 12SE
@9' - B: E-W, 20N
@14'k'- moderate seepage
@17' - B: N80E, 1ON
'
6
3
2
C
B
C
C
113.2
61.3
60,7
17.1
65.1
68.0
10
15
20
SEEPAGE @ 14'�'
NO CAVING
10 DAY WATER LEVEL @ 10'
PLATE AA-4
BORING LOG B-5
"u
CLIENT Irvine Pacific W.0.1492-OC DATE DRILLEI) 10/27/86L ED BY MM
N rter 0-25' 2400#
PROJECTNorthhAnnartn-pants SURFACE ELEV. 115' DRIVING WT.25' + 1500#
3
UJ W
LL.
2
W
G
U
S cD
a OJ
cD
m
>-
yCULLjLL.
a7�
O
0
F
N
700
Z3
4.0
W
�M
vm
Um
>.
~
N
Z
W u
�- a
C
o
W •°\•
¢
0 Z
t- W
m Z
O
20
0
TERRACE DEPOSITS:
Silty Fine Sand, slightly reddish
brown, dry to slightly moist, loose
in upper foot, medium dense belay
@41- becomes mist, dark brown, clayey
SM
10
C
116.7.
5.
5
BEDROCK:
Siltstone, clayey, grey brown, locally
diatomaceous, thinly -bedded laminated
moist, moderately cemented, upper foot
highly weathered
@6' -B: E-W, 40N
@7' -B: E-W, 40N
@81 -becomes well -cemented
@9' -J: N15E, 50W
@10' -softer, less diatomaceous
@11' -occasional hard layers
@12' -B: E-W, 25N, hard
@14' -J: N50E, 50SE
@15' -�" wide clay bed, bedding
offset above, vertical clay
filled joint intersects above,
below bedrock is softer
B -: E-W, 30N
@16' -becomes harder
@17' -softer B: N75W, 25N
@26' -moderate seepage, unable
to log further due to water
4
3
2
C
C
C
56,2
54.4
4 4.6
63.4
83.1
9.7 , 8
lor
1
2
25
30
PLATEAA-ba
CO C. 0 BORING LOG B-5
28
' CLIENT Irvine Pacific W O 1492—OC DATE DRILLEb10/27/86 LOGGED BY `RM
Newporter
PROJECT North Apartirents SURFACE ELEV. 115' DRIVING WT. 15500
IW C� y f' W
V Q J H= W C9 W t+i I-' W
W G~ 7 W 3 OQ O a m F-
Q W O O Z Um >- OZ
' 3 0 am Um o .�
3
' 4 4 C 52.9 78.
' Stopped drilling at 45', due to water,
cuttings not retained in bucket
' 4
' TOTAL DEPTH: 45'
SEEPAGE: 26'
' NO CAVING
10 DAY WATER LEVEL, @20'
PLATE AA-5b
n
J
J
'1
• BORING LOG B-6
CLIENTIrvire Pacific W. 0.1492-OC DATE DRILLE15 10/28/86 LOGGED BYJM
rtPx 0-25' 2 00
PROJECT,North��Apartnents SURFACE ELEV. 113' DRIVING WT.25-45' 1550#
w
Q
3
vdW;m
w
w
=
I-
w
O
0
IL
O
(AO
M
0
gym-
try
ZO
0.m
OQ
Um
Um
>'
C c
}
O
r"
Z
W F-
O Z
U
TFMCE DEPOSITS:
Silty Fine Sand, reddish brown, dry to
moist, medium dense to dense; loose in
upper foot
@41-becomes clayey, dark brown
SM
g
7
C
C
120.7
114.1
6.7
13.
5
BEDROCK:
Siltstone, grey -white to tan, clayey,
laminated to thinly bedded, damp to
moist, moderately to well cemented
@7' -J: N15E,55E; B: N30E, SE, hard
@9' -J: N55W,65NE;B: NS SE; J: N70E,75E
@l2'-J: N25W,60SW; bedding irregular
but generally flat
@131-intensely fractured,soft,wet,
sane slicks, 18" thickjat top,
B:N75W, 1ON
@14'-J: N50W, 70SE
@161-moist, sane slicks on joints,
J: N45E, 6ONW
@17'-joint with slicks;J:N70E155SE;
B: N50W, 5NE
@18'-steep joiftts,6" spacing, free water
@18k-3" intensely fractured zone
parallel to bedding
@LO'-B: N25W, LONE
@20'-very wet
@21'-hard layer; B:N60W,17NE
@221-highly fractured parallel to
bedding
@23'-1/8"clay bed; `B:N50W,30NE
@24'-moderately fractured,more seepage
@25'-minor sloughing
@30'-B: N40E, 30E
@32'-bedrock slighly moist between
fractures
2
3
3
C
B
C
C
42.3
42.5
64.4
;
103.5
101.
60.
l
2
2
30-
3
PLATEAR—oa
1
1
1
I
• BORING LOGB-6
CLIENT Irvine Pacific W.01492-OC DATE DRILLED 10/28/86LOGGED BY '�M
Newporter 25-
PROJECTNorth Apartments SURFACE ELEV. 113' DRIVING WT.45+ 850#
W
U.
=
W
O
35
V
d0
J
@44'-moderate seepage
Mudstone, dark grey -green moderately
well cemented, laminated to thinly
bedded, damp
@51' hard layer;dri]ling stopped due to
hardness and inflow of water
maO
�
CD
N
Wu.
W3
4mOCO
W
UC
Umco
~
y
„
v
rZ6
108.
o
a:
Z
WCL_
fA
OVZ
N
16.
0
25/'•
10
C
'in'M DEPTH:51'
SEEPAGE @ 18'
SEEPAGE @ 44'
MINOR SLOUGHING BELOW 25'
10-DAY MTER IFVFT• @ 17'
5
P L AT E.AA—bb
1
1
• BORING LOG R-Z_
CLIENTIrvine Pacific W. p_ 1492-X DATE DRILLEb 10/28/86 LOGGED BY JPK
Newporter 0-25' 2400#
PROJECTNorth Avarttrents SURFACE ELEV. 108' DRIVING WT25-45' 1550#
<
W
a
0
U
m
i N
N V
c
¢
00.m
m
W U.W
Wo
Z
W
cam
� n
Um
~
Z
r
a
C
W .°�..
Z
c Z
o
U
0
TERRACE DEPOSITS:
Silty Fine. Sand, slightly reddish brain,
drV to sli tl moist, medium dense
SM
4
C
75.7
36.8
BEDROCK:
Siltstone, clayey, tan to grey -white,
diatomaceous] moderately cen^_.nted, damp;
highly weathered in upper foot,
laminated to thinly bedded
@5' -B: N70E, 8S
@6'-medium grey, moist
@7' -B: N50W, 25SW
@81 -disturbed•.zone, highly fractured,
slicks, medium brown siltstone
@9' -J: N55W,16N; J: N80W, 42SE
@11'-white
@12'-B: N10E, 8E
@13'-Clay lied, � to 3 inches thick,
moist, soft, B: N89E, 23S; below,
harder, less disturbed
@141-tan-grey, laminated, occasionally
fractured, damp
@15'-free moisture
@17'-J: N50W, 30SW; B: N85E, 25S
@18'-J: N10E, 25W, seepage
@20'-J: N10E, 60W, heavy seepage
@21'-B: N75W, 17S; bedding fairly
constant through remainder of hole
@28'- B : N70E, 17S
1
3
2
C
C
C
55.0
73.9
48.8
70.7
38.4
88.
5
1p
15
20
25
30
35
PLATEAA-7a
I
II
G JEEIL BORING LOG
CLIENT Irvine Pacific W. O 1492-W DATE DRILLEb10/28/86 LOGGED BY '�
Newporter
PROJECTNorth Apartments SURFACE ELEV. 108' DRIVING WT. 850#
W
H
3
LL
v
F-
a
G
35
SLO
¢ J
�
Siltstone, (cwnt'd), clayey, tan to
grey -white, diatomaceous, moderatedly
cemented, damp, laminated to thinly
bedded
@43'-medium brown
@45'-B: N45E, 37NN
Mudstone, dark brawn, damp, thinly
bedded, moderately well cemented
m
(n)WLLW
=
o
C9
F:
zo
4.0
3
OQ
om
Um
C
C
>-
=,�
G
r
G
57.9
55.4
u
O z
o z
V
65.6.
681.
4
4
5
5
45
$u
6
6 Br
7
Gj&S ce • BORING LOG B-7
' CLIENT Irvine Pacific W. 0. 1492-CC DATE DRILLEDIO/28/86 LOGGED BY
Newporter
PROJECT North Apartments SURFACE ELEV. 108' DRIVING' WT.
f. >- .'
m H
W V N W
Y to N F-
3t- a mW= 0ma z y,
z
0 wac m ul0
75
0
@81' hard layer, stopped drilling due to
hardness and water
' 'TOTAL DEPTH:81'
5 uEEPAGE @ 20'
' NO CAVING
10-DAY WATER LEVEL. @ 1231'
' 0
' 5
0
0
' PLATE AA-7e
�I
hNCO BORING LOG
CLIENT Irvine Pacific W. O 1492-OC DATE DRILLED 10/29/86 LOGGED BY JRrI
Netaporter 2400
PROJECT North Apart rents SURFACE ELEV. 117' DRIVING WT.
W
3
W
S
�'
c
v
d 0
Q J
m
m
yt�
p,7
°
m
h
rno
W y.
ZO
am
W
frM
°Q
cam
r
►-
Z .,.
0 o
n
o
o
m F-
Z
F- W W
to
Z
°
0
TERRACE DEPOSITS:
Silty Fine Sand, slightly reddish brown,
dry to moist, medium dense; upper one
foot loose
2
4
C
C
120.7
70.8
8.2
9.
5
BEDROCK:
Siltstone, clayey, grey -white, mist to
wet, iv ghly weathered, bedding .
indistinct, low to moderately hard
@8'k'-moderate seepage
@10'-J3 E-W, 18N
@12'-heavy seepage, B: N42W, 40NE
L
1
2
C
C
68.2
58.7
55.1
58.8
10
15
20
25
TOTAL DEPTH: 25'
SEEPAGE @ 8�'
NO CAVING
10-DAY WATER LEVEL @ 7'
r
U
0
BORING LOG B9
CLIENT Irvine Pacific
W.0.1492-X
DATE
DRILLED
10 30 86 LOGGED
BY JRM
PROJECT Nor AP �zts
SURFACE
ELEV.
111
DRIVING WT.
2900#
W
3
W
O
V
M
m
}y
a
M
O
~
y
D:y
ZOIxW
p.m
O<
Vm
Um
?
N
a C
O
o
W •°\•
O F-
O O
.20
0
TERRACE DEPOSITS:
Silty Fine Sand, slightly reddish brawn,
dry to slightly moist, shale fragments,
loose to medium dense
SM
5
BEDROCK:
Siltstone, clayey, grey -white, moderately
cemented, damp to moist, laminated to
thinly bedded, moderately hard
@5' -B: E W, 40S
@7' -Siliceous layer, 6-8" thick
@8' -series of irregular clay filled
joints
@10'-J: N85W, 48N
@11k'-B: N85W,20N
@13' -moderately fractured
@15'-series of parallel joints;
J: N45W, 35SW; B: N70E, 15SE
@16'—intensely fractured zone 12" thick
with thin clay beds with slicks;
below, diatanaceous
@17'-B: N10W, LONE
@181-bedding offset 2" by fault
F: N35E, 60W, B: N10E, SE
@20'-clay beds with slicks
@21'-6" clay layer; B: N60E, 35SE; below,
median grey
@23'-B: N55E, 12SE
@25'-GS: N10W, 13NE
@28'-2" clay layer containing slicks;
B: N40W, 12NE
@29'-12" sheared zone with slicks;
parallel to bedding
@33'-S: N75W, 37N; B: N35W, 12NE
@34'-1" siliceous layer, shears terminate
@35'-3" siliceous layer 3" thick
3
3
C
C
83.0
71.1
28.7
29.9
0
20
5
0
5
PLATEwg—yi
• BORING LOG B-9
CLIENTIrv'ne Pacific W.0.1492-OC DATE DRILLED10/30/8 LOGGED BY JRM
PROJECTNorthhAAparbnents SURFACE ELEV. 111' DRIVING WT.
W~
h-
3
W
F=-
a
0
35
0-0
Q J
K
O
@36' - B: N35W, 12M
@39' - becanes hard
@40' - 3/4" joint filled with gypstun,
J: N60W, 50NE
@42' - meditan brawn
@43' - B: N25W, 16NE
@46' - abundant caliche, scattered,
parallel to bedding
@49' - B: N15W, 16NE
@52' - slight seepage
Mudstone, dark brown, occasional
siliceous layers, moist, very stiff
to hard
Refusal @ 69'
m
0N
p,�
m
O
M
�
rap
�y
W 3
zo
am
wto
OQ
ow
ivm
w c�i
a
>-
c
a
0
W .\.
i— W
to F-
o z
40
45
50
55
6
65
TOTAL DEPTH 69'
SLIGHT SEEPAGE @ 52'
NO CAVING
17
P LAT E AA-9
r
ILJ
11
• BORING LOG B-10
CLIENT Irvine Pacific W D 1492-OCDATE DRILLE15 "/30/" LOGGED BY ap"'
Newporter 0-25 2800#
PROJECTNorth en a SURFACE ELEV. 115' DRIVING WT.75-gn 15504
W
Q
3
W
=
W
C
V
Q J
CD
m
�y
?
y=
j
O
cl
►:
W
fn
�y
W3
Z
ILM
�t9
OQ
V m
Um
)'
y
W o
G a
>-
C
u
2
F- W
co
Z
V
0
TERRACE DEPOSITS:
Fine Sandy Silt, light brawn, dry to
slightly mist, medim dense
-Sy
B
6
C
112.4
6.6
5
BEDROCK:
Siltstone, grey -white to tan, highly
weathered, laa hardness, rroist,
massive to thinly bedded
@12' - slight seepage
@12' - B: NBOW, 16S
@17'h'-heavy seepage
3
1
1
C
C
C
80.3
58.7
61.5
33.9
64.
60.8
10
15
20
25
3
TOTAL DEPTB: 30'
SEEPAGE @ 12'
NO CAVING
10-DAY WATER LEVEL @11'
PLATE A8-10
II
CLIENT Irvine Pacific
• BORING LOG B-11
W.O. 1492-OCDATE DRILLEb 10/31/86LOGGED BY im
Lm
PROJECT Nort�. AAppartnents SURFACE ELEV.109' DRIVING WT._
W
F-
3
1-0
W
~a
O
U
Q OJ
(D
m
N
n'=
0
U'
~
vi
0.'y
ZO
0.Cl
MCD
OQ
cam
Vm
H
G
>-
O
N F-
z
U
0
TERRACE DEPOSITS:
Silty Fine Sand, slightly reddish brain,
dry to slightly moist, loose to medium
dense
@3' - abundant caliche
SM
5
B
BEDROCK:
Siltstone, clayey white, diatomaceous,
laminated to thinly bedded, damn
@7'-B-NSW, 17E
@12' - white to light brawn
@13' - mist; 1/8" clay bed,B: N5W,20E
@18' -1/8"clay bed
@19 ,'- clay bed _
@21' -hard layer, 2' thick
@23' -light grey
@24' -B•: NS, 17E
@25' -6" sheared zone, S: N80E, 80N
@29' -2" layer of silt(ash),B:NS-20E
light brown below
@30' -1/8" clay bed .t
@32' -siliceous layer 6 to 8"
@33' -light grey
@34' - B: N10E, 15E
10
15
20
2
3
3
—t
PLATEAA-11a
• BORING LOG B-11
CLIENT Irvine Pacific W 01492-OC DATE DRILLEb10/31/86 LOGGED BY M
Newporter
PROJECTNorth APartnents SURFACE ELEV. 109' DRIVING WT.
IW-
3
lw�m
W
W
=
a
c
V
Q J
L9
N
NV
Cn p.M
c
1-
N
y
y14.
ZO
am
W
�O
0m
ism
r
N
2
G 0
�. '
c
o
m Z
!- W
m Z
0
v
35
@36' - light brown
@40' - very moist tomet
@43' - B: N15E, 22E
@44�1- slight seepage @ south side of
boring
@45' - moderate seepage
@55' - B: N10E, 20E
Mudstone, iredium to dark bra,m, mist,
moderately hard to hard, occasional
siliceous layers, thinly bedded
0
5
0
5
0
5
70
PLA 1 CI
I
-�� Cam% ��►_ ��
• BORING LOG B-11
CLIENT Irvine Pacific W.0.1492-OC DATE DRILLEC 10/31/86LOGGED BY JRM
wpo rtpx
PROJECT STo±NetF+ Apartrmnts SURFACE ELEV. 109' DRIVING WT.
z
W
I--
3
I-P
W
.u.
x
a.W
0
U
x U
a
"
Mudstone, mdi= to dark brown, imist,
mx7erately hard to hard, occasional
siliceous layers, thinly bedded
NU
n,OWNm 7
z
C9
N
W LL
W3
CLm
W
a
0a
vm
Um
>-
H
Z
c a
0
H
Z
t- FW-
y Z
0
U
70
75
80
5
0
T= DEPTH: 92,
SEEPAGE @ 45'
NO CAVING
10-DAY WATER LEVEL @ 47'
5
PLA 1 C.A5M-13%
I
r
6
0 BORING LOG B-12
CLIENT Irvine Pacific W. 0.1492-X DATE DRILLEb 11/3/86 LOGGED BY JRM
Newporter 0-25
PROJECTNOrth Apartments SURFACE ELEV. 115 DRIVING WT?5-30' 1550#
1
W
IWi
...
6
O
V
= t9
Q J
U'
.
m
NVWW
6.O.H
O
O
CD
~>-
COO
W 3
Z
Q.M
W
Co
loom
Um
~
Z
w
} a
O
W .°.►
0 Z
F"' W ,
of Z
O
U
TERRACE DEPOSITS:
Silty Fine Sand, slightly reddish brawn,,
dry in upper foot to mist
2
C
117.3
9.6
5
BEDROCK:
Siltstone,light to medium grey, moist,
high tly weathered, law hardness
@7'h' - heavy seepage
@30' - B: N50E, 265E
3
1
3
C
C
C
78.3
63.9
58.01
42.1
61.5
76.8
10
]5
20
2
TOTAL DEPTH: 31'
SEEPAGE @ 7h'
NO CAVING
lA-DAY wAm LEVEL @ 6'
F-1
11
I
0
I
5
I
I
'L1
I
I
�l
I -
I
® FRACTIAF_F_:/VZi? j4.4.SW,CtAy W"F-D-
©BrDPhJ,&: A/70,G, 265E
©BZMIJ-J6 O,J C44Y BEAK: YZ" rR/ctS A/GL-,2LSE
©CL.A SEAF[: P'7711eK, M1211/,32NE
(9)BED//J,r�: A16OW,52N1=-
TR-1
SIDE
D 5" 10'
of p
Oa'F: SANpy 5lLT GRAY R.COWAI, LDOSE,DV)?
®BEDD/N6 ON e[AyJEAfi: Yz-2%L'•7iHejc
NS5 , L/NE
®BSDDInJ6 a N6Ok/j RAZE.
(9BEPWAId. ON CLAY %7_'7.WhW 1Vnr ,✓,35N£.
®B�i7/AL_ : N3.5I41-PbVE
QM,9XIML / FM : CtA�/E�/ 7a.7Z7OAIE A/ P. NM.Q), PALE
OL/uG $ oW,�l 7D R N4' ow �L• Mol3j 7a
No:sD/A7a.�tACE+O�s u�'WEg7NEP�p,
LAMJ 7SD 7D 7Jf�NLy EO 6D.
C IjEDDIA)!o OA) &Ay/ S£fina +N5Ow, /! NE
®:BEDDINGA)-5, WE
525E
0' 5' /0' 2o' 30'
Qt
`� H/NoR FG�O/NEB
m BEpD/Alb ON etAy srAn i�'.'7N,cK, N?�E, �(osE
®BEP.Oe,3L oN 444Y SEAMYz'7% e.1<j A/6DE/5&St
®BEDDi/U; : A783E/ yoSE
/O AS901a4 oAJ 4ZAy SF -AM • l " TN/cK, NbaE, 225E
©RWD/. N-.- A) E, 2S-5E
50,
60'
®Bifeaw zoroccaayl�tsl+K:3/y•t}{tcK
1/0' S0'
Qt
60'
70'
GGSI[em,
1446 East Chestnut Avenue
Santa An$ CaUfomia'92701
Soil Mechanics* Geology
Foundation Engineering
w o. • 2152—A—OC
DATE 2-4-91
PLATE A-21
1.
PI
0Qt •SILT 3R-ND�0�/F.UGc L-t�oW,J,DEn(�G,
SLf4bYTLV M o f ST PolCouS
QE A/re S AMR X°�KEt) C(#.eT
® k� � �i��Y�V1a/NRxfD� ���IG�7j C1As7;
®MO.f.iFcNTZ.2K � Df'1-70,�-cI! c. �S75GLA3/.7PIOF
(JBEna,aL:NyBw. /z.ve
®6'Eso!.uL.; VZDKh9AJE
Tim
20j
4of
&BEDD/fJ6 ; N6OW, I05 W
30'
/00'
TR-3
325E
0
at o
=-®
50'
/20'
60'
0
(D BfpDfaj-,'- NSOE,/YSE
® t3EtDIKY� 1- N(of_ 1 )3 56
70'
®Qt;i ft FDj [ TDUSLI[/-14 y BIrDCOA3,
© Q&-'J2ffII.1�5PP FlaEFSA#A n G B�a n
+L%t'B/�kt coalGt f12(0.+�-1�^cnxJ[zKFD CkwZT"
i C
® Mnerk4e£ K � G4�pre mar / H/u/
f'M�-n M�i0�t93y -.y� t�
nnu�s, thn�t u /ar3TroNE,
tl� SEDDI+a' %%1K(?W, lD=:'✓.aSW_-. .. _.
1446 East'ChestnutAvenue
Santa Ana California 92701
Soil Mechanics* Geology
Foundation Engineering
w o. 2152—A-QC
DATE 22—k-91
PLAIIE A 22
O'
7o'
SN.f�N¢S -.•_
$O
T'q .
. S
20 30� y0'
•0, ,
� Tr1
90'
,
_rml
50'
OQt � �/G7}[ SAND, yLffT �OcJIJ, MED/!� DFAIScI D�.
LW
I
60'
7Or
(ZQt: e44yS/ 3I tT ^hW/ [ < S)WUJ t1, aZZV STiSF, _514(491x/ /ti2D[r , COMPfd.J PP p4rF,-
®Qt: y St LT W1 ABuNDA/Jr CALIGHCICprIM.VP VEJe77544L AMD /iDZZn..n'AL. CRACKS AT" Z"/Ar/-zAWAf----,
®MO �# f�FL: CLA��Yy��vy SILTST'17NE, c�DL�2 lS
•PDl� F:fF.�OILf�MtUAa4t�ID!A-rt.�aAceo4r5.
®BFLYlg;. (J9 W,19foE
�Fi4uLT: E 1k1, y8/1
®5ZD.*AV6: N7Du1, /3.vC-
®l3F.WXi NSDE,31/ IIL)
®BFA' AJ'C_'6-h1f2(01J
OATF44116. NyLIJ, I LMF-
OBAW'&X` N/DE 1=5
pBF.o�J� � Nyos, /ss�
• ®BE•lbrnl6= G-hl,-2YS '
1446 East Chestnut Avenue
Santa Ana, California 02701
Soil Mechanics* Geology
Foundation Engi_neering-
w.o. 2152—A—OC -
DATE-iG*-D!
PLATE A-:23
O'
Rf DED1zcGK F��H R 6Fr !l3fiow�i lHM cn/
tao56�DRy �,
®Qt'.5�i6!�V M' nE�BJP.own1,M6D/u.r•L DF+vSE,
®BtD AL' W, 1oNE
QBe1ao+,�� : N37W,17NE
• TP -�
S05W
30 `
D Qt' ME7`iyu.�ADD `" s1-ib,WrL M6w --D oD" 1ZnvT LETS
0,6 OD t A16 : /U-';Z5W,1s =2D SW
gBEDD,w1G : Nsz)w f /3 sW
®BEOD,44 % N4ow, 7 SW
®SE/�Df��Gt A166W, ZgSW
0
1446 East Chestnut Avenue
Santa Ana, CaNtornla 92701
Soil Mechanics* Geology
Foundation Engineering
W.O.
3152- --OC
DATE
PLATE ,A-21
TR.-7
S3?E
0" 10, ZD'
• off. ,. •..•
dQt 1"=5'
J O d Q
O4t ° SILImo, -�,DaRED 13 b WN, D"SEtDAKP TV Su6N?LI
©Qt : MLoy S/LT J`tED1�Grc BQdw�J -,�Fp oi�owrv, DE�`�/
© BASF ; LENTSEf2ATE, PzfQON n1 /I-7�1� %�E wO, Ej> G/f�..Qi
OMON7cPL l F�� f%l�J- £ �� /N/giFl, D/�¢7DId/L�EO�CS
Q13�ijvS/Ln�7i`:�ND3DE,3oNW EtA
O *3sDy� a4 : Nz�E,aSNW .
Soc,�-TN
05m-M-7
055C 73z-7
C34rk 7P-7
®BEOD, a`. s N $oE, q l SE
QBEDDrA .1N55We3+/5E
�BEDDiw.: N7oW,H55E
5FA&&L-r: 1jG$W,8OSE
0'
10/
IQ5'EE-rR 7
(�5 Tk 7
®SEETR-?
Q E3awIafF : ND5W, 56N�F-
® SS00,OL" AIZ5W,SZAF
Sf5DD,.aG: V-35W 6t NE
ZD /
o at
G rµ _
_ 7
Gj%sj[c*
1446 East Chestnut Avenue
Santa An$ California 92701
Soil Mechanics- Geology
Foundation Engineering
w o. 3152-A-0C
DATE 2-4-91
PLATE A--25
H
I
f
t
H
H
a
z
4
HH
H
H �
H
H
F-
N
Q
J
IL 2
1
U
0
CH
m
0
0
()
CL
M11
or O
0
0
CL-M
0
ML or
L
LIQUID LIMIT (LL),
Symbol
Boring
Number
Sample
Number
Depth
(feet)
Field
Moisture (%)
LL
PI
U.S.C.S.
O
LB-3
sb 1
10.8
—
101
61
CH
m
LB4
sb 1
36.0
—
93
57
CH
♦
LB4
sb 2
60.0
—
84
54
CH
Test Method: ASTM D4318.84
0
Project No. 1851578.02
ATTERBERG LIMITS TEST RESULTS Project Name NEWPORTER NORTH i I�
Date 6/12/95 figure No. D-1
I
NORMAL STRESS (paf)
Boring No. LA-2 Before Test:
Sample No. 4 Dry Density (psf) 34.7
Depth (ft) 20.0 Moisture Content (%): 134.4
Soil Type Tm
Type of Sample Undisturbed (ultimate stren ham)
Friction Angle (deg.) 35.0
Cohesion (pst) 675.0
Project No. 1851578-02
DIRECT SHEAR Project Name NIEVVPORTER NORTH TIM
Date 6112 5/—i12L1L95 FigureNo. n_9
100
so
fx
= 40
N
20
NORMAL STRESS (pcf)
Boring No. LB-3 Before Test:
Sample No. sb 1 Dry Density (psf) 71.7
Depth (ft) 10.8 Moisture Content (%): 46.9
Soil Type CH
Type of Sample Remolded to insitu density (residual)
Friction Angle (deg.) 9.0
Cohesion (pst) 70.0
Project No. 1851578.02
DIRECT SHEAR Project Name NEWPORTER NORTH 1 1�
Date 6/12/95 Figure No. D-3 IIII luau) Illllunul
2600
2000
I:r=
6
NORMAL STRESS (paf)
Boring No. LB-3 Before Test:
Sample No. 4 Dry Density (pst) 72.0
Depth (ft) 15.0 Moisture Content (%): 33.0
Soil Type TM
Type of Sample Remolded to 90%RC (ultimate stenglh)
Friction Angle (deg.) 36.0
Cohesion (pst) 240.0
Project No. 1851578-02
DIRECT SHEAR Project Name NEWPORTER NORTH I Ian
Date 6/12/95 Figure No. D-4 �ILILII
5
4
0 L
0
® Geosoils' Test Results
1 2
Thousands
Normal Stress (psf)
Phi= 35 deg., c- 675 psf used in
® L&NsTest Results
DIRECT SHEAR TEST RESULTS
UNDISTURBED SAMPLES
3 4
�
s
4
a 3
a
�
o
2
1
0
0 1 2 3 4
Thousands
'
Normal Stress (psf)
® Geosolls' Test Results ® L&A's Test Results
_ Phi= 33 deg., c= 300 psf used in analysis
DIRECT SHEAR TEST RESULTS
SAMPLES REMOLDED TO 90% RELATIVE COMPACTION
141
51
41
p31
m
�21
11
CUMULATIVE FLOW VS TIME
Time (minutes) --
Project Name :
Newporter North
Sample Diameter (in.) :
2.41
Project No.:
1851578-06
Sample Height (in.) :
4.00
Boring No.:
LB-2
Max Dry Density (pcf)
120.0
Sample No.:
Bag 1
Opt. Moisture Content (%) :
9.5
Depth:
2' - 3'
Relative Compaction (%)
90
Date :
4114195
Moisture (after test, %)
18.1
Soil Description:
Brown Silty Fine Sand
Confining Pressure (psi)=
15.0
Backpressure (psi)=
3.0
Results:
Flow Rate, q (cc/sec) =
0.034821
Gradient,i =
20.76923
t-
,;.;.:� rd
FLEXIBLE WALL PERMEABILITY TEST
1
1
CUMULATIVE FLOW VS TIME
2
0
B
6
4
2
0
an
ie
on
9.
Time (minutes)
Project Name:
Newporter North
Sample Diameter (in.) :
2.41
Project No.:
1851578-06
Sample Height (in.) :
4.00
Boring No.:
LB-2
Max. Dry Density (pct)
53.0
Sample No.:
Bag 2
Opt. Moisture Content (%) :
68.0
Depth:
8' -10'
Relative Compaction (%)
90
Date :
4/14/95
Moisture (after test, %)
98.2
Soil Description:
Tan Fine Sandy Clayey Silt
Confining Pressure (psi)=
15.0
Backpressure (psi)=
5.0
Results:
Flow Rate, q (cc/sec) =
0.008178
Gradient, i =
34.61538
FLEXIBLE WALL PERMEABILITY TEST
3
CUMULATIVE FLOW VS TIME
0
5
0
5
0
5
0
U lu Zu JV 4V au ov
Time (minutes)
70 80 90 100
Project Name:
Newporter North
Sample Diameter (in.) :
2.41
Project No.:
1851578-06
Sample Height (in.) :
4.00
Boring No.:
LB-4
Max Dry Density (pcf)
76.0
Sample No.:
Bag 1
Opt. Moisture Content (%) :
35.0
Depth:
24'
Relative Compaction (%)
90
Date :
4114195
Moisture (after test, %)
51.8
Soil Description:
Grayish Brown Siltstone
Confining Pressure (psi)=
40.0
Backpressure (psi)=
30.0
Results:
Flow Rate, q (cc/sec) =
0.004558
Gradient, i =
207.6923
a.
FLEXIBLE WALL PERMEABILITY TEST
Al
CUMULATIVE FLOW VS TIME
16i Ni'dIJ
30 40 so 60 70 80
Time (minutes)
Project Name:
Newporter North
Sample Diameter (in.) :
2.41
Project No.:
1851578-06
Sample Height (in.) :
4.00
Boring No.:
LB-2 and LB-4
Max Dry Density (pcf)
67.0
Sample No.:
Bag 2 and Bag 1
Opt. Moisture Content (%) :
43.0
Depth:
-
Relative Compaction (%)
85
Date :
4118195
Moisture (after test, %)
62.4
Soil Description:
Results:
50% Bag 2 of LB-2 and 50% Bag 1 of LB-4
Confining Pressure (psi)= 15.0
Backpressure (psi)= 5.0
Flow Rate, q (cc/sec) = 0.003754
Gradient,1 = 34.61538
FLEXIBLE WALL PERMEABILITY TEST
A
CUMULATIVE FLOW VS TIME
►o
35
30
?5
?0
5
0
5
0
��n
nnn
nrn
9
V JV IVV v r
Time (minutes)
IN
Project Name :
Newporter North
Sample Diameter (in.) :
2.41
Project No.:
1851578-06
Sample Height (in.) .
4.00
Boring No.:
LB-2 and LB-4
Max Dry Density (pcf)
67.0
Sample No.:
Bag 2 and Bag 1
Opt. Moisture Content (%) :
43.0
Depth:
-
Relative Compaction (%)
90
Date :
4/18/95
Moisture (after test, %)
62.4
Soil Description:
Results:
50% Bag 2 of LB-2 and 50% Bag 1 of LB-4
Confining Pressure (psi)= 15.0
Backpressure (psi)= 5.0
Flow Rate, q (cc/sec) = 0.002183
Gradient,i = 34.61538
P eala it.tk !ice .,:.. m i
FLEXIBLE WALL PERMEABILITY TEST
1
I
CUMULATIVE FLOW VS TIME
Time (minutes)
Project Name:
Newporter North
Sample Diameter (in.) :
Project No.:
1851578-06
Sample Height (in.) .
Boring No.:
LB-2 and LB-4
Max. Dry Density (pcf)
Sample No.:
Bag 1 and Bag 1
Opt. Moisture Content (%)
Depth:
-
Relative Compaction (%) c
Date :
4/18/95
Moisture (after test, %)
Soil Description:
25% Bag 1 of LB-2 and 75% Bag 1 of LB-4
Confining Pressure (psi)=
15.0
Backpressure (psi)=
5.0
Results:
Flow Rate, q (cc/sec) =
0.001798
Graadient,i
33ff4.6ff}1..yyyy53�8
.:xWry
Y�Rs�i}
nR.wx.„mwnTnti.J
W+.W
FLEXIBLE WALL PERMEABILITY TEST
2.41
4.00
85.0
25.0
90
40.1
CLIENT 3itvme Pnci��c
PROJECT
UNDISTURBED ES REMOLDED ❑
NAT. MOIST. O SATURATED 0
SHEAR TEST DIAGRAM
I
W.0. zls 0--oc-
DATE
LOCATION $H-�
DEPTH 15---FT.
7.0
6.0
5.0
IL
Y
= 4.0
z
w
tr
3.0
cn
z
a
s 2.0
co
y5= sit°
1.0
0 1.0 2.0 3.0 4.0 5.0 64
NORMAL PRESSURE K S F
Gdpoigos
-
CLIENT :zF-vine ?c)Rlc
PROJECT
UNDISTURBED 2f REMOLDED ❑
NAT. MOIST. O SATURATED 0
W. 0. Z. s2 tNroc
DATE
LOCATION
DEPTHSFT.
7.0
6.0
5.0
u-
c
= 4.0
CD
z
w
o:
i
3.0
z
a
= 2.0
cn
= s2°
c= o
1.0
0 to 2.0 3.0 4.0 5.0 6.
NORMAL PRESSURE K S F
Pi -AT t --
CLIENTM12ine ipaugic
PROJECT
UNDISTURBED ❑ REMOLDED Eg 90`!0
NAT. MOIST. O SATURATED 9
SHEAR TEST DIAGRAM
w. o.
1L'S7 A �
DATE
LOCATION
6kA _s
DEPTH
30 FT.
MIA I C
CLIENT T1`vtne Rxctj�ic
PROJECT
UNDISTURBED ❑ REMOLDED C21 90?(o
NAT. MOIST. O SATURATED 0
SHEAR TEST DIAGRAM
W.O. 2152-A'oc
DATE
LOCATION 6H-�
DEPTH' 2 FT.
-45
i
3.0
2.5
tL
Y
= 2.0
F-
z
W
•
0:
� 1.5
CD
z
= 1.0
cn
C= Soo
0.
00 0.5 1.0 1.5 2.0 2.5 3
NORMAL PRESSURE K S F
CLIENT Sstvtne.
PROJECT
UNDISTURBED ®' REMOLDED ❑
NAT. MOIST. O SATURATED 6
SHEAR TEST DIAGRAM
W. 0. 2152 (ko c
DATE -
LOCATION 6H��
DEPTH 2 FT.
6.0
5.0
u-
Y
= 4.0
F-
U'
z
W
i 3.0
CD
z
a '
= 2.0
s SS'
C=o
1.0
00 1:n 2.0 3.0 4.0 5.0 6.
NORMAL PRESSURE KSF
PLATE_
i i ��—DIAGRAM
CLIENT 1-Iyme?inu�ic
PROJECT
UNDISTURBED ❑ REMOLDED
NAT. MOIST. 0 SATURATED 9
W.O.
VSZ. (1-OC
DATE
ZH-4'
LOCATION
DEPTH
lS FT.
3.0
2.5
u-
Y
= 2.0
F-
0
Z
W
'
cn 1.5
CD
a
G=Soo
a I.0
cn
0.
00 015 110 115 210 2.5 3•
NORMAL PRESSURE K S F
PLAT t I
CLIENT �vinel�aurc�C
PROJECT
UNDISTURBED -fO REMOLDED ❑
NAT. MOIST. O SATURATED 0
A
5
Y
=4
1-
CD
z
w
CD
z
a
s2
cn
SHEAR TEST DIAGRAM
W.O. 2�5 A-oC
DATE
LOCATION (o
DEPTH IS FT.
NORMAL PRESSURE K S F
PLATE h-2
I
CLIENT Sewne l�Q k�tc,
PROJECT
UNDISTURBED (g REMOLDED ❑
NAT. MOIST. O SATURATED ID
SHEAR TEST DIAGRAM
W.0. 21sZ A-oc
DATE
LOCATION 2)"-8
DEPTH S —FT.
7.0
i
6.0
5.0
u-
Y
= 4.0
CD
17
z
w
o 3.0
0
c L-k
z
a
C - Itoo
= 2.0
cn
1.0
00 1.0 2.0 3.0 4.0 5.0 6.t
NORMAL PRESSURE KS F
1 'K. ii
r", .
CLIENT T P-
PROJECT Nr=\'y Q TPR NdM
UNDISTURBED ❑ REMOLDED CQ
NAT. MOIST. 0 SATURATED 0
SHEAR TEST DIAGRAM
W.0.14 Z—OG
DATE
LOCATION
DEPTH �"'2' FT.
�GJl/viw.G �n�
30
2.5
cn
= 2.0
I-
z
w
o:
co 1.5
CD
z
Q
= 1.0
cn
OrZ60
C= 50 QSF
0.
00 0.5 1.0 1.5 2.0 2.5 3
NORMAL PRESSURE K S F
0
LATE BB_1
CLIENT I• I
PR0JECT14EWPOP-roR -OAV
UNDISTURBED ❑ REMOLDED I&
NAT. MOIST. 0 SATURATED 0
SHEAR TEST DIAGRAM
w.0.131 OG
DATE
LOCATION
DEPTH 6- 8 FT.
vIt•JIVI'1G
3.0
2.5
►L
t-
co
z
w
o:
� 1.5
z
a
w
1.0
C_2z5 PSF
0.
0 0 0.5 I.0 2.5 3
NORMAL PRESSURE K S F
CLIENT I,
PROJECT NEWFo+2E l "UH
UNDISTURBED ■ REMOLDED ❑
NAT. MOIST.0 SATURATED
SHEAR TEST DIAGRAM
W.O. 1�92-oG
DATE
LOCATION y/:RIovS
DEPTH !/ Qi°v=—FT.
vru rv�.c .•..-..
-45
i
3.0
Bs e2v
2.5
c�Isoo
c
b
w
7l Gr_So0
o:
u) 1.5
0
z
= 1.0
U)
45.18
C c 5SO
0.
0 0 0.5 1.0 1.5 2.0 2.5 3
NORMAL PRESSURE KSF
FLAir -
5
I_J
1
iJ
1
lim
11
1
1
1
1
i
1
1
1
i
11
1
I
1
i
1
1
1
SEMON A -A'
1
IM
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: A -A'; BLOCK FAILURE; LOWER SLOPE
o TRIAL FAILURE SURFACE: FS=1 .51 (smr/,
r-4 n
N
ti
LI)
O
O
O
ti
V
4 -)
� O
ul
O
cm
07
H
X 0
0
Q u')
0
I cu
� o
U3
N
O
ti
102.50 205.00 307.50 410.00 512.50 615.00 717.50 B20.00
X - AXIS (f t)
m m= m= m = = = r==== m= m m r
* PCSTABLSM **
--Slope Stability Analysis --
Run Date:
6/ 6/
1995
Run By:
AT8
Input Data
Filename:
Xic
Output Filename:
X1C.O
Plotted Output Filename: XIC.OP
PROBLEM DESCRIPTION NEWPORTER
NORTH, PROFILE A -A', BLOCK FAILURE
LOWER SLOPE
BOUNDARY COORDINATES
16 Top
Boundaries
16 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
Soil Type
No.
(ft)
(it)
(it)
(it)
Below Snd
1
.00
70.00
40.00
72.50
1
2
40.00
72.50
120.00
94.00
1
3
120.00
84.00
160.00
90.00
1
4
160.00
90.00
205.00
100.00
1
5
205.00
100.00
248.00
113.50
1
6
248.00
113.50
250.00
113.50
1
7
250.00
113.50
260.00
110.00
1
8
260.00
110.00
495.00
110.00
1
9
495.00
110.00
505.00
112.50
1
10
505.00
112.50
510.00
112.50
1
11
510.00
112.50
522.00
120.00
1
12
522.00
120.00
537.00
120.00
1
13
537.00
120.00
572.00
120.00
1
14
572.00
120.00
720.00
155.00
1
15
720.00
155.00
790.00
153.50
1
16
790.00
158.50
820.00
158.00
1
ISOTROPIC SOIL PARAMETERS
1 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pcf) (Pcf) (psf) (deg) Param. (Psf) No.
1 120.0 120.0 675.0 35.0 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
1 soil types)
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified - 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (psf) (deg)
1 1.0 675.0 35.0
2 9.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACES) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 9 Coordinate Points
Point X-Water Y-Water
No. (ft) (it)
1 .00 70.00
2 40.00 72.50
3 120.00 84.00
4 160.00 90.00
5 205.00 100.00
6 248.00 113.50
7 250.00 113.50
8 510.00 112.50
9 820.00 112.50
Jenbus Empirical Coef is being used for the case of c i phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes specified For Generation of central Block ease
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 60.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(it)
(ft)
(it)
(ft)
(ft)
1
159.00
.00
160.00
90.00
.00
2
259.00
.00
260.00
110.00
.00
* IN Safety Factors Are Calculated By The
Modified Janbu Method IN
Failure
Surface Specified By 4
Coordinate Points
Point
X-surf
Y-Surf
No.
(ft)
(ft)
1
157.52
89.63
2
159.98
88.15
3
259.94
103.60
4
261.97
110.00
File: xie.0 06/06/95 09:12 Page 1 I File: x1c.0
06/06/95 09:12 Page 2
m m m m m = = M= m m M = = M r s M r
Pile: xte.o 06/06/95 09:12 Page 3
M M M M M M M M= M a = = = = M M M
** PCSTASLSM 11*
--Slope Stability Analysis --
Run Date: 6/ 6/ 1995
Run By: ATB
Input Data Filename: X10E1
Output Filename: X10E1.0
Plotted Output Fitename: XiCE1.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE A -AN, BLOCK FAI
LURE, LOWER SLOPE, SEISMIC
BOUNDARY COORDINATES
16 Top
Boundaries
16 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
No.
(ft)
(ft)
(ft)
(ft)
1
.00
70.00
40.00
72.50
2
40.00
72.50
120.00
84.00
3
120.00
84.00
160.00
90.00
4
160.00
90.00
205.00
100.00
5
205.00
10D.00
248.00
113.50
6
248.00
113.50
250.00
113.50
7
250.00
113.50
260.00
110.00
8
260.00
110.OD
495.00
110.00
9
495.00
110.00
505.00
112.50
10
505.00
112.50
510.00
112.50
11
510.00
112.50
522.00
120.00
12
522.00
120.00
537.00
120.00
13
537.00
120.00
572.00
120.00
14
572.00
120.00
720.00
155.00
15
720.00
155.00
790.00
158.50
16
790.00
158.50
820.00
158.00
Soil Type
Below Grid
ISOTROPIC SOIL PARAMETERS
1 Type(s) of Soil
Soft Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (Pcf) (Pcf) (psf) (deg) Param. (psf) No.
1 120.0 120.0 810.0 40.0 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
1 soil type(s)
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
File: xlcel.o 06/06/95 11:07 Page 1
No. (deg) (psf) (deg)
1 1.0 810.0 40.0
2 9.0 84.0 10.7
3 90.0 810.0 40.0
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
Janbus Empirical Coef is being used for the case of c & phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
50D Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active Arid Passive Portions of
Sliding Block Is 60.0
Box
X-Left
Y-left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
159.00
.00
160.00
90.00
.00
2
259.00
.00
260.00
110.00
.00
• * Safety
Factors Are Calculated By The Modified Janbu Method
Failure Surface Specified By 4
Coordinate
Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
157.52
89.63
2
159.98
88.15
3
259.94
103.60
4
261.97
110.00
***
1.470
`**
File: xlcet.o
06/06/95 11:07 Page 2
m m m = = m= m = = = m m m m i m m
til LEIGHTON AND ASSOCIATES, INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: A -A'; BLOCK FAILURE;
o TRIAL FAILURE SURFACE: FS=2.26
to
CU
0
O
O
O
0
V
y- O
In
Cn
t�7
cn
H
x O
O
a Lo
CU
CU
LC]
N
ti
ti
E
UPPER SLOPE
112.50 225.00 337.50 450.00 562.50 675.00 787.50 900.00
X - AXIS (ft)
** PCSTABLSM **
--Slope Stability Analysis --
Run Date: 6/ 6/ 1995
Run By: ATE
Input Data Fitename: X2A
Output Filename: XZA.O
Plotted Output Filename: X2A.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE A -A', BLOCK
FAILURE, UPPER SLOPE
BOUNDARY COORDINATES
16 Top
Boundaries
16 Total
Boundaries
Boundary
X-Leff
Y-Left
X-Right
Y-Right Soil
Type
No.
(ft)
(it)
(it)
(ft) Below Brd
1
.00
70.00
40.00
72.50
1
2
40.00
72.50
120.00
84.00
1
3
120.00
84.00
160.00
90.00
1
4
160.00
90.00
205.00
100.00
1
5
205.00
100.00
248.00
113.50
1
6
248.00
113.50
250.00
113.50
1
7
250.60
113.50
260.00
110.00
1
8
260.00
110.00
495.00
110.00
1
9
495.00
110.00
505.00
112.50
1
10
505.00
112.50
510.00
112.50
1
11
510.00
112.50
522.00
120.00
1
12
522.00
120.OD
537.00
120.00
1
13
537.00
120.00
572.00
120.00
1
14
572.00
120.00
720.00
155.00
1
15
720.00
155.00
790.00
158.50
1
16
790.00
158.50
900.00
158.00
1
ISOTROPIC SOIL PARAMETERS
1 Type(s)
of Soil
Soil Total
Saturated
Cohesion
Friction
Pore Pressure
Piez.
Type Unit Wt. Unit Wt.
Intercept
Angle Pressure Constant
Surface
No. (Pcf)
(pcf)
(Psf)
(deg)
Param. (psf)
No.
1 120.0
120.0
675.0
35.0
.00 .0
1
ANIS07ROPIC
STRENGTH PARAMETERS
1 soil
types)
Soil Type
1 Is Anisotropic
Nu bar Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No. (deg) (Psf) (deg)
1 1.0 675.0 35.0
2 9.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 9 Coordinate Points
Point X-Water Y-Water
No. (ft) (it)
1 '.00 70.00
2 40.00 72.50
3 120.00 84.00
4 160.00 90.00
5 205.00 100.00
6 248.00 113.50
7 250.00 113.50
8 510.00 112.50
9 900.00 112.50
Janbus Empirical Coal is being used for the case of c Q phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 80.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
559.00
.00
560.OD
120.OD
.00
2
720.00
153.00
721.00
.00
.Od
* * Safety Factors Are Calculated By The
Modified Janbu Method
Failure Surface Specified By 4
Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
553.07
120.00
2
559.94
113.17
3
720.15
129.51
4
744.06
156.20
File: x2a.o 06/06/95 10:21 Page 1 I File: x2a.o
06/06/95 10:21 Page 2
i = = = m = = = m = = = = = m
2.25B ***
File: x2a.o 06/06/95 10:21 Page 3
L
I
I�
SECTION B-B'
I�
E
t
F
1
I
11
m m= m m=
i
m i=
m= m= m m m
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER: 1851578-04
CROSS SECTION: B—B'; NEW PROFILE
in TRIAL FAILURE SURFACE: NNBB4.PLT/ FOS:
m
v
cn
0
0
Lo
N
CU
0
cu
cn
H
X O
uo
a
m
I
>- u-1
CID
cn
1.553 (STATIC)
68.75 137.50 206.25 275.00 343.75 412.50 481.25 550.00
X - AXIS (ft)
M
** PCSTABLSM **
--Slope Stability Analysis --
Run Date: 8/ 8/ 1995
Run By: SXG
Input Data Filename: NN884.IN
Output Filename: NNBB4.OUT
Plotted Output Filename: NNBB4.PLT
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE B-8'
BOUNDARY COORDINATES
7 Top Boundaries
10 Total Boundaries
Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 .00 44.50 60.00 47.00 1
2 60.00 47.00 120.00 55.00 1
3 120.00 55.00 160.00 59.00 1
4 160.00 59.06 230.00 78.00 1
5 230.00 78.00 276.20 104.40 2
6 276.20 104.40 321.60 104.40 2
7 321.60 104.40 550.00 104.40 1
8 230.00 78.00 238.00 70.00 1
9 238.00 70.00 270.00 70.00 1
10 270.00 70.00 321.60 104.40 1
ISOTROPIC SOIL PARAMETERS
2 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (Pcf) (pcf) (psf) (deg) Param. (psf) No.
1 120.0 120.0 70.0 9.0 .00 .0 1
2 120.0 120.0 300.0 33.0 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
1 soil type(s)
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (Psf) (deg)
1 -2.0 675.0 35.0
2 5.0 70.0 9.0
3 90.0 675.0 35.0
File: nrbb4.out 08/08/95 16:38 Page 1
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 5 coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 40.00
2 80.00 40.00
3 300.00 80.00
4. 480.00 92.00
5 550.00 92.00
Janbus Empirical Coef is being used for the case of c & phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
1000 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active Arid Passive Portions Of
Sliding Block Is 20.0
Box
X-left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
171.00
.OD
172.00
65.50
.00
2
275.20
.OD
276.20
104.40
.OD
* * Safety
Factors Are Calculated By The Modified Janbu Method
Failure Surface Specified By 6
Coordinate
Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
168.30
61.25
2
171.88
57.68
3
275.79
61.70
4
287.49
77.92
5
300.39
93.21
6
311.49
104.40
***
1.553
***
Fite: nnbb4.out
08/08/95 16:38 Page 2
i i i i i i i i
i
i i i
i i• i i i i i
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER: 1B51578-04
CROSS SECTION: B-B': NEW PROFILE
LnTRIAL FAILURE SURFACE: NNBB4E.PLT/ FOS:
m
v
m
0
0
Lo
N
4- LD
v N
LD
0
N
U3
H
X o
Ln
a
m
Ln
Lo
m
1.246 (SEISMIC)
68.75 137.50 206.25 275.00 343.75 412.50 481.25 550.00
X - AXIS (ft)
M M M M M M M M M M M �= � M i M M M
** PCSTABLSM **
--Slope Stability Analysis --
Run Date: 8/ 8/ 1995
Run By: SXG
Input Data Filename: NN884E.IN
Output Filename: NNBB4E.OUT
Plotted Output Filename: NNB84E.PLT
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE B-82
BOUNDARY COORDINATES
7 Top Boundaries
10 Total Boundaries
Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. (ft) (ft) (it) (ft) Below Brd
1 .00 44.50 60.00 47.00 1
2 60.00 47.00 120.00 55.00 1
3 120.00 55.00 160.00 59.00 1
4 160.00 59.00 230.00 78.00 1
5 230.00 78.00 276.20 104.40 2
6 276.20 104.40 321.69 104.40 2
7 321.60 104.40 550.00 104.40 1
8 230.00 78.00 238.00 70.00 1
9 238.00 70.00 270.OD 70.00 1
10 270.00 70.00 321.60 104.40 1
ISOTROPIC SOIL PARAMETERS
2 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (Pcf) (Pcf) (Psf) (deg) Param. (Psf) No.
1 120.0 120.0 84.0 10.8 .00 .0 1
2 120.0 120.0 360.0 37.8 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
1 soil type(s)
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (Psf) (deg)
1 -2.0 810.0 40.0
2 5.0 84.0 10.8
3 90.0 810.0 40.0
File: nnbb4e.out 03/08/95 17:01 Page 1
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 5 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 40.00
2 80.00 40.00
3 300.00 80.00
4 480.00 92.00
5 550.00 92.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
Janbus Empirical Coef is being used for the case of c & phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
1000 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 20.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
171.00
.00
172.00
65.50
.00
2
275.20
.00
276.20
104.40
.00
* * Safety Factors Are Calculated By The
Modified Janbu Method
Failure
Surface Specified By 6
Coordinate Points
Point
X-Surf
Y-surf
No.
(ft)
(ft)
1
168.30
61.25
2
171.88
57.68
3
275.79
61.70
4
287.49
77.92
5
300.39
93.21
6
311.49
104.40
File: nnbb4e.out
08/08/95 17:01 Page 2
*** 1.246 ***
File: mbb4e.out 08/08/95 17:01 Page 3
i
SECTION C-C'
r m m m� m
m
m m m
m r
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER: 1651578-04
CROSS SECTION: C—C'; NEW PROFILE
o TRIAL FAILURE SURFACE: NNCC2.PLT/ FOS
0
0
0
cn
1.541 (STATIC)
60.00 120.00 180.00 240.00 300.00 360.00 420.00 480.00
X - AXIS (f t)
M r= M M a M M M M M M r M M M M M
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: B/ 8/ 1995
Run By: SXG
Input Date Filename: NNCC2.IN
Output Filename: NNCC2.OUT
Plotted Output Filename: NNCC2.PLT
PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION C-C'
BOUNDARY COORDINATES
10 Top Boundaries
15 Total Boundaries
Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 .00 20.00 40.00 24.00 1
2 40.00 24.00 80.00 34.00 1
3 80.00 34.00 180.00 60.00 1
4 180.00 60.00 186.40 77.50 2
5 186.40 77.50 205.20 90.70 2
6 205.20 90.70 255.50 90.70 2
7 255.50 90.70 405.00 90.70 1
8 405.00 90.70 430.00 90.70 3
9 430.00 90.70 460.00 90.70 4
10 460.00 90.70 480.00 90.70 5
11 180.00 60.00 215.00 60.00 1
12 215.00 60.00 255.50 90.70 1
13 367.00 .00 405.00 90.70 3
14 403.00 .00 430.00 90.70, 4
15 460.00 90.70 477.00 .00 4
ISOTROPIC SOIL PARAMETERS
5 Type(s) of Soft
Soft Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
1 120.0 120.0 200.0 14.0 .00 .0 1
2 120.0 120.0 300.0 33.0 .00 .0 1
3 120.0 120.0 200.0 14.0 .00 .0 1
4 120.0 120.0 200.0 14.0 .00 .0 1
5 120.0 120.0 200.0 14.0 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
4 soil type(s)
Soft Type 1 Is Anisotropic
Ntaber Of Direction Ranges Specified = 3
File: rmc2.out 00/08/95 12:31 Page 1
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
14.0
675.0
35.0
2
20.0
200.0
14.0
3
90.0
675.0
35.0
Soil Type
3 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
9.0
675.0
35.0
2
15.0
200.0
14.0
3
90.0
675.0
35.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-1.0
675.0
35.0
2
7.0
200.0
14.0
3
90.0
675.0
35.0
Soil Type
5 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-10.0
675.0
35.0
2
-4.0
200.0
14.0
3
90.0
675.0
35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric
Surface No. 1 Specified by 4
Coordinate Points
Point
X-Water Y-Water
No.
(ft) (ft)
1
.00 2.00
2
240.00 37.00
3
300.00 40.00
File: nncc2.out
08/08/95 12:31
Page 2
4 480.00 40.00
Jenbus Empirical Coef is being used for the case of c & phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
1000 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 15.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(it)
(it)
(ft)
(ft)
(ft)
1
180.00
30.00
180.00
30.00
60.00
2
290.00
45.00
290.00
45.00
90.00
* * Safety
Factors Are Calculated By The
Modified Janbu Method
Failure Surface Specified By 5
Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
167.80
56.83
2
168.07
56.70
3
180.00
47.60
4
290.00
87.36
5
293.30
90.70
*'*
1.541
***
File: nncc2.out 08/08/95 12:31 Page 3
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER: 1851578-04
CROSS SECTION: C—C'; NEW PROFILE
o TRIAL FAILURE SURFACE: NNCC2E.PLT/ FOS
0
c
c
c
c
c
c
NZ
4- c
c
a
VJ
H
X c
c
Q c
c
I
c
c
u
1.327 (SEISMIC)
0 60.00 120.00 180.00 240.00 300.00 360.00 420.00 480.00
X - AXIS (f t)
M M M M r i= r M M = = M= M= M M
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 8/ 8/ 1995
Run By: SXG
Input Data Filename: NNCC2E.IN
Output Filename: NNCC2E.OUT
Plotted Output Filename: NNCC2E.PLT
PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION C-Cl
BOUNDARY COORDINATES
10 Top Boundaries
15 Total Boundaries
Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. (ft) (ft) (ft) (it) Below Bnd
1 .00 20.00 40.00 24.00 1
2 40.00 24.00 80.00 34.00 1
3 80.00 34.OD 180.00 60.00 1
4 180.OD 60.00 186.40 77.50 2
5 186.40 77.50 205.20 90.70 2
6 205.20 90.70 255.50 90.70 2
7 255.50 90.70 405.00 90.70 1
8 405.00 90.70 430.00 90.70 3
9 430.00 90.70 460.00 90.70 4
10 460.00 90.70 480.00 90.70 5
11 180.00 60.00 215.00 60.00 1
12 215.00 60.00 255.50 90.70 1
13 367.00 .00 405.00 90.70 3
14 403.00 .00 430.00 90.70 4
15 460.00 90.70 477.00 .00 4
ISOTROPIC SOIL PARAMETERS
5 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. intercept Angle Pressure Constant Surface
No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
1 120.0 120.0 240.0 16.7 .00 .0 1
2 120.0 120.0 360.0 37.9 .00 .0 1
3 120.0 120.0 240.0 16.7 .00 .0 1
4 120.0 120.0 240.0 16.7 .00 .0 1
5 120.0 120.0 240.0 16.7 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
4 soil type(s)
Soft Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
File: mec2e.out 08/08/95 1706 Page 1
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
14.0
810.0
40.0
2
20.0
240.0
16.7
3
90.0
810.0
40.0
Soil Type
3 Is Anisotropic
Nnnber Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit'
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
9.0
810.0
40.0
2
15.0
240.0
16.7
3
90.0
810.0
40.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-1.0
810.0
40.0
2
7.0
240.0
16.7
3
90.0
810.0
40.0
Soil Type
5 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-10.0
810.0
40.0
2
-4.0
240.0
16.7
3
90.0
810.0
40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric
Surface No. 1 Specified
by 4
Coordinate Points
Point
X-Water Y-Water
No.
(ft) (ft)
1
.00 2.00
2
240.00 37.00
3
300.00 40.00
Fite: nncc2e.out
08/08/95 17:16 Page 2
r m= m m m m m m m= m = = m m= m m
4 480.00 40.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
Janbus Eapirical Coef is being used for the case of c & phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
1000 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active Arid Passive Portions Of
Sliding Block Is 15.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
180.00
30.00
180.00
30.00
60.00
2
290.00
45.00
290.00
45.00
90.00
* * Safety
Factors Are Calculated By The
Modified Janbu Method
Failure Surface Specified By 5
Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
160.48
54.93
2
165.97
50.81
3
180.00
45.51
4
290.00
80.88
5
298.37
90.70
***
1.327
***
File: rrx:c2e.out 08/08/95 17:16 Page 3
I
I
I
I
SECTION D-D'
I
I
17
I
m= m m m m m m m r m m m m m= r m
LEIGHTON AND ASSOCIATES, INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: D-D'; BLOCK FAILURE
o TRIAL FAILURE SURFACE: FS=1 .55 trST,s��c)
0
u�
r
CU
C
0 55.00 110.00 165.00 220.00 275.00 330.00 385.00 440.00
X - AXIS (ft)
M r= M M M= M = = M M M M = = M
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/ 5/ 1995
Run By: ATB
Input Data Filename: X3A
Output Filename: X3A.0
Plotted Output Filename: X3A.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE D-D';
BLOCK FAILURE
BOUNDARY COORDINATES
11 Top Boundaries
12 Total Boundaries
Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. (it) (it) (it) (ft) Below Bnd
1 .00 48.00 52.00 48.00 1
2 52.00 48.00 75.00 72.00 1
3 75.00 72.00 120.00 75.00 1
4 120.00 75.00 136.00 80.00 1
5 136.00 80.00 160.00 92.00 1
6 160.00 92.00 197.00 120.00 1
7 197.00 120.00 235.00 145.00 1
8 235.00 145.00 250.00 150.00 1
9 250.00 150.00 300.00 150.00 1
10 300.00 150.00 354.00 162.00 2
11 354.00 162.00 440.00 162.00 2
12 300.00 150.00 440.00 152.50 1
ISOTROPIC SOIL PARAMETERS
2 Type(s) of soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (Pcf) (Pcf) (Psf) (deg) Param. (Psf) No.
1 120.0 120.0 70.0 9.0 .00 .0 1
2 120.0 120.0 300.0 33.0 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
1 soil type(s)
Soil Type 1 Is An(sotropic
Number of Direction Ranges Specified - 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (psf) (deg)
1 -11.0 675.0 35.0
2 -5.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACES) HAVE BEEN SPECIFIED
Unit Weight of Water - 62.40
Piezometric Surface No. 1 specified by 6 Coordinate Points
Point X-Water Y-Water
No. (ft) (it)
1 .00 42.00
2 40.00 42.00
3 100.00 45.00
4 160.00 55.00
5 350.00 120.00
6 440.00 124.00
Jarbus Empirical Coef is being used for the case of c 6 phi both > 0
A Critical Failure surface Searching Method, Using A Random
Technique For Generating Sliding Block surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 30.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(it)
(it)
CIO
(ft)
1
154.00
43.00
154.00
43.00
86.00
2
224.00
67.00
224.00
67.00
134.00
* * Safety
Factors Are Calculated By The
Modified Jarbu Method
Failure Surface Specified By 8
Coordinate Points
Point
X-surf
Y-Surf
No.
(ft)
(it)
1
122.83
75.89
2
124.12
75.54
3
154.00
72.89
4
224.00
63.52
5
236.41
90.84
6
247.64
113.66
7
263.34
144.22
8
265.27
150.00
*''•
1.554
***
File: x3a.o 06/05/95 18:01 Page 1 I File: x3a.o
06/05/95 18:01 Page 2
File: x3a.o 06/05/95 18:01 Page 3
** PCSTABLSM "
--Slope Stability Analysis --
Run Date: 6/ 5/ 1995
Run By: ATB
Input Data Fitename: X3AE
Output Filename: X3AE.01
Plotted Output Filename: X3AE.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE
D-D';
BLOCK
FAILURE, SEISMIC
BOUNDARY COORDINATES
11 Top Boundaries
12 Total Boundaries
Boundary X-Left Y-Left
X-Right
Y-Right Soil
Type
No. (ft) (ft)
(ft)
(ft) Below Bnd
1 .00 48.00
52.00
48.00
1
2 52.00 48.00
75.00
72.00
1
3 75.00 72.00
120.00
75.09
1
4 120.00 75.00
136.00
80.00
1
5 136.00 80.00
160.00
92.00
1
6 160.00 92.00
197.00
120.00
1
7 197.00 120.00
235.00
145.00
1
8 235.00 145.00
250.00
150.00
1
• 9 250.00 150.00
300.00
150.00 .1••
10 300.00 150.00
354.00
162.00
2
11 354.00 162.00
440.00
162.00
2
12 300.00 150.00
440.00
152.50
1
ISOTROPIC SOIL PARAMETERS
2 Type(s) of Soil
Soit Total Saturated Cohesion
Friction
Pore Pressure
Piez.
Type Unit Vt. Unit Wt. Intercept
Angle Pressure Constant
Surface
No. (pef) (pcf) (Psf)
(deg)
Param. (Psf)
No.
1 120.0 120.0 84.0
10.7
.00 .0
1
2 120.0 120.0 360.0
37.9
.00 .0
1
ANISOTROPIC STRENGTH PARAMETERS
1 soil type(s)
Soil Type 1 Is Anisotropie
Huaber Of Direction Ranges Specified = 3
Direction Counterclockwise
Cohesion
Friction
Range Direction Limit
Intercept
Angle
No. (deg)
(Psf)
(deg)
1 -11.0
810.0
40.0
2 -5.0 84.0 10.7
3 90.0 810.0 40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 6 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 42.00
2 40.00 42.00
3 100.00 45.00
4 160.00 55.00
5 350.00 120.00
6 440.00 124.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
Janbus Empirical Coef is being used for the case of c E phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block is 30.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
ift)
ift)
ift)
ift)
Ift)
1
154.00
43.00
154.00
43.00
86.00
2
224.00
67.00
224.00
67.00
134.00
* * Safety Factors Are Calculated By The Modified Janbu Method
Failure
surface Specified
By 8
Coordinate
Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
122.83
75.89
2
124.12
75.54
3
154.00
72.89
File: x3ae.ol
06/05/95 18:11 Page 1
File: x3ae.o'
06/05/95 18:11 Page 2
4 224.00
63.52
5 236.41
90.84
6 247.64
118.66
7 263.34
144.22
8 265.27
150.00
*** 1.216 ***
File: x3ae.o' 06/05/95 18:11 Page 3
Imo■ m m = = = m =
m
= m =
= = m = m m
LEIGHTON
AND
ASSOCIATES,
INC.
JOB NUMBER:
CROSS SECTION: D -p'
o TRIAL FAILURE SURFACE
0
to
CL!
FS=1.675
0 55.00 110.00 165.00 220.00 275.00 330.00 385.00 440.00
X - AXIS (ft)
I"
M M M M M M M i M M M M M M M M M M
** PCSTABLSM **
--Slope Stability Analysis --
Run Date: 6/ 5/ 1995
Run By: ATB
Input Data Filename: X3A1
Output Filename: X3A1.0
Plotted Output Filename: X3A1.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE
D-D';
BLOCK
FAILURE
BOUNDARY COORDINATES
11 Top Boundaries
12 Total Boundaries
Boundary X-Left Y-Left
X-Right
Y-Right Soil
Type
No: (it) (it)
(ft)
(ft) Below Bnd
1 .00 48.00
52.00
48.00
1
2 52.00 48.00
75.00
72.00
1
3 75.00 72.00
120.00
75.00
1
4 120.00 75.00
136.00
80.00
1
5 136.00 80.00
160.00
92.00
1
6 160.00 92.00
197.00
120.00
1
7 197.00 120.00
235.00
145.00
1
8 235.00 145.00
250.00
150.00
1
9 250.00 150.00
300.00
150.00
1
10 300.00 150.00
354.00
162.00
2
11 354.00 162.00
440.00
162.00
2
12 300.00 150.00
440.00
152.50
1
ISOTROPIC SOIL PARAMETERS
2 Type(s) of Soil
Soil Total Saturated Cohesion
Friction
Pore Pressure
Piez.
Type Unit Wt. Unit Wt. Intercept
Angle Pressure
Constant
Surface
No. (Pcf) (Pcf) (Psf)
(deg)
Parem. (Psf)
No.
1 120.0 120.0 70.0
9.0
.00 .0
1
2 120.0 120.0 300.0
33.0
.00 .0
1
ANISOTROPIC STRENGTH PARAMETERS
1 soil type(s)
Soil Type 1 Is Anisotropic
Number of Direction Ranges Specified
= 3
Direction Counterclockwise
Cohesion
Friction
Range Direction Limit
Intercept
Angle
No. (deg)
(psf)
(deg)
1 -11.0
675.0
35.0
2 -5.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water - 62.40
Piezometric Surface No. 1 Specified by 6 Coordinate Points
Point X-Meter Y-Water
No. (ft) (ft)
1 .00 42.00
2 40.00 42.00
3 100.00 45.00
4 160.00 55.00
5 350.00 120.00
6 440.00 124.00
Janbus Empirical Coef is being used for the ease of c & phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Stiding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Stock Base
Length of Line Segments For Active And Passive Portions Of
Sliding Block Is 30.0
Box
X-Left
Y-Left X-Right
Y-Right
Height
No.
(ft)
(ft) (ft)
(ft)
(ft)
1
165.00
46.00 165.00
46.00
92.00
2
224.00
67.00 224.00
67.00
134.00
* * Safety
Factors Are Calculated By The
Modified Jarbu Method
Failure Surface Specified By 8 Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
61.21
57.62
2
75.93
53.25
3
105.52
48.32
4
135.40
45.69
5
165.00
40.78
6
224.00
103.57
7
237.14
130.53
8
238.92
146.31
***
1.675
***
File: x3si.o
06/05/95 18:06 Page 1
File: x3al.o
06/05/95 18:06 Page 2
n
n
n
1
C
I
I
n
1
I
I
I
1
n
1
SECTION E-F
e
m i m m i = m m
�
m i i
m i � = m m m
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: E-E'; STATIC; RESTRICTED ANISO
o TRIAL FAILURE SURFACE: FS=1.68
Lo
r-
m
0
0
0
uo
m
� o
�. in
N
(D
N
co
H
X o
Cl
Q Lo
I
to
co
87.50 175.00 262.50 350.00 437.50 525.00 612.50 700.00
X - AXIS (ft)
M M M M M M M M M M= i M= ! = M= M
** PCSTASL5M **
--Slope Stability Analysis --
Run Date: 6/10/ 1995
Run By: ATB
Input Data Filename: E61NR
Output Filename: E61NR.0
Plotted Output Filename: E61NR.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE E-El,
BLOCK FAILURE, TRIAL 6
BOUNDARY COORDINATES
10 Top
Boundaries
18 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
Soil Type
No.
(ft)
(ft)
(ft)
(ft)
Below Bnd
1
.00
50.00
70.00
50.00
1
2
70.00
50.00
155.00
81.50
1
3
155.00
81.50
210.00
98.00
1
4
210.00
98.00
226.00
104.50
2
5
226.00
104.50
352.00
143.00
3
6
352.00
143.00
356.50
144.50
4
7
356.50
144.50
380.00
148.00
5
8
380.00
148.00
405.00
148.00
5
9
405.00
148.00
503.00
149.00
6
10
503.00
149.00
700.00
150.00
6
11
405.00
148.00
440.00
113.00
5
12
440.00
113.00
470.00
113.00
5
13
470.00
113.00
495.00
141.00
5
14
495.00
141.00
700.00
141.00
5
15
210.00
98.00
218.50
.00
1
16
226.00
104.50
238.50
.00
2
17
326.00
.00
352.00
143.00
4
18
356.50
144.00
364.50
.00
4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No.
(pcf)
(pcf)
(psf)
(deg)
Param.
(psf)
No.
1
120.0
120.0
70.0
9.0
.00
.0
1
2
120.0
120.0
70.0
9.0
.00
.0
1
3
120.0
120.0
70.0
9.0
.00
.0
1
4
120.0
120.0
70.0
9.0
.00
.0
1
5
120.0
120.0
70.0
9.0
.00
.0
1
6
120.0
120.0
300.0
33.0
.00
.0
1
ANISOTROPIC
STRENGTH
PARAMETERS
5
soil
type(s)
File: e6lnr.o 06/10/95 14:27 Page 1
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
20.0
675.0
35.0
2
30.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
2 is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
9.0
675.0
35.0
2
15.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
3 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-11.0
675.0
35.0
2
.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
4.0
675.0
35.0
2
12.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
5 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
File: e6lnr.o
06/10/95 14:27 Page 2
m m m m m m m m m m w m m m m m m m m
1 18.0 675.0 35.0
2 24.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 4 Coordinate Points
Point X-Water Y-Water
No. (ft) (it)
1 .00 50.00
2 70.00 50.00
3 440.00 113.00
4 700.00 113.00
Janbus Empirical Coef is being used for the case of c & phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
3 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 50.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
210.00
98.00
218.50
.00
.00
2
326.00
.00
353.00
143.00
.00
3
512.00
74.00
512.00
74.00
148.00
* * Safety Factors Are calculated By The Modified Janbu Method
Failure
Surface Specified By 6
Coordinate
Points
Point
X-Surf
Y-surf
No.
(ft)
(ft)
1
118.52
67.98
2
164.26
58.69
3
213.92
52.83
4
335.95
52.71
5
512.00
123.75
6
537.43
149.17
***
1.680
**:
File: e6lnr.o 06/10/95 14:27 Page 3
■� M m m m
m
m m m
m m m r s mom
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: FS SEISMIC = 1.16 (RESTRICTED ANISO)
in TRIAL FAILURE SURFACE: SECTION E-E'
m
cD
v
E
93.75 187.50 281.25 375.00 468.75 562.50 656.25 750.00
X - AXIS (f t)
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/10/ 1995
Run By: ATGV
Input Data Filename: TE4
Output Filename: TE4.10
Plotted Output Filename: TE4.10P
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE E-El,
BLOCK FAILURE, TRIAL 6, SEISMIC
BOUNDARY COORDINATES
10 Top
Boundaries
18 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
No.
(ft)
(it)
(it)
(ft)
1
.00
50.00
70.00
50.00
2
70.00
50.00
155.00
81.50
3
155.00
81.50
210.00
98.00
4
210.00
98.00
226.00
104.50
5
226.00
104.50
352.00
143.00
6
352.00
143.00
356.50
144.50
7
356.50
144.50
380.00
148.00
8
380.00
148.00
455.00
148.00
9
455.00
148.00
553.00
149.00
10
553.00
149.00
750.00
150.00
11
455.00
148.00
490.00
113.00
12
490.00
113.00
520.00
113.00
13
520.00
113.00
548.00
141.00
14
548.00
138.00
750.00
141.00
15
210.00
98.00
218.50
.00
16
226.00
104.50
238.50
.00
17
326.00
.00
352.00
143.00
18
356.50
144.00
364.50
.00
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soil Type
Below Grid
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No.
(pcf) (pcf)
(psf)
(deg)
Param.
(psf)
No.
1
120.0 120.0
84.0
10.7
.00
.0
1
2
120.0 120.0
84.0
10.7
.00
.0
1
3
120.0 120.0
84.0
10.7
.00
.0
1
4
120.0 120.0
84.0
10.7
.00
.0
1
5
120.0 120.0
84.0
10.7
.00
.0
1
6
120.0 120.0
360.0
38.0
.00
.0
1
ANISOTROPIC STRENGTH PARAMETERS
5
soil type(s)
File: te4.io 06/10/95 14.10 Page 1
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (psf) (deg)
1 22.0 810.0 40.0
2 28.0 84.0 10.0
3 90.0 810.0 40.0
Soil Type 2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (psf) (deg)
1 9.0 810.0 40.0
2 15.0 84.0 10.0
3 90.0 810.0 40.0
Soil Type 3 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (psf) (deg)
1 .-9.0 810.0 40.0
2 .0 84.0 10.0
3 90.0 810.0 40.0
Soil Type 4 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (psf) (deg)
1 5.0 810.0 40.0
2 11.0 84.0 10.0
3 90.0 810.0 40.0
Soil Type 5 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (psf) (deg)
File: te4.io 06/10/95 14:10 Page 2
M M r M M= M M= M M M= M M M M
1 18.0 810.0 40.0
2 24.0 84.0 10.0
3 90.0 810.0 40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 4 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 50.00
2 70.00 50.00
3 440.00 113.00
4 700.00 113.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
Janbus Empirical Coef is being used for the case of c & phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
3 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 50.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
210.00
98.00
218.50
.00
.00
2
326.00
.00
353.00
143.00
.00
3
570.00
74.00
570.00
74.00
148.00
* * Safety
Factors Are Calculated By The
Modified Janbu Method
Failure Surface Specified By 5
Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
182.76
89.83
2
211.40
81.88
3
337.76
62.27
File: te4.io 06/10/95 14:10 Page 3 1 File: te4.io
4 570.00 144.34
5 570.63 149.09
*** 1.155 ***
06/10/95 1400 Page 4
i
1
1
1
J
1
1
1
u
1
1
1
1
1
1
1
1
SECTION F-F
1
m m m =
m
m m r>
m= m m m m
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: F—F'; CIRCULAR FAILURE
o TRIAL FAILURE SURFACE: FS=1.42
0
0
in
IT
0
0
0
m
y 0
0
0
cti
07
H
X 0
0
Q o
co
I r,
r o
0
0
rn
E
90.00 180.00 270.00 360.00 450.00 540.00 630.00 720.00
X — AXIS (f t)
M M M M M M M M M a M r r M M M M M
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/12/ 1995
Run By: ATB
Input Data Filename: X5
Output Filename: X5.0
Plotted Output Filename: X5.OP
PROBLEM DESCRIPTION NENPORTER NORTH, PROFILE F-Ft, RANDOM
BOUNDARY COORDINATES
10 Top
Boundaries
18 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
Soil Type
No.
(it)
(it)
(it)
(it)
Below Bnd
1
.00
50.00
37.50
51.00
1
2
37.50
51.00
108.00
73.00
1
3
108.00
73.00
170.00
97.00
2
4
170.00
97.00
236.00
123.00
3
5
236.00
123.00
325.00
145.00
3
6
325.00
145.00
365.00
148.00
3
7
365.00
148.00
370.00
147.00
3
8
370.00
147.00
375.00
145.00
3
9
375.00
145.00
489.00
161.00
6
10
489.00
161.00
720.00
161.00
6
11
75.00
.00
108.00
73.00
2
12
131.00
.00
170.00
97.00
3
13
349.00
.00
370.00
146.00
4
14
375.00
145.00
445.00
145.00
4
15
445.00
145.00
460.00
146.00
5
16
460.00
146.00
620.00
151.50
5
17
620.00
151.50
720.00
151.00
5
18
445.00
145.00
463.00
.00
4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soft Total Saturated Cohesion Friction Pore Pressure Piei.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No.
(pcf)
(pcf)
(psf)
(deg)
Param.
(psf)
No.
1
120.0
120.0
70.0
9.0
.00
.0
1
2
120.0
120.0
70.0
9.0
.00
.0
1
3
120.0
120.0
70.0
9.0
.00
.0
1
4
120.0
120.0
70.0
9.0
.00
.0
1
5
120.0
120.0
70.0
9.0
.00
.0
1
6
120.0
120.0
300.0
33.0
.00
.0
1
ANISOTROPIC
STRENGTH PARAMETERS
5
soil
type(s)
File: x5.o 06/12/95 16:30 Page 1
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
40.0
675.0
35.0
2
48.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
12.0
675.0
35.0
2
20.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
3 Is Anisotropic
Number Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-27.0
675.0
35.0
2
-17.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
11.0
675.0
35.0
2
21.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
5 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
Fite: x5.o
06/12/95 16:30 Page 2
M M M M r M== m m m m m r M M ■w M '=
1 1.0 675.0 35.0
2 7.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 6 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 50.00
2 37.50 51.00
3 108.06 73.00
4 170.00 97.00
5 236.00 123.00
6 700.00 123.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
2250 Trial Surfaces Have Been Generated.
150 Surfaces Initiate From Each Of 15 Points Equally Spaced
Along The Ground Surface Between X = 35.00 ft.
and X = 52.00 ft.
Each Surface Terminates Between X = 250.00 ft.
and X = 400.00 ft.
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = .00 ft.
70.00 ft. line Segments Define Each Trial Failure Surface.
* * Safety Factors Are Calculated By The Modified Bishop Method
Failure Surface Specified By 5 Coordinate Points
Point X-Surf Y-Surf
No. (ft) (ft)
1 35.00 50.93
2 104.71 44.59
3 172.92 60.33
4 232.80 96.58
5 260.69 129.10
Circle Center At X = 89.7 ; Y = 265.4 and Radius, 221.3
*** 1.427 ***
File: x5.o 06/12/95 16:30 Page 3 1 File: x5.o
06/12/95 16.30 Page 4
= m = m r = = m
=
m o m
m = m m m m
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: F-F'; CIRCULAR FAILURE;
o TRIAL FAILURE SURFACE: FS=1.14
a
0
uo
v
SEISMIC
0 90.00 180.00 270.00 360.00 450.00 540.00 630.00 720.00
X - AXIS (f t)
M M M r == M = = M M= M M= M i
** PCSTABLSM **
--Slope Stability Analysis --
Run Date: 6/12/ 1995
Run By: ATB
Input Data Filename: X5E
Output Filename: X5E.0
Plotted Output Filename: XSE.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE F-F',
CIRCULAR FAILURE, SEISMIC
BOUNDARY COORDINATES
10 Top Boundaries
18 Total Boundaries
Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. (it) (ft) (it) (it) Below end
1 .00 50.00 37.50 51.00 1
2 37.50 51.00 108.00 73.00 1
3 108.00 73.00 170.00 97.00 2
4 170.00 97.00 236.00 123.00 3
5 236.00 123.00 325.00 145.00 3
6 325.00 145.00 365.00 148.00 3
7 365.00 148.00 370.00 147.00 3
8 370.00 147.00 375.00 145.00 3
9 375.00 145.00 489.00 161.00 6
10 489.00 161.00 720.00 161.00 6
11 75.00 .00 108.00 73.00 2
12 131.00 .00 170.00 97.00 3
13 349.00 .00 370.00 146.00 4
14 375.00 145.00 445.00 145.00 4
15 445.00 145.00 460.00 146.00 5
16 460.00 146.00 620.00 151.50 5
17 620.00 151.50 720.00 151.00 5
18 445.00 145.00 463.00 .0D 4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pef) (pcf) (psf) (deg) Peram. (psf) No.
1 120.0 120.0 84.0 10.8 .00 .0 1
2 120.0 120.0 84.0 10.8 .00 .0 1
3 120.0 120.0 84.0 10.8 .00 .0 1
4 120.0 120.0 84.0 10.8 .00 .0 1
5 120.0 120.0 84.0 10.8 .00 .0 1
6 120.0 120.0 360.0 37.9 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
5 soil type(s)
File: x5e.o 06/12/95 17:03 Page 1
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
40.0
810.0
40.0
2
48.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
12.0
810.0
40.0
2
20.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
3 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-27.0
810.0
40.0
2
-20.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified = 3
'
Direction
Counterclockwise
Cohesion
friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
11.0
810.0
40.0
2
17.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
5 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
File: x5e.o
06/12/95 17:03 Page 2
i = M = = M = = M = = M M M M = = !
1 1.0 810.0 40.0
2 4.0 84.0 10.8
3 90.0 810.0 40.0
1 P1E20METRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 6 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 50.00
2 37.50 51.00
3 108.00 73.00
4 170.00 97.00
5 236.00 123.00
6 700.00 123.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
2250 Trial Surfaces Have Been Generated.
150 Surfaces Initiate From Each Of 15 Points Equally Spaced
Along The Ground Surface Between X = 35.00 ft.
and X = 52.00 ft.
Each Surface Terminates Between X = 250.00 ft.
and X = 400.00 ft.
unless Further Limitations Were imposed, The Minimum Elevation
At Which A Surface Extends Is Y = .00 ft.
70.00 ft. Line Segments Define Each Trial Failure Surface.
* * Safety Factors Are Calculated By The Modified Bishop Method
Failure Surface Specified_ By 5 Coordinate Points
Point X-Surf Y-Surf
No. (ft) (ft)
1 35.00 50.93
2 104.71 44.59
3 172.92 60.33
4 232.80 96.58
5 260.69 129.10
Circle Center At X = 89.7 ; Y = 265.4 and Radius, 221.3
*** 1.142 ***
File: x5e.o 06/12/95 17:03 Page 3 1 File: x5e.o
06/12/95 17:03 Page 4
m m m m = = = m = = = ! m = = = = i
LEIGHTON AND ASSOCIATES, INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: F-F'; BLOCK FAILURE
o TRIAL FAILURE SURFACE: FS=1.57
0
0
Lo
0 90.00 180.00 270.00 360.00 450.00 540.00 630.00 720.00
X — AXIS (ft)
M===== M M M m m m m= M. M s m
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/12/ 1995
Run By: ATB
Input Data Filename: X2C
Output Filename: X2C.0
Plotted Output Fitename: X2C.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE F-F', BLOCK
FAILURE, TRIAL 2
BOUNDARY COORDINATES
10 Top
Boundaries
18 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
Soil Type
No.
(ft)
(ft)
(ft)
(ft)
Below Bnd
1
.00
50.00
37.50
51.00
1
2
37.50
51.00
108.00
73.00
1
3
108.00
73.00
170.00
97.00
2
4
170.00
97.00
236.00
123.00
3
5
236.00
123.00
325.00
145.00
3
6
325.00
145.00
365.00
148.00
3
7
365.00
148.00
370.00
147.00
3
8
370.00
147.00
375.00
145.00
3
9
375.00
145.00
489.00
161.00
6
10
489.OD
161.00
720.00
161.00
6
11
75.00
.00
108.00
73.00
2
12
131.00
.00
170.00
97.00
3
13
349.00
.00
370.00
146.00
4
14
375.00
145.00
445.00
145.00
4
15
445.00
145.00
460.00
146.00
5
16
460.00
146.00
620.00
151.50
5
17
620.00
151.50
720.00
151.00
5
18
445.00
145.00
463.00
.00
4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No.
(pcf)
(pcf)
(psf)
(deg)
Foram.
(psf)
No.
1
120.0
120.0
70.0
9.0
.00
.0
1
2
120.0
120.0
70.0
9.0
.00
.0
1
3
120.0
120.0
70.0
9.0
.00
.0
1
4
120.0
120.0
70.0
9.0
.00
.0
1
5
120.0
120.0
70.0
9.0
.00
.0
1
6
120.0
120.0
300.0
33.0
.00
.0
1
ANISOTROPIC STRENGTH PARAMETERS
5 soil type(s)
File: x2c.o 06/12/95 15:17 Page 1
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
40.0
675.0
35.0
2
48.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
12.0
675.0
35.0
2
20.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
3 Is Anisotropic
Huaber Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-27.0
675.0
35.0
2
-17.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
11.0
675.0
35.0
2
21.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
5 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
File: x2c.o
06/12/95 15:17 Page 2
1 1.0 675.0 35.0
2 7.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 6 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 50.00
2 37.50 51.00
3 108.00 73.00
4 170.00 97.00
5 236.00 123.00
6 700.00 123.00
Janbus Empirical Coef is being used for the case of c 8 phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active Arid Passive Portions Of
Sliding Block Is 120.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
236.00
60.00
236.00
60.00
120.00
2
270.00
.00
271.00
130.00
.00
* * Safety
Factors Are Calculated By The
modified Janbu Method
Failure Surface Specified By 4
Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
146.40
87.86
2
236.00
60.43
3
270.83
108.41
4
285.88
135.33
***
1.567
***
File: x2c.o 06/12/95 15:17 Page 3
i m m m m m m=
m m m
m m= m m' m
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: F-F'; BLOCK,FAILURE; SEISMIC
o TRIAL FAILURE SURFACE: FS=1.17 (SEISMIC)
0
0
in
v
90.00 180.00 270.00 360.00 450.00 540.00 630.00 120.00
X - AXIS (ft)
i i i i i i i == M i m i i i i i i i
1 1.0 810.0 40.0 3
2 4.0 84.0 10.8 4
3 90.0 810.0 40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 6 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 50.00
2 37.50 51.00
3 108.00 73.00
4 170.00 97.00
5 236.00 123.00
6 700.00 123.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
Jenbus Empirical Coef is being used for the case of c & phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 120.0
Box X-Left Y-Left X-Right Y-Right Height
No. (ft) (ft) (ft) (it) (ft)
1 236.00 60.00 236.00 60.00 120.00
2 270.00 .00 271.00 130.00 .00
* * Safety Factors Are Calculated By The Modified Janbu Method
Failure Surface Specified By 4 Coordinate Points
Point X-Surf Y-Surf
No. (ft) (ft)
1 170.81 97.32
2 236.00 70.80
File- x2cet.o 06/12/95 16:59 Page 3 File: x2cel.o
270.85 110.25
277.14 133.17
1.175 ***
06/12/95 16:59 Page 4
M M M M i M M M M M M i M i M M M M M
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/12/ 1995
Run By: ATB
Input Data Filename: X2CE1
Output Filename: X2CE1.0
Plotted Output filename: X2CEI.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE F-F', BLOCK
FAILURE, TRIAL 2, SEISMIC
BOUNDARY COORDINATES
10 Top Boundaries
18 Total Boundaries
Boundary X-left Y-Left X-Right Y-Right Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 .00 50.00 37.50 51.00 1
2 37.50 51.00 108.00 73.00 1
3 108.00 73.00 170.00 97.00 2
4 170.00 97.00 236.00 123.00 3
5 236.00 123.00 325.00 145.00 3
6 325.00 145.00 365.00 148.00 3
7 365.00 148.00 370.00 147.00 3
8 370.00 147.00 375.00 145.00 3
9 375.00 145.00 489.00 161.00 6
10 489.00 161.00 720.00 161.00 6
11 75.00 .00 108.00 73.00 2
12 131.00 .00 170.00 97.00 3
13 349.00 .00 370.00 146.00 4
14 375.00 145.00 445.00 145.00 4
15 445.00 145.00 460.00 146.00 5
16 460.00 146.00 620.00 151.50 5
17 620.00 151.50 720.00 151.00 5
18 445.00 145.00 463.00 .00 4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angie Pressure Constant Surface
No. (pcf) (Pcf) (Psf) (deg) Param. (psf) No.
1 120.0 120.0 84.0 10.8 .00 .0 1
2 120.0 120.0 84.0 10.8 .00 .0 1
3 120.0 120.0 84.0 10.8 .00 .0 1
4 120.0 120.0 84.0 10.8 .00 .0 1
5 120.0 120.0 84.0 10.8 .00 .0 1
6 120.0 120.0 360.0 37.9 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
5 soil type(s)
File: x2cel.o 06/12/95 16:59 Page 1
Soil Type 1 Is Anisotropic
Nurtber Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
40.0
810.0
40.0
2
48.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
12.0
810.0
40.0
2
20.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
3 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-27.0
810.0
40.0
2
-20.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
11.0
810.0
40.0
2
17.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
5 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
File: x2cet.o
06/12/95 16:59 Page 2
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: F—F'; CIRCULAR FAILURE
o TRIAL FAILURE SURFACE: FS=1 .84 �srRTic)
o �
�S = �.A ♦ /'srttA�ic
0
in
v
L+
0 90.00 180.00 270.0E 360.00 450.00 540.00 630.00 720.00
X - AXIS (f t)
M m m m m m m MMMIMMMMMM m m m
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/12/ 1995
Run By: ATB
Input Data Filename: X6
Output Filename: X6.0
Plotted Output Filename: X6.OP
PROBLEM DESCRIPTION NENPORTER NORTH, PROFILE F-F',
CIRCULAR FAILURE
BOUNDARY COORDINATES
10 Top Boundaries
18 Total Boundaries
Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 .00 150.00 37.50 151.00 1
2 37.50 151.00 108.00 173.00 1
3 108.00 173.00 170.00 197.00 2
4 170.00 197.00 236.00 223.00 3
5 236.00 223.00 325.00 245.00 3
6 325.00 245.00 365.00 248.00 3
7 365.00 248.00 370.00 247.00 3
8 370.00 247.00 375.00 245.00 3
9 375.00 245.00 489.00 261.00 6
10 489.00 261.00 720.00 261.00 6
11 75.00 .00 108.00 173.00 2
12 131.00 .00 170.00 197.00 3
13 349.00 .00 370.00 246.00 4
14 375.00 245.00 445.00 245.00 4
15 445.00 245.00 460.00 246.00 5
16 460.00 246.00 620.00 251.50 5
17 620.00 251.50 720.00 251.00 5
18 445.00 245.00 463.00 .00 4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
1 120.0 120.0 70.0 9.0 .00 .0 1
2 120.0 120.0 70.0 9.0 .00 .0 1
3 120.0 120.0 70.0 9.0 .00 .0 1
4 120.0 120.0 70.0 9.0 .00 .0 1
5 120.0 120.0 70.0 9.0 .00 .0 1
6 120.0 120.0 330.0 33.0 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
5 soil types)
File: x6.o 06/12/95 17:47 Page 1
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
40.0
675.0
35.0
2
48.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
12.0
675.0
35.0
2
20.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
3 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-27.0
675.0
35.0
2
-20.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
4 is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
11.0
675.0
35.0
2
17.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
5 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
File: x6.o
06/12/95 17:47 Page 2
1 1.0 675.0 35.0
2 4.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 6 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 150.00
2 37.50 151.00
3 108.00' 173.00
4 170.00 197.00
5 236.00 223.00
6 700.00 223.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
Janbus Empirical Coef. is being used for the case of c & phi both > 0
2100 Trial Surfaces Have Been Generated.
300 Surfaces Initiate From Each Of 7 Points Equally Spaced
Along The Ground Surface Between X = 35.00 ft.
and X = 52.00 ft.
Each Surface Terminates Between X = 360.00 ft.
and X = 600.00 ft.
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = .00 ft.
60.00 ft. Line Segments Define Each Trial Failure Surface.
* * Safety Factors Are Calculated By The Modified Janbu Method
Failure Surface Specified By 8 Coordinate Points
Point X-Surf Y-Surf
No. (ft) (ft)
1 40.67 151.99
2 98.08 134.55
3 157.95 130.70
4 217.12 140.65
5 272.45 163.87
6 321.00 199.12
7 360.20 244.54
8 361.89 247.77
*** 1.837 ***
File: x6.o 06/12/95 17:47 Page 3 1 File: x6.o
06/12/95 17:47 Page 4
r M M = = M M ! � M `= M M � M r M
** PCSTABLSM **
--Slope Stability Analysis --
Run Date: 6/12/ 1995
Run By: ATD
Input Data Filename: X6E
Output Filename: X6E.0
Plotted Output Filename: X6E.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE F-Fl,
CIRCULAR FAILURE, SEISMIC
BOUNDARY COORDINATES
10 Top
Boundaries
18 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
Soil Type
No.
(ft)
(ft)
(ft)
(ft)
Below Bnd
1
.00
150.00
37.50
151.00
1
2
37.50
151.00
108.00
173.00
1
3
108.00
173.00
170.00
197.00
2
4
170.00
197.00
236.00
223.00
3
5
236.00
223.00
325.00
245.00
3
6
325.00
245.00
365.00
248.00
3
7
365.00
248.00
370.00
247.00
3
8
370.00
247.00
375.00
245.00
3
9
375.00
245.00
489.00
261.00
6
10
489.00
261.00
720.00
261.00
6
11
75.00
.00
108.00
173.00
2
12
131.00
.00
170.00
197.00
3
13
349.00
.00
370.00
246.00
4
14
375.00
245.00
445.00
245.00
4
15
445.00
245.00
460.00
246.00
5
16
460.00
246.00
620.00
251.50
5
17
620.00
251.50
720.00
251.00
5
18
445.00
245.00
463.00
.00
4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No.
(Pcf)
(Pcf)
(psf)
(deg)
Param.
(Psf)
No.
1
120.0
120.0
84.0
10.8
.00
.0
1
2
120.0
120.0
84.0
10.8
.00
.0
1
3
120.0
120.0
84.0
10.8
.00
.0
1
4
120.0
120.0
84.0
10.8
.00
.0
1
5
120.0
120.0
84.0
10.8
.00
.0
1
6
120.0
120.0
360.0
37.9
.00
.0
1
ANISOTROPIC STRENGTH PARAMETERS
5 soil types)
File: x6e.o 06/12/95 17:51 Page 1
Soil Type 1 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
40.0
810.0
40.0
2
48.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
12.0
810.0
40.0
2
20.0
a4.0
10.8
3
90.0
810.0
40.0
Soil Type
3 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-27.0
810.0
40.0
2
-20.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg) '
1
11.0
810.0
40.0
2
17.0
84.0
10.8
3
90.0
810.0
40.0
Soil Type
5 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
File: x6e.o
06/12/95 17:51 Page 2
m w m m� mom! W m m m M M M M M M
1 1.0 810.0 40.0
2 4.0 84.0 10.8
3 90.0 810.0 40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 6 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 150.00
2 37.50 151.00
3 108.00 173.00
4 170.00 197.00
5 236.00 223.00
6 700.00 223.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
Janbus Empirical Coef. is being used for the case of c & phi both > 0
2100 Trial Surfaces Have Been Generated.
300 Surfaces Initiate From Each Of 7 Points Equally Spaced
Along The Ground Surface Between X = 35.00 ft.
and X = 52.00 ft.
Each Surface Terminates Between X = 360.00 ft.
and X = 600.00 ft.
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends is Y = .00 ft.
60.00 ft. Line Segments Define Each Trial Failure Surface.
* * Safety Factors Are Calculated By The Modified Janbu Method
Failure Surface Specified By 8 Coordinate Points
Point X-Surf Y-Surf
No. (ft) (ft)
1
37.83
151.10
2
96.35
137.86
3
156.34
136.66
4
215.34
147.57
5
270.94
170.13
6
320.85
203.43
7
363.04
246.10
8
364.24
247.94
***
1.410
***
Fite- x6e.o 06/12/95 17:51 Page 3 1 Fite: x6e.o
06/12/95 17:51 Page 4
i
I
I
J
1
I
1
1
I
I
1
1
1
'J
1
1
I
I
SECTION G-G'
I
� � � � r� � � � � � � ram■ � r r � � � rtir
LEIGHTON AND ASSOCIATES, INC.
NEWPROTER NORTH
JOB NUMBER:
CROSS SECTION: G-G'; BLOCK FAILURE
o TRIAL FAILURE SURFACE: FS=1.25
Ln
N
ti
C*l
C
0 62.50 125.00 187.50 250.00 312.50 375.00 437.50 500.00
X - AXIS (f t)
s M on= r=% M M M" M= M M M m m r M
*" PCSTASL5M **
--Slope Stability Analysis --
Run Date: 6/ 1/ 1995
Run By: ATB
Input Data Filename: X3T
Output Filename: X3T.0
Plotted Output Filename: X3T.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-G', BLOCK FAI
LURE
BOUNDARY COORDINATES
14 Top
Boundaries
19 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
Soil Type
No.
(it)
(it)
(ft)
(it)
Below end
1
.00
53.00
33.00
53.00
1
2
33.00
53.00
43.00
54.00
1
3
43.00
54.00
55.00
61.00
1
4
55.00
61.00
65.00
65.50
1
5
65.00
65.50
103.00
78.00
2
6
103.00
78.00
147.00
92.00
2
7
147.00
92.00
158.50
97.50
2
8
158.50
97.50
190.00
107.50
3
9
190.00
107.50
300.00
143.00
4
10
300.00
143.00
322.00
148.00
4
11
322.00
148.00
357.00
148.00
5
12
357.00
148.00
360.00
148.00
6
13
360.00
148.00
437.00
165.00
5
14
437.00
165.00
500.00
165.00
5
15
65.00
65.50
87.00
.00
1
16
138.00
.00
158.50
97.50
3
17
190.OD
107.50
201.00
.00
3
18
360.00
148.00
500.00
148.00
6
19
357.00
148.00
397.00
.00
4
ISOTROPIC SOIL
PARAMETERS
6 Type(s) of
Soil
Soil Total
Saturated
Cohesion Friction
Pore Pressure
Piez.
Type Unit Wt.
Unit Wt.
Intercept
Angle
Pressure Constant Surface
No. (pcf)
(Pcf)
(Psf)
(deg)
Parem.
(psf)
No.
1 120.0
120.0
70.0
9.0
.00
.0
1
2 120.0
120.0
70.0
9.0
.00
.0
1
3 120.0
120.0
70.0
9.0
.00
.0
1
4 120.0
120.0
70.0
9.0
.00
.0
1
5 120.0
120.0
300.0
33.0
.00
.0
1
6 120.0
120.0
70.0
9.0
.00
.0
1
ANISOTROPIC STRENGTH PARAMETERS
File: x3t.o
06/01/95
10:03
Page 1
5 soil type(s)
Soil Type
1 Is Anisotrop)e
Number Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
37.0
675.0
35.0
2
43.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
- Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
20.0
675.0
35.0
2
26.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
3 Is Anisotropic
Number Of
Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-2.0
675.0
35.0
2
5.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
4 is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-25.0
675.0
35.0
2
-15.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
6 is Anisotropic
Number Of
Direction Ranges Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Pef)
(deg)
File: x3t.o
06/01/95 10:03 Page 2
M M ON M r M r M M r i M m r M M M M M
1 -8.0 675.0 35.0
2 -2.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 8 Coordinate Points
Point X-Water Y-Water
No. (it) (it)
1 .00 53.00
2 33.00 53.00
3 43.00 54.00
4 55.00 61.00
5 103.00 78.00
6 147.00 92.00
7 300.00 118.00
8 50D.00 125.00
Janbus Empirical Coef is being used for the case of c 8 phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
1000 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Stock is 20.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(it)
(ft)
1
65.00
64.00
87.00
.00
.00
2
133.00
.00
158.50
96.00
.00
* * Safety
Factors Are Calculated By The
Modified Janbu Method
failure Surface Specified
By 5
Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
48.70
57.32
2
49.50
57.10
3
68.96
52.49
4
157.61
91.85
5
164.05
99.27
***
1.246
***
File: x3t.o 06/01/95 10.03 Page 3 1 File: x3t.o
06/01/95 10:03 Page 4
LEIGHTON AND ASSOCIATES, INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: G-G'; BLOCK FAILURE;
O TRIAL FAILURE SURFACE: FS=1.05
CU
1-1
Ch
O
O
O
CU
.}J
y- O
Lo
CD
ci
co
H
X
0
Q Lo
N
} O
Lo
N
to
IM
SEISMIC
62.50 125.00 187.50 250.00 312.50 375.00 437.50 500.00
X - AXIS (f t)
M M M M m m m M= r r= M M m m m m m
» PCSTABLSM "
--Slope Stability Analysis --
Run Date: 6/ 8/ 1995
Run By: ATB
Input Data Filename: X3TE
Output Filename: X3TE.0
Plotted Output Filename: X3TE.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-G', BLOCK FAILURE
SEISMIC
BOUNDARY COORDINATES
14 Top
Boundaries
19 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
Soil Type
No.
(ft)
(ft)
(it)
(ft)
Below Bnd
1
.00
53.00
33.00
53.00
1
2
33.00
53.00
43.00
54.00
1
3
43.00
54.00
55.00
61.00
1
4
55.00
61.00
65.00
65.50
1
5
65.00
65.50
103.00
78.00
2
6
103.00
78.00
147.00
92.00
2
7
147.00
92.00
158.50
97.50
2
8
158.50
97.50
190.00
107.50
3
9
190.00
107.50
300.00
143.00
4
10
300.00
143.00
322.00
148.OD
4
11
322.00
148.00
357.00
148.00
5
12
357.00
148.00
360.00
148.00
6
13
360.00
148.00
437.00
165.00
5
14
437.00
165.00
500.00
165.00
5
15
65.00
65.50
87.00
.OD
1
16
138.00
.00
158.50
97.50
3
17
190.00
107.50
201.00
.00
3
18
360.00
148.00
500.00
148.00
6
19
357.00
148.00
397.00
.00
4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pef) (Pcf) (psf) (deg) Param. (psf) No.
1 120.0 120.0 84.0 10.7 .00 .0 1
2 120.0 12O.D 84.0 10.7 .00 .0 1
3 120.0 120.0 84.0 10.7 .00 .0 1
4 120.0 120.0 84.0 10.7 .00 .0 1
5 120.0 120.0 360.0 38.0 .00 .0 1
6 120.0 120.0 84.0 10.7 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
File: x3te.o 06/08/95 13:38 Page 1
5 soil type(s)
Soil Type
1 Is Anisotropic
Number of Direction
Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
37.0
810.0
40.0
2
43.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
20.0
810.0
40.0
2
26.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
3 Is Anisotropic
Nurber Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-2.0
810.0
40.0
2
5.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-25.0
810.0
40.0
2
-15.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
6 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
File: x3te.o
06/08/95 13:3B Page 2
m m m m`� m m m m m i m m m m m m m
1 -8.0 810.0 40.0
2 -2.0 84.0 10.7
3 90.0 810.0 40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 8 Coordinate Points
Point X-Water Y-Water
No. (it) (ft)
1 .00 53.00
2 33.00 53.00
3 43.00 54.00
4 55.00 61.00
5 103.00 78.00
6 147.00 92.00
7 300.00 118.00
8 500.00 125.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
Janbus Empirical Coef is being used for the case of c i phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating sliding Block Surfaces, Has Been
specified.
1000 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 20.0
Box
X-Left Y-Left
X-Right
Y-Right
Height
No.
(ft) (ft)
(ft)
(ft)
(ft)
1
65.00 64.00
87.00
.00
.00
2
138.00 .00
158.50
96.00
.00
* * Safety
Factors Are Calculated By The Modified Janbu Method
Failure Surface Specified By 5
Coordinate
Points
Point
X-Surf Y-Surf
No.
(ft) (ft)
File: x3te.o
06/08/95
13:38 Page 3
File: x3te.o
1 48.70
57.32
2 49.50
57.10
3 68.96
52.49
4 157.61
91.85
5 164.08
99.27
**' 1.049 ***
06/08/95 13:38 Page 4
a i
= m r m M m M M M m M M M M M M M i r
LEIGHTON AND ASSOCIATES, INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: G-G'; BLOCK FAILURE;
o TRIAL FAILURE SURFACE: FS=1.43
a
m
TRIAL 2
62.50 125.00 187.50 250.00 312.50 375.00 437.50 500.00
X - AXIS (f t)
MIM= M M M M M M M M m m m M m m ,ate r
** PCSTASL5M **
--Slope Stability Analysis --
Run Date: 6/ 1/ 1995
Run By: ATB
Input Data Filename: X4
output Filename: X4.0
Plotted Output Filename: X4.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-Gm, BLOCK FAI
LURE TRIAL 2
BOUNDARY COORDINATES
14 Top Boudaries
19 Total Boundaries
Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. -- (ft) (ft) (ft) (ft) Below-Brd
1 .00 53.00 33.00 53.00 1
2 33.00 53.00 43.00 54.00 1
3 43.00 54.00 55.00 61.00 1
4 55.00 61.00 65.00 65.50 1
5 65.00 65.50 103.00 78.OD 2
6 103.00 78.00 147.00 92.00 2
7 147.00 92.00 158.50 97.50 2
8 158.50 97.50 190.00 107.50 3
9 190.00 107.50 300.00 143.00 4
10 300.00 143.00 322.00 148.00 4
11 322.00 148.00 357.00 148.OD 5
12 357.00 148.00 360.00 148.00 6
13 360.00 148.00 437.00 165.00 5
14 437.00 165.00 500.00 165.00 5
15 65.00 65.50 87.00 .00 1
16 138.00 .00 158.50 97.50 3
17 190.00 107.50 201.00 .00 3
18 360.00 148.00 500.00 148.00 6
19 357.00 148.00 397.00 .00 4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soft
Soft Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pef) (Pcf) (psf) (deg) Param. (Psf) No.
1 120.0 120.0 70.0 9.0 .00 .0 1
2 120.0 120.0 70.0 9.0 .00 .0 1
3 120.0 120.0 70.0 9.0 .00 .0 1
4 120.0 120.0 70.0 9.0 .00 .0 1
5 120.0 120.0 300.0 33.0 .00 .0 1
6 120.0 120.0 70.0 9.0 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
File: x4.o 06/01/95 10:06 Page 1
5 soil type(s)
Soil Type
1 Is Anisotropic
Number Of Direction
Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
37.0
675.0
35.0
2
43.0
70.0
9.0
3
90.0
675.0
35.0
Soft Type
2 Is Anisotropic
Number of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
20.0
675.0
35.0
2
26.0
70.0
9.0
3
90.0
675.0
35.0
Soft Type
3 Is Anisotropic
Number Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-2.0
675.0
35.0
2
5.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
4 Is Aniaotropic
Number Of
Direction Ranges Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-25.0
675.0
35.0
2
-15.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
6 Is Anisotropic
Number Of
Direction Rages Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
File: x4.o
06/01/95 10,06 Page 2
M = = = = M M = = s M= a M M M M
1 -8.0 675.0 35.0
2 -2.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 8 Coordinate Points
Point X-Water ' Y-Water
No. (ft) (it)
1 .00 53.00
2 33.00 53.00
3 43.00 54.00
4 55.00 61.00
5 103.00 78.00
6 147.00 92.00
7 300.00 115.00
8 500.00 125.00
Janbus Empirical Coef is being used for the case of c & phi both > 0
A Criticat Faiture Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
1000 Trial Surfaces Have Been Generated.
3 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 20.0
Box
X-Left
Y-left
X-Right
Y-Right
Height
No.
(it)
(ft)
(ft)
(ft)
(ft)
1
65.00
64.00
87.00
.00
.00
2
138.00
.00
158.50
96.00
.00
3
190.00
107.50
201.00
.00
.00
* * Safety Factors Are Calculated By The Modified Janbu Method
Failure
Surface Specified By 7
Coordinate
Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
31.44
53.00
2
33.18
51.88
3
52.79
47.94
4
72.19
43.08
5
154.94
79.33
6
190.96
98.08
File: x4.o 06/01/95 10:06 Page 3 1 Fite: x4.o
7 193.58 108.66
*** 1.437 ***
06/01/95 10:06 Page 4
LEIGHTON AND ASSOCIATES, INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: G—G'; BLOCK FAILURE; TRIAL 2
o TRIAL F.AILURE SURFACE: FS=1.17; SEISMIC
cU
li
m
0
0
0
in
CU
y- O
.__. ltl
cn
H
X o
0
Q u')
N
} O
Lo
N
co
m
62.50 125.00 167.50 250.00 312.50 375.00 437.50 500.00
X — AXIS (f t)
M ! M M M M M M M M M M M M M M M M M
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/ 8/ 1995
Run By: ATE
Input Data Filename: X4E
Output Filename: X4E.0
Plotted Output Filename: X4E.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-G', BLOCK
FAILURE TRIAL 2, SEISMIC
BOUNDARY COORDINATES
14 Top
Boundaries
19 Total
Boundaries
Boundary
X-Left
Y-left
X-Right
Y-Right
Soil Type
No.
(ft)
(ft)
(ft)
(ft)
Below End
1
.00
53.00
33.00
53.00
1
2
33.00
53.00
43.00
54.OD
1
3
43.00
54.00
55.00
61.00
1
4
55.00
61.00
65.00
65.50
1
5
65.00
65.50
103.00
78.00
2
6
103.00
78.00
147.00
92.00
2
7
147.00
92.00
158.50
97.50
2
8
15B.50
97.50
190.00
107.50
3
9
190.00
107.50.
300.00
143.00
4
10
300.00
143.00
322.00
148.00
4
11
322.00
148.00
357.00
148.00
5
12
357.00
148.00
360.00
148.00
6
13
360.00
148.00
437.00
165.00
5
14
437.00
165.00
500.00
165.00
5
15
65.00
65.50
87.00
.00
1
16
138.00
.00
158.50
97.50
3
17
190.00
107.50
201.00
.00
3
18
360.00
148.00
500.00
148.00
6
19
357.00
148.00
397.00
.00
4
ISOTROPIC SOIL PARAMETERS
6 TYPOS) of Soil
Soil Total Saturated
Cohesion Friction
Pore
Pressure
Piez.
Type Unit Wt. Unit Wt.
Intercept
Angle
Pressure Constant Surface
No. (pcf) (Pcf)
(psf)
(deg)
Param.
(Psf)
No.
1 120.0 120.0
84.0
10.7
.00
.0
1
2 120.0 120.0
84.0
10.7
.00
.0
1
3 120.0 120.0
84.0
10.7
.00
.0
1
4 120.0 120.0
84.0
10.7
.00
.0
1
5 120.0 120.0
360.0
38.0
.00
.0
1
6 120.0 120.0
84.0
10.7
.00
.0
1
ANISOTROPIC STRENGTH PARAMETERS
File: x4e.o
06/08/95 13:45
Page 1
5 soil type(s)
Soil Type
1 Is Anisotropic
Number Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angie
No.
(deg)
(Psf)
(deg)
1
37.0
810.0
40.0
2
43.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
2 Is Anisotrople
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
20.0
810.0
40.0
2
26.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
3 Is Anisotropic
Number Of
Direction Ranges Specified
- 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-2.0
810.0
40.0
2
5.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
'-25.0
810.0
40.0
2
-15.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
6 Is Anisotropic
Number Of
Direction Ranges Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
File: x4e.o
06/08/95 13:45 Page 2
1 -8.0 810.0 40.0
2 -2.0 84.0 10.7
3 90.0 810.0 40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water - 62.40
Piezometric Surface No. 1 Specified by 8 Coordinate Points
Point X-Water Y-Water
No. (ft) (it)
1 .00 53.00
2 33.00 53.00
3 43.00 54.00
4 55.00 61.00
5 - 103.00 78.00
6 147.00 92.00
7 300.00 118.00
8 500.00 125.00
A Horizontal Earthquake Loading Coefficient
of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 Psi
Janbus Empirical Coef is being used for the case of c 8 phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
1000 Trial Surfaces Have Been Generated.
3 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 20.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
65.00
64.00
87.00
.00
.00
2
138.00
.00
158.50
96.00
.00
3
190.00
107.50
201.00
.00
.00
* * Safety
Factors Are Calculated By The
Modified Janbu Method
Failure Surface Specified
By 7
Coordinate Points
Point
X-Surf
Y-Surf
File: x4e.o
06/08/95
13:45 Page 3
File: x4e.o
No.
(ft)
(ft)
1
31.44
53.00
2
33.18
51.88
3
52.79
47.94
4
72.19
43.08
5
154.94
79.33
6
190.96
98.08
7
193.58
108.66
***
1.168
***
06/08/95 13:45 Page 4
m= m m m m m a m -m m m m m= m m m
j LEIGHTON AND ASSOCIATES, INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: G-G'; CIRCULAR FAILURE
o TR.IAL FAILURE SURFACE: FS=1.77
u�
N
ti
m
0
0
Cl
In
N
4- O
v
r-
CD
co
H
X o
0
Q Lo
cu
I ti
r o
Lo
N
to
62.50 125.00 1B7.50 250.00 312.50 375.00 437.50 500.00
X - AXIS (ft)
M M = = = M = M = M = = = i M = S '
* PCSTABL5M "
--Slope Stability Analysis --
Run Date: 6/ 1/ 1995
Run By: ATB
Input Data Filename: X1
Output filename: X1.0
Plotted output Filename: X1.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION G-G1, CIRCULAR
FAILURE
BOUNDARY COORDINATES
14 Top
Boundaries
19 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
Soft Type
No.
(ft)
(ft)
(ft)
(ft)
Below End
1
.00
53.00
33.00
53.00
1
2
33.00
53.00
43.00
54.00
1
3
43.00
54.00
55.00
61.00
1
4
55.00
61.00
65.00
65.50
1
5
65.00
65.50
103.00
78.00
2
6
103.00
78.00
147.00
92.00
2
7
147.00
92.00
158.50
97.50
2
a
158.50
97.50
190.00
107.50
3
9
190.00
107.50
300.00
143.00
4
10
300.00
143.00
322.00
148.00
4
11
322.00
148.00
357.00
148.00
5
12
357.00
148.00
360.00
148.00
6
13
360.00
148.00
437.00
165.00
5
14
437.00
165.00
500.00
165.00
5
15
65.00
65.50
87.00
.OD
1
16
138.00
.00
158.50
97.50
3
17
190.00
107.50
201.00
.00
3
18
360.00
148.00
500.00
148.00
6
19
357.00
148.00
397.00
.00
4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soft Total Saturated Cohesion Friction Pore Pressure Pfez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pef) (Pcf) (Psf) (deg) Parem. (Psf) No.
1 120.0 120.0 70.0 9.0 .00 .0 1
2 120.0 120.0 70.0 9.0 .00 .0 1
3 120.0 120.0 70.0 9.0 .00 .0 1
4 120.0 120.0 70.0 9.0 .00 .0 1
5 120.0 120.0 300.0 33.0 .00 .0 1
6 120.0 120.0 70.0 9.0 .00 .0 1
ANISOTROPIC STRENGTH PARAMETERS
File: x1.0 06/01/95 09:41 Page 1
5 soil types)
Soil Type
1 Is Anisotropic
Number Of Direction
Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
35.0
675.0
35.0
2
45.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
12.0
675.0
35.0
2
26.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
3 Is Anisotropic
Number Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-2.0
675.0
35.0
2
7.0
70.0
9.0
3
90.0
675.0
35.0
Soft Type
4 Is Anisotropic
Number of
Direction Ranges Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-25.0
675.0
35.0
2
-15.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
6 Is Anisotropic
Number Of
Direction Ranges Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Pef)
(deg)
File: xl.o
06/01/95 09:41
Page 2
M M i = ! M= M = = M i = M M M
1 -8.0 675.0 35.0
2 -2.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 8 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 53.00
2 33.00 53.00
3 43.00 54.00
4 55.00 61.00
5 103.00 78.00
6 147.00 92.00
7 300.00 118.00
8 500.00 125.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1800 Trial Surfaces Have Been Generated.
600 Surfaces Initiate From Each Of 3 Points Equally Spaced
Along The Ground Surface Between X = 42.00 ft.
and X = 44.00 ft.
Each Surface Terminates Between X = 280.00 ft.
and X = 400.00 ft.
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = .00 ft.
40.00 ft. Line Segments Define Each Trial Failure Surface.
* * Safety Factors Are Calculated By The Modified Bishop Method
Failure Surface Specified By 11 Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
43.00
54.00
2
81.05
41.65
3
120.48
34.93
4
160.47
33.98
5
200.17
38.82
6
238.76
49.34
7 275.43
65.33
8 309.40
86.44
9 339.96
112.25
10 366.48
142.20
11 372.01
150.65
Circle Center At X =
147.0 ; Y - 309.8 and Radius, 276.1
*** 1.772
***
File: x1.o 06/01/95 09:41 Page 3 1 File: xt.o
06/01/95 09:41 Page 4
LEIGHTON AND ASSOCIATES, INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: G-G'; CIRCULAR FAILURE
o TRIAL FAILURE SURFACE: FS=1.44; SEISMIC
to
a
m
0
0
0
u�
CU
4- c7
Ln
CD
c-1
cn
H
X O
0
Q Ln
cU
I
� o
In
CU
LD
La
0 62.50 125.00 187.50 250.00 312.50 375.00 437.50 500.00
X - AXIS (ft)
M M M M i M M M M M = = r = M= M i M
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/ 8/ 1995
Run By: ATB
Input Data Filename: X1E
Output Filename: X1E.0
Plotted Output Filename: X1E.OP
PROBLEM DESCRIPTION NEUPORTER NORTH, SECTION G-G', CIRCULAR
FAILURE, SEISMIC
BOUNDARY COORDINATES
14 Top
Boundaries
19 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
Soil Type
No.
(ft)
(ft)
(ft)
(ft)
Below Bnd
1
.00
53.00
33.00
53.00
1
2
33.00
53.00
43.00
54.00
1
3
43.00
54.00
55.00
61.00
1
4
55.00
61.00
65.00
65.50
1
5
65.00
65.50
103.00
78.00
2
6
103.00
78.00
147.00
92.00
2
7
147.00
92.00
158.50
97.50
2
8
158.50
97.50
190.00
107.50
3
9
190.00
107.50
300.00
143.00
- 4
.10
300.00
143.00
322.00
148.00
4
11
322.00
148.00
357.00
148.00
5
12
357.00
148.00
360.00
148.00
6
13
360.00
148.00
437.00
165.00
5
14
437.00
165.00
500.00
165.00
5
15
65.00
65.50
87.00
.00
1
16
138.00
.00
158.50
97.50
3
17
190.00
107.50
201.OD
.OD
3
18
360.00
148.00
500.00
148.00
6
19
357.00
148.00
397.00
.00
4
ISOTROPIC SOIL PARAMETERS
6 Type(s) of Soil
Soft Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No.
(PCf)
(pcf)
(Psf)
(deg)
Param.
(psf)
No.
1
120.0
120.0
84.0
10.7
.00
.0
1
2
120.0
120.0
84.0
10.7
.00
.0
1
3
120.0
120.0
84.0
10.7
.00
.0
1
4
120.0
120.0
84.0
10.7
.00
.0
1
5
120.0
120.0
360.0
38.0
.00
.0
1
6
120.0
120.0
84.0
10.7
.00
.0
1
ANISOTROPIC STRENGTH PARAMETERS
File: xte.o
06/08/95 13:51 Page 1
5 soil types)
Soil Type
1 Is Anisotropic
Number Of Direction
Ranges Specified
- 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
37.0
810.0
40.0
2
43.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
20.0
810.0
40.0
2
26.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
3 Is Anfsotropfe
Number Of Direction Ranges Specified
- 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-2.0
810.0
40.0
2
5.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
4 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-25.0
810.0
40.0
2
-15.0
84.0
10.7
3
90.0
810.0
40.0
Soft Type
6 Is Anisotropic
Number Of
Direction Ranges Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
File: x1e.o
06/08/95 13:51
Page 2
� Im M M= M== M= i m r m== m m m
1 -8.0 810.0 40.0
2 -2.0 84.0 10.7
3 90.0 810.0 40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 8 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 53.00
2 33.00 53.00
3 43.00 54.00
4 55.00 61.00
5 103.00 78.00
6 147.00 92.00
7 300.00 118.00
8 500.00 125.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1800 Trial Surfaces Have Been Generated.
600 Surfaces Initiate From Each Of 3 Points Equally Spaced
Along The Ground Surface Between X = 42.00 ft.
and X = 44.00 ft.
Each Surface Terminates Between X = 280.00 ft.
and X = 400.00 ft.
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = .00 ft.
40.00 ft. Line Segments Define Each Trial Failure Surface.
* * Safety Factors Are Calculated By The Modified Bishop Method
Failure Surface Specified By 11 Coordinate Points
Point X-Surf Y-Surf
No. (ft) (ft)
1 42.00 53.90
2 79.18 39.13
3 118.17 30.21
4 158.06 27.33
5 197.93 30.57
6 236.84 39.84
7 273.88 54.94
8 308.19 75.51
9 338.96 101.06
10 365.48 131.01
11 379.12 152.22
Circle Center At X = 156.9 ; Y = 289.0 and Radius, 261.7
*+* 1."3 *"
Fite: xte.o 06/08/95 13:51 Page 3 File- xte.o
06/08/95 13:51 Page 4
I
LJ
1
1
1
1
1
1
1
SECTION H-H'
Xy2�E LEIGHTON AND ASSOCIATES, INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: H—H'; BLOCK FAILURE
o TRIAL FAILURE SURFACE: FS=1 .65Ln
FA
�STic,
r-
CD
Ch
O
O
m
..N
y- O
CU
m
N
cn
H
X O
0
Q LD
trn
uo
r.
0 77.50 155.00 232.50 310.00 387.50 465.00 542.50 620.00
X - AXIS (f t)
� m M M M! m am = m r== M M M Mm
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/ B/ 1995
Run By: ATB
Input Data Filename: X2A
Output Filename: X2A.0
Plotted Output Filename: X2A.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE HH', BLOCK FAIL
URE
BOUNDARY COORDINATES
16 Top
Boundaries
21 Total
Boundaries
Boundary
X-Leff
Y-Left
X-Right
Y-Right
Solt Type
No.
(ft)
(ft)
(ft)
(ft)
Below Bnd
1
.00
53.00
40.00
54.00
1
2
40.00
54.00
60.00
56.00
1
3
60.00
56.00
80.00
64.00
1
4
80.00
64.00
160.OD
92.50
1
5
160.00
92.50
180.00
96.00
1
6
180.00
96.00
182.00
97.00
1
7
182.00
97.00
201.00
103.00
2
8
201.00
103.80
216.50
108.50
3
9
216.50
108.50
251.00
120.00
4
10
251.00
120.00
260.00
124.50
4
11
260.00
124.50
277.00
130.00
4
12
277.00
130.00
440.00
130.00
4
13
440.00
130.00
453.00
13O.OG
4
14
453.00
130.00
480.00
140.00
4
15
480.00
140.00
520.00
142.00
4
16
520.00
142.00
620.00
143.00
5
17
176.00
.00
182.00
97.00
2
18
201.00
103.00
207.00
.00
2
19
216.50
103.50
230.00
.00
3
20
520.00
142.00
537.00
134.00
4
21
537.00
134.00
620.00
134.00
4
ISOTROPIC SOIL PARAMETERS
5 Type(s) of Solt
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No.
(pef)
(pcf)
(psf)
(deg)
Param.
(psf)
No.
1
120.0
120.0
70.0
9.0
.00
.0
1
2
120.0
120.0
70.0
9.0
.00
.0
1
3
120.0
120.0
70.0
9.0
.00
.0
1
4
120.0
120.0
70.0
9.0
.00
.0
1
5
120.0
120.0
300.0
33.0
.00
.0
1
ANISOTROPIC STRENGTH PARAMETERS
4 soil
types)
Solt Type
1 Is Anisotropic
Number Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angie
No.
(deg)
(psf)
(deg)
1
35.0
675.0
35.0
2
41.0
70.0
9.0
3
90.0
675.0
35.0
Solt Type
2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
17.0
675.0
35.0
2
23.0
70.0
9.0
3
90.0
675.0
35.0
Soil Type
3 Is Anisotropic
Number Of
Direction Ranges Specified = 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-11.0
675.0
35.0
2
2.0
70.0
9.0
3
90.0
675.0
35.0
Solt Type
4 Is Anisotropic
Number Of
Direction Ranges Specified
- 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-30.0
675.0
35.0
2
-22.0
70.0
9.0
3
90.0
675.0
35.0
1 PIEZOMETRIC SURFACE(S) HAVE
BEEN SPECIFIED
Unit Weight of Water - 62.40
Piezometric
Surface No. 1 Specified by 7 Coordinate Points
File: x2e.o 06/08/95 11:56 Page 1 I File: x2a.o
06/08/95 11:56 Page 2
w m m m m m i� r m m r m m m m w m
Point X-Water Y-Water
No. (ft) (ft)
1 .00 53.00
2 40.00 54.00
3 60.00 56.00
4 156.00 84.00
5 400.00 104.00
6 500.00 127.00
7 620.00 127.00
Janbus EsQirical Coef is being used for the case of c 3 phi Lath > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active Arid Passive Portions Of
Sliding Block Is 30.0
Box X-Left Y-Left X-Right Y-Right Height
No. (ft) (ft) (it) (it) (it)
1 80.00 64.00 80.10 .OD .00
2 176.00 .00 182.00 97.00 .00
* * Safety Factors Are Calculated By The Modified Janbu Method
Failure Surface Specified By 5. Coordinate Points
Point X-Surf Y-Surf
No. (it) (ft)
1 38.54 53.96
2 55.19 39.02
3 80.07 22.25
4 181.80 93.73
5 186.42 98.39
*** 1.656 ***
File: x2a.o 06/08/95 11:56 Page 3
No r i�� M i r rr � M r M M M r� M r
" PCSTABL514 **
--Slope Stability Analysis --
Run Date: 6/ 8/ 1995
Run By: ATB
Input Data Filename: X2AE
Output Filename: X2AE.0
Plotted Output Filename: X2AE.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, PROFILE HH', BLOCK FAIL
URE, SEISMIC
BOUNDARY COORDINATES
16 Top
Boundaries
21 Total
Boundaries
Boundary
X-Left
Y-Left
X-Right
Y-Right
No.
(it)
(ft)
(ft)
(ft)
1
.00
53.00
40.00
54.00
2
40.00
54.00
60.00
56.00
3
60.00
56.00
80.00
64.00
4
80.00
64.00
160.00
92.50
5
160.00
92.50
180.00
96.00
6
180.00
96.00
182.00
97.00
7
182.00
97.00
201.00
103.00
8
201.00
103.00
216.50
108.50
9
216.50
108.50
251.00
120.00
10
251.00
120.00
260.00
124.50
11
260.00
124.50
277.00
130.00
12
277.00
130.00
"0.00
130.00
13
440.00
130.00
453.00
130.00
14
453.00
130.00
480.00
140.00
15
480.00
140.00
520.00
142.00
16
520.00
142.00
620.00
143.00
17
176.00
.00
182.00
97.00
18
201.00
103.00
207.00
.00
19
216.50
108.50
230.00
.00
20
520.00
142.00
537.00
134.00
21
537.00
134.00
620.00
134.00
ISOTROPIC SOIL PARAMETERS
5 Type(s) of soil
Soil Type
Below Bnd
Soil Total Saturated Cohesion Friction Pore Pressure P(ez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No.
(pef)
(Pef)
(psf)
(deg)
Param.
(psf)
No.
1
120.0
120.0
84.0
10.7
.00
.0
1
2
120.0
120.0
84.0
10.7
.00
.0
1
3
120.0
120.0
84.0
10.7
.00
.0
1
4
120.0
120.0
84.0
10.7
.00
.0
1
5
120.0
120.0
360.0
38.0
.00
.0
1
ANISOTROPIC
STRENGTH PARAMETERS
4 soft
type(s)
Soil Type
1 Is Anisotropic
Nudber Of Direction Ranges Specified
= 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
35.0
810.0
40.0
2
41.0
84.0
10.7
3
90.0
810.0
10.7
Soil Type
2 Is Anisotropic
Nudber Of Direction Ranges Specified- 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
17.0
810.0
40.0
2
23.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
3 is Anisotropic
Nuiber Of
Direction Ranges Specified
- 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(Psf)
(deg)
1
-11.0
810.0
40.0
2
2.0
84.0
10.7
3
90.0
810.0
40.0
Soil Type
4 Is Anisotropic
Nudxr Of
Direction Ranges Specified - 3
Direction
Counterclockwise
Cohesion
Friction
Range
Direction Limit
Intercept
Angle
No.
(deg)
(psf)
(deg)
1
-30.0
810.0
40.0
2
-22.0
84.0
10.7
3
90.0
810.0
40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water • 62.40
Piezometric
Surface No. 1 Specified by 7
Coordinate Points
File: x2ae.o
06/08/95 13:19 Page 1
File: x2ae.o
06/08/95 13:19 Page 2
Point X-Water Y-Water
No. (ft) (ft)
1 .00 53.00
2 40.00 54.00
3 60.00 56.00
4 156.00 84.00
5 400.00 104.00
6 500.00 127.00
7 620.00 127.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure = .0 psf
Jenbus Empirical Coef is being used for the case of c 6 phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 30.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(ft)
(ft)
(ft)
(ft)
(ft)
1
80.00
64.00
80.10
.00
.00
2
176.00
.00
182.00
_
97.00
.00
* • Safety
Factors Are Calculated By The
Modified Janbu Method
Failure surface Specified By 5
Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
1
38.54
53.96
2
55.19
39.02
3
$0.07
22.25
4
181.80
93.73
5
186.42
98.39
�**
1.549
**+
File: x2se.0 06/68/95 13:19 Page 3
I
I
I
I
I
I
I
I
I
I
F
II
I
I
I
I
SECTION IT
I
ri Mr rr r■� rr r rr ri
nr
rr �r
�s �r r r�■R �r OEM
LEIGHTON
AND
ASSOCIATES,
INC.
NEWPORTER NORTH
JOB NUMBER:
CROSS SECTION: I —I': BLOCK FAILURE
O TRIAL FAILURE SURFACE: FS=1 . B5CST�-Tfc,
LC)
ti
O
O
O
V
c-f
4-)
4- O
._ . O
LIl
O
ci
cn
H
X o
Q �
0
I �
r o
0
in
cn
c
0 35.00 70.00 105.00 140.00 175.00
X - AXIS (f t)
210.00 245.00 280.00
** PCSTABL5M **
--Slope Stability Analysis --
Run Date: 6/ 5/ 1995
Run By: ATE
Input Data Filename: X2B1
Output Filename: X281.0
Plotted Output Filename: X261.01)
PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION 111, BLOCK FA
ILURE
BOUNDARY COORDINATES
9 Top Boundaries
12 Total Boundaries
Boundary X-Left
No. (ft)
1 .00
2 25.00
3 40.00
4 80.00
5 120.00
6 140.00
7 160.00
8 188.00
9 201.00
10 188.00
11 238.00
12 220.00
Y-Left
X-Right
Y-Right
Soil Type
ift)
(it)
(ft)
Below End
79.00
25.00
79.00
1
79.00
40.00
80.00
1
80.00
80.00
91.50
1
91.50
120.00
107.00
1
107.OD
140.00
113.50
1
113.50
160.00
116.00
1
116.00
188.00
116.00
1
116.00
201.00
121.013
3
121.00
280.00
121.00
3
116.OD
238.00
116.00
1
116.00
280.00
116.00
2
.00
238.00
116.00
2
ISOTROPIC SOIL PARAMETERS
3 Type(s) of Soil
Soil Total Saturated Cohesion
Friction
Pore Pressure
Piez.
Type Unit Wt. Unit Wt. Intercept
Angle Pressure
Constant Surface
No. (pcf) (Pcf) (Psf)
(deg)
Param. (Psf)
No.
1 120.0 120.0 70.0
9.0
.00 .0
1
2 120.0 120.0 70.0
9.0
.00 .0
1
3 120.0 120.0 300.0
33.0
.00 .0
1
ANISOTROPIC STRENGTH PARAMETERS
2 soil type(s)
Soil Type 1 Is Anisotropie
Number Of Direction Ranges Specified = 3
Direction Counterclockwise
Cohesion
Friction
Range Direction Limit
Intercept
Angle
No. (deg)
(Psf)
(deg)
1 22.0 675.0 35.0
2 32.0 70.0 9.0
3 90.0 675.0 35.0
Soil Type 2 Is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (Psf) (deg)
1 -32.0 675.0 35.0
2 -22.0 70.0 9.0
3 90.0 675.0 35.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometric Surface No. 1 Specified by 4 Coordinate Points
Point X-Water Y-Water
No. (it) (ft)
1 .00 67.00
2 20.00 67.00
3 175.00 95.OD
4 280.00 95.00
Jenbus Empirical Coef is being used for the ease of c 3 phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated. '
2 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 10.0
Box
X-Left
Y-Left
X-Right
Y-Right
Height
No.
(it)
(ft)
(ft)
(ft)
(it)
1
81.00
45.00
81.00
45.00
90.00
2
172.00
57.00
172.00
57.00
114.00
* * Safety Factors Are Calculated By The
Modified Janbu Method
Failure
Surface Specified
By 8
Coordinate Points
Point
X-Surf
Y-Surf
No.
(ft)
(ft)
File: xZbl.o 06/05/95 18:24 Page 1 I File: x2bl.o
06/05/95 18:24 Page 2
m r� m m m m r mI= r m M" M" m m
1
2
3
4
5
6
7
8
xxx
40.99
80.28
44.39
79.09
53.21
74.38
62.30
70.21
71.00
65.28
81.00
65.14
172.00
107.84
174.97
116.00
1.852 ***
File: x2bl.o o6/o5/95 18:24 Page 3
M M M M M M M M M M M r M M r�= M M
"" PCSTABL5M "
--Slope Stability Analysis --
Run Date: 6/ 5/ 1995
Run By: ATB
Input Data Filename: X201E
Output FiLen ww: X281E.0
Plotted Output Filename: X2BIE.OP
PROBLEM DESCRIPTION NEWPORTER NORTH, SECTION II', BLOCK FA
ILURE, SEISMIC
BOUNDARY COORDINATES
9 Top Boundaries
12 Total Boundaries
Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. (ft) (ft) (ft) (ft) Below Brd
1 .00 79.00 25.00 79.00 1
2 25.00 79.00 40.00 80.00 1
3 40.00 80.00 80.00 91.50 1
4 80.OD 91.50 120.00 107.00 1
5 120.00 107.00 140.00 113.50 1
6 140.00 113.50 160.00 116.00 1
7 160.00 116.00 18B.00 116.00 1
8 188.00 116.00 201.00 121.00 3
9 201.00 121.00 280.00 121.00 3
10 188.00 116.00 238.00 116.00 1
11 238.00 116.00 280.00 116.00 2
12 220.00 .00 238.00 116.00 2
ISOTROPIC SOIL PARAMETERS
3 Type(s) of soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (Pcf) (Pef) (Psf) (deg) Parem. (psf) No.
1 120.0 120.0 84.0 10.7 .00 .0 1
2 120.0 120.0 84.0 10.7 .00 .0 1
3 120.0 120.0 360.0 37.9 .00 :0 1
ANISOTROPIC STRENGTH PARAMETERS
2 soil type(s)
Soil Type 1 Is Anisotropic
Number of Direction Ranges Specified - 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (Psf) (deg)
File: x2bte.o 06/05/95 18:27 Page 1
1 22.0 810.0 40.0
2 32.0 84.0 10.7
3 90.0 810.0 40.0
Soil Type 2 is Anisotropic
Number Of Direction Ranges Specified = 3
Direction Counterclockwise Cohesion Friction
Range Direction Limit Intercept Angle
No. (deg) (Psf) (deg)
1 -32.0 810.0 40.0
2 -22.0 84.0 10.7
3 90.0 810.0 40.0
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 62.40
Piezometrie Surface No. 1 Specified by 4 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 67.00
2 20.00 67.00
3 175.00 95.00
4 • 280.00 - 95.00
A Horizontal Earthquake Loading Coefficient
Of .150 Has Been Assigned
A Vertical Earthquake Loading Coefficient
Of .000 Has Been Assigned
Cavitation Pressure - .0 Psf
Janbus Empirical Coef is being used for the case of c i phi both > 0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
2 Boxes Specified For Generation Of Central Block Base
Length
Of Line Segments For Active And Passive Portions Of
Sliding Block Is 10.0
Box
X-Left Y-Left X-Right
Y-Right
Height
No.
(it) (it) (it)
(it)
(it)
1
81.00 45.00 81.00
45.00
90.00
File: x2ble.o
06/05/95
18:27 Page 2
m -m r�� m m -m `r m m m r m r as m" m
2 172.00 57.00 172.00 57.00 114.00
* * Safety Factors Are Calcutated By The Modified Janbu Method
Failure Surface Specified By 8 Coordinate Points
Point %-Surf Y-Surf
No. (ft) (ft)
1 40.99 80.28
2 44.39 79.09
3 53.21 74.38
4 62.30 70.21
5 71.00 65.28
6 81.00 65.14
7 172.00 107.84
8 174.97 116.00
*** 1.534 •*•
File: x2ble.o 06/05/95 18.27 Page 3
i
1
1
C
I
I
I
1851578-06
' APPENDIX F
_Ground -Water Conditions Anticipated After Development
INTRODUCTION
' The Newporter North site is bounded on three sides by gentle to steep slopes that descend from the
elevation of the mesa either to swales or canyons that drain into Upper Newport Bay, or directly to
the bay itself. The northeastern slope varies in height from zero to nearly 100 feet, as the canyon
containing San Joaquin Hills Road descends from the level of the mesa top near Jamboree Road to
Back Bay Drive, less than 10 feet above sea level. The slope angle varies from more gentle than 3:1
(horizontal -vertical) to 2:1 locally. The southwestern slope falls at a gentle grade into John Wayne
Gulch, and is covered with wild grasses and low shrubs. The descent from the mesa top to Back Bay
Drive consists of a steep bluff that is locally steeper than 1:1, and exposes weathered but unvegetated
Monterey formation bedrock.
The slope above San Joaquin Hills Road is consistently wet and seeping along much of its length.
' It supports a thick growth of phreatophytes, and excess seepage water is collected in a shallow surface
drainage channel at the base of the slope. The drainage channel conducts the water to the storm
drain at the intersection of San Joaquin Hills Road and Back Bay Drive, and the drain outlets to the
' bay. The primary source of the seepage water is the pond in the wetlands area on the mesa near the
top of the slope. The pond is fed by a runoff pipe from across Jamboree Road, and is dammed at
its downstream end by a low earthen dam approximately 400 feet west of the road. Consequently,
' the pond forms a nearly permanent source of ground water for the northern half of the property, and
the resulting ground -water table slopes away from the pond to the south, west, and north. Since the
wetlands area will not be touched by the proposed development, and the pond will remain in its
' current location and condition, other subdrainage measures are proposed to mitigate the seepage
along the San Joaquin Hills Road slope.
The slope along John Wayne Gulch shows no signs of active seepage under the current conditions.
The ground water table is 50 to 90 feet deep at the crest of the mesa, where Borings BR-3, B114,
and B11-5 were drilled. During grading and earthwork for construction, a subdrain system is to be
installed beneath the proposed fill slope above elevation 60 feet. The subdrains will also provide
• some protection to the natural slope that extends to the centerline of the swale, since they will
intercept shallow ground water migrating toward the slope face from surface infiltration.
The slope above Back Bay Drive is currently dry in its upper reaches, and damp to moist locally along
Back Bay Drive. Local evidence of efflorescence indicates that moisture laden with soluble salts from
the fractured rock of the bluff has evaporated at the bluff face, leaving the salts behind. No
' observations of actual seepage were made, but borings near the top of the bluff contained ground
water from 30 to 60 feet below ground surface. The shallowest water was at the northern end of the
bluff, closest to the ponded area.
' The primary sources of ground -water recharge to the site currently, are the ponded water in the swale
in the northern half of the property, and rainfall striking the surface of the mesa. Some additional
water may be flowing onto the site laterally from beneath Jamboree Road, but it is not expected to
be significant compared to the other sources. The ponded area corresponds to the portion of the
F-1
APPENDIX F (cont'd)
site that contains the shallowest ground water, at a depth of approximately ten feet below ground
surface. Nearly all of the rainfall striking the mesa surface on the site soaks into its granular terrace
cap, either to be re-released from plants through evapo-transpiration, or to infiltrate downward to
the ground water table. Apparently only a small amount of rain water actually adds to the ground
water supply, since the water table is low across much of the site. On the other hand, the pond water
constitutes a continuous "point" source of new ground water, and is an important factor to consider
in the overall ground water regime of the property after development is complete.
Proposed Develoi)ment Conditions
The plan for development of the site consists of construction of detached homes on individual
lots both south and north of the pond area and the swale downstream from the pond. Up to
50 percent of the lot area will be landscaped, and irrigated during the dry months. The lots will
be graded with a two percent slope toward the street, so that ponding of rain water or irrigation
water on an individual lot will be very unlikely, although not impossible if the homeowner
landscapes the property incorrectly. Our experience in newer subdivisions has been that the
existence of a lot which ponds water regularly is rare. Therefore we have analyzed the future
ground water conditions assuming that there are not a large number of such lots. Surface runoff
from paved areas, and from roof gutters and downspouts of homes is expected to be conducted
offsite via storm drains installed in the street alignments.
The pond area and adjacent swale are proposed to be a part of the future project, and to
continue to provide a point source for excess water to enter the ground water system. We
assume that there will be no major change in the volume of water available from the offsite
source for the pond.
In addition to the changes in land use proposed for the site, several of the grading and
earthwork activities themselves will have an impact on future ground water conditions. They
include the following:
- The slope along San Joaquin Hills Road will be buttressed along most of its length with a
shear key cut behind the current slope face or at the base of the slope. As a part of that
buttress, subdrains will be placed at the base of the excavation, and will drain off some of the
water that would otherwise reach the bluff face. It will probably not cut off all seepage from
the bluff face, because undertlow of ground water beneath the subdrain can continue to
deliver some ground water to the bluff:
- The slope along John Wayne Gulch will become a fill slope over natural ground, and will be
subdrained at the base of the fill key. Although the current water table is deeper than the
likely location of that subdrain, it will limit the height of the water table in the future along
that side of the property. The gulch itself is proposed to remain open space with native
planting and no irrigation.
1851578-06
APPENDIX F (cont'd)
' The soil that is excavated and recompacted at the ground surface will be placed as engineered
fill with a lower permeability than the current layer of sandy topsoil and terrace deposits that
it replaces. Some of the more weathered bedrock, which is generally more clay -rich than the
' terrace deposits, will be incorporated into that fill, creating a lower permeability "cap" on the
graded lots. The thickness of the cap will be specified to provide a continuous barrier to the
infiltration of surface water beneath the development (see Conclusions and
Recommendations of this report).
' The present study incorporated this information into an analytical model of the steady-state
' ground water condition predicted for the site after development has occurred
• Scope of Work and Approach
In order to develop a better understanding of future ground -water conditions, our scope of work
consisted of-
- conducting field tests of permeability values in the Monterey formation bedrock to a
maximum depth of 60 feet, using packer tests over 10- to 20-foot-vertical intervals in 6-inch-
diameter borings;
- conducting laboratory tests of permeability values in representative soil samples remolded to
90 percent compaction, in order to estimate the performance of a compacted fill soil cap;
- conducting a laboratory test of permeability value in a representative soil sample remolded
1 to 85 percent compaction, in order to estimate the performance of a fill soil cap placed under
a modified compaction criterion.
- creating a simple analytical model of the site to predict the future pattern of ground water
flow, and the key parameters that control that pattern;
- analyzing the model to determine appropriate values for design purposes to limit the
' potential for future seepage; and
- preparing this summary of our findings, conclusions, and recommendations.
An index map, Figure F-1, provides the approximate locations of the packer tests and the
approximate locations of the three cross -sections used for the seepage analysis.
I
F-3
I
1 1851578-06
APPENDIX F (cont'd)
' FINDINGS
• Bedrock Permeability
' A realistic value of bedrock permeability, or hydraulic conductivity, is one of the major
requirements of a successful model. Both an order -of -magnitude value of absolute conductivity,
and the change of conductivity with depth, have a significant impact on the predicted changes
of ground water flow after development of the property. Previous field•studies had identified
the presence of several types of flow pathways, but not the magnitude of the conductivity values
' nor their distribution, especially with depth.
We chose a pumping test with a single packer covering several different zones in borings
between 10 and 60 feet below ground surface to conduct bedrock permeability tests. Six -inch -
diameter borings were drilled with an air rotary rig to the base of the zone being tested, and the
packer was typically set at a depth of 10 feet above the total depth of the hole. The test zone
was then filled with water under varying pressures up to approximately 60 psi gauge (88 psi
total), and the resulting flow rate was measured and converted into a hydraulic conductivity
value. Tests were conducted both above and below the water table, in three holes along the
' top of the bluff facing Back Bay Drive.
A total of twelve different depth intervals were tested The layouts of three packer tests are
shown schematically in Figure F-2, F-3, and F-4. Subsurface information from drilling
operations is also shown in those figures. Approximate field (not dry) densities of selected
chunk materials are also recorded providing an indication of diatomaceous materials.
' The results are provided in Figures F-5, F-6, and F-7. Note that these figures show test paths
of gauge pressure versus water intake. Calculated permeabilities are indicated adjacent to the
data points. In any given test with multiple pressure levels, interpretation of results would be
in accordance with Figure F-8. In -situ permeability values ranged from 1.77E-3 cm/sec (5.0
ft/day) to zero (practically impermeable). Although there was some variation from one interval
to the next, there was no significant variation from one hole to the next, or from shallow to
deep intervals. We concluded that using an average conductivity value of 5.0E-4 cm/sec (1.4
feet/day) throughout the model for bedrock conductivity in the horizonal direction was an
' appropriate simplification. The tests did not differentiate between horizontal and vertical
conductivity values. We used the conservative assumption that vertical conductivity was equal
to 0.1 times horizontal conductivity.
• Compacted Soil Permeabili
Since the compacted soil fill which will eventually cover the property does not exist yet, we
prepared several samples in the laboratory, composed of the most common terrace and bedrock
constituents from which the fill will be created during the grading process. Bag samples of
terrace materials, crushed bedrock, and mixtures of the two were brought to 90 percent of
' maximum density at optimum moisture and tested for hydraulic conductivity in a triaxial testing
machine. One sample was tested at 85 percent of maximum density to approximate a modified
' F-4
I
MIUMM
r
I
r
I
APPENDIX F (cont'd)
compaction criteria. The results are reported in Table F-1. Laboratory permeability for the
terrace deposit sample (LB-2, Bag 1) was 0.16 ft/day. On the other hand, permeability of
bedrock materials and composite materials (diatomaceous and non -diatomaceous mixtures of
bedrock and terrace materials) ranged from 0.02 ft/day to 0.005 ft/day. Even though 85 percent
compaction resulted in a higher permeability, it appears that a modified compaction criteria may
be usable, depending on further test results during field operations.
Although there is some variation in the values depending on the materials used to create the
fill, and especially the amount of fines in the fill soil, in our model we used as a typical value
3.0E-6 cm/sec (8.45-3 feet/day), approximately two orders of magnitude lower than the
conductivity in the underlying bedrock. Thus there is good reason to expect a properly mixed
and compacted fill to act as a cap over the more highly conductive bedrock.
For the fill to act as a low -permeability cap, it is important that it remain intact after
development is complete. The most likely sources of disruption of the cap are permeable
backfill in deep utility excavations such as sanitary sewer and storm drain trenches, swimming
pools, and deep-rooted vegetation. The grading and earthwork which will create this cap needs
to be planned to produce a cap which remains intact and continues to perform the role of
limiting infiltration of surface water.
Analytical Model of Steady State Ground Water Conditions
In order to create a simple yet relevant model for evaluating the ground water flow conditions
to be anticipated at the site after development, Leighton retained the services of Aqui-Ver, Inc.
to construct and run an analytical model based on the Dupuit equation for steady flow in an
unconfined aquifer. We modeled the site as a series of two-dimensional flow models along cross
sections which extended from the pond area through the bluffs to San Joaquin Hills Road, Back
Bay Drive, and John Wayne Gulch, respectively. The current ground water conditions are
defined by the presence of the pond area at the ground surface in the northeastern portion of
the site, and conditions of a) active seepage along the San Joaquin Hills Road slope and b) no
seepage along the Back Bay Drive and John Wayne Gulch slopes.
The model assumes two sources of ground water: 1) the continued presence of a source at the
ground surface in the pond area, plus a non -point source of additional infiltration across the
remainder of the mesa. Rather than limiting the influx to the approximately 12 inches of
rainfall, the model assumes that 84 inches of water are applied in addition to rainfall, distributed
uniformly during the year, at the top of the soil cap. In the "conservative irrigation" case, the
low permeability of the soil cap allows only a small fraction of that water to penetrate to the
bedrock and contribute to the steady-state ground water condition. The remainder of the water
that is applied to the ground surface leaves the site either as runoff to the storm drain system,
or as evapo-transpiration from the landscape vegetation. In the "maximum irrigation" case, all
the available irrigation is applied uniformly through time and allowed to seep into the bedrock
as though there were no low -permeability soil cap across the site.
d
F-5
I
1851578-06
I
APPENDIX F (cont'd)
' The results of the analytical model simulations are shown in Figures F-9, F-10, and F-11, on
which the level of the water table is superimposed on the three schematic cross sections from
the pond area to the bluff faces. The simulations show the effect of the "pond alone"
' (essentially the current conditions), the pondwith"conservative irrigation" (conditions if the soil
cap is placed on the site and remains intact), and the pond plus "maximum irrigation" (assuming
84 inches of irrigation applied and no soil cap). The "conservative irrigation" curve lies on top
of the "pond alone" curve, because the impact of the small amount of water that can infiltrate
through, the cap is insignificant compared to the volume of water added to the system due to
underflow from the pond.
A particularly important result is demonstrated in the cross section in Figure F 10. The results
show that the likelihood of seepage at the face of the bluffs is directly related to the depth of
ground water at the base of the bluff next to the roadway. Depending on the assumptions about
ground water conditions at that location, the worst -case increase in the water table, i.e.,the
"maximum irrigation" scenario, produces seepage along the lower portion of the bluff. However,
if the water table is five feet or more below the level of the road, then the likelihood that
seepage will reach the bluff face even under those conditions is substantially reduced. The
model indicates that a subdrain below road level could be an important remedial measure if the
' natural subdrainage near the base of the bluff is inadequate to keep the water table at
approximately sea level.
' Finally, the cross sections all show the limited effect subdrains near the top of the bluff would
have, if placed at any depth shallower than approximately 40 feet. At this location, the subdrain
is likely to remain dry, even if the water table rose to the "maximum irrigation" level in the
' future. Only on Cross -Section 1-1' (Figure F-9) through the San Joaquin Hills Road slope is
this subdrain likely to be deep enough to divert seepage water away from the bluff face.
' CONCLUSIONS
' The following conclusions are based on the field and laboratory data obtained in this and previous
studies of the site. If additional information becomes available, our conclusions may need to be
modified.
' • If there were no mitigative measures taken to limit the amount of infiltration and lateral flow of
ground water beneath the site, then the additional water applied to the ground surface in the
developed tract could be a significant contributor to future seepage from the bluffs. Irrigation of
landscaping in southern California can add the equivalent of several times the average annual
rainfall to the ground surface, which increases the elevation of the water table across most of the
site by several feet ("maximum irrigation" case), in the absence of any controls.
' • The amount of increase in the water table level, due to development and the attendant increase
of irrigation can be reduced to an insignificant level, if a low permeability cap of fill soil is used
1 to limit the rate of infiltration of water from the ground surface. The permeability of the soil cap
which would be constructed from onsite soils during grading and earthwork is expected to be
7
u
F-6
' 1951578-06
' APPENDIX F (cont'd)
' approximately two orders of magnitude lower than that of the bedrock, and in practice should be
at least one order of magnitude lower. Since the gradient of the water table is driven primarily by
the presence of the pond, the small volume of additional water passing through the soil cap has
a negligible effect on the new steady-state water table.
• The depth to ground water at the base of the slope along Back Bay Drive has an important impact
on the possibility of future seepage from the slope. Therefore, a subdrain constructed at the base
of the slope would have a beneficial effect.
• Subdrains installed near the slope face at the top of slope will generally not be of much value,
since they would not intercept ground water before it seeped to the slope face. Along San
Joaquin Hills Road where the water table is shallow and seepage is already occurring, a deep
subdrain will intercept the existing water table in the buttress excavation behind the slope, and will
be effective in helping to control seepage. However, even on that slope, some seepage will
probably continue due to underflow of ground water beneath the depth of the subdrain.
' An increase in the amount of ground water moving laterally onto the site from beneath Jamboree
Road could raise the water table beneath the site and increase the likelihood of seepage at the
bluff face. This appears to be unlikely because the Newport Center properties are nearly all
developed. Remedial measures to control ground water along the Jamboree Road side of the
property could be implemented in the future if irrigation or drainage conditions changed offsite.
RECOMMENDATIONS
• During the remedial grading and earthwork to prepare the site for development, a soil cap with
vertical permeability of less than 1.0E-5 cm/sec (2.8E-2 ft/day) should be constructed to a depth
' sufficient to assure that it remains intact after all development and landscaping are complete. This
includes but is not limited to: installation of sanitary sewers and storm drains, construction of
swimming pools, excavations for basements or other subterranean structures, construction of the
detention pond, and reasonable expectations for the depth of root systems for adult trees and
shrubs.
• We recommend that a subdrain with outlets directly to the bay be constructed along that portion
of Back Bay Drive which is adjacent to the toe of the steep bluff of exposed bedrock. The
subdrain is considered as an important mechanism for improving the natural flow of ground water
away from the toe of the bluff to the bay. The subdrain should be protected from damage during
routine road maintenance, e.g. by placing a paved cap over the top of it to prevent damage from
a grader blade.
' The subdrain at the top of slope above San Joaquin Hills Road should be extended only to the
end of the excavation for the shear key.
F-7
' 1851578-06
APPENDIX F (cont'd)
' The pipe which is the source of the ponded water near Jamboree Road should be maintained such
that it feeds all water to the pond area Additional sources of surface water along Jamboree Road
' should be conducted away from the site via closed pipes, in order not to provide any new sources
from offsite. Excess water in the pond area should be conducted away from the pond by means
of lined drains or closed pipes, in order to reduce the possible sources of infiltration.
' Subdrains should be installed at the base of the stabilization fill key along John Wayne Gulch,
consistent with good geotechnical practice.
' Roof gutters and downspouts should be installed on all buildings, and should transfer runoff via
closed pipes to an approved storm drain system. All landscaping should be designed and
implemented to maintain a 2 percent fall to approved area drains, which transfer runoff via closed
pipes to the storm drains. Ponding of irrigation water or rainfall in landscaped areas should not
be permitted The use of drought -tolerant plant mixes should be encouraged, especially for
common areas under the control of the homeowners' association.
' Due to distinctly different characteristics of diatomaceous and non -diatomaceous materials on the
site, grading operations should be carefully monitored To the extent possible, selective grading
should be performed using terrace deposits around subdrains and in the bottom of keyways and
less permeable materials for the cap. Thoroughly mixed blends of these materials can be used for
the cap, provided their suitability is verified in the field by additional testing. The standard
' compaction criterion (90 percent of maximum per ASTM 1557) would apply to all but the
predominantly diatomaceous materials. For predominantly diatomaceous materials, a modified
compaction criterion would apply, subject to final approval by the geotechnical engineer based on
field performance.
J
I
F-8
TABLE F-1
Results of Laboratory Permeability Tests of Fill
Sample/Description
Compaction
Permeability
LB-2 Bag 1
90%
1.62E-1 ft/day
LB-2 Bag 2
90%
2.28E-2 ft/day
LB-4 Bag 1
90%
2.11E-3 ft/day
509b LB-2 Bag 2
50% LB-4 Bag 1
85%
1.04E-2 ft/day
50% LB-2 Bag 2
50% LB-4 Bag 1
90%
6.07E-3 ft/day
25% LB-2 Bag 1
75% LB4 Bag 1
90%
5.02E-3 ft/day
Notes:
LB-2, Bag 1 is composed of Quaternary terrace deposits (Qt)
LB-2, Bag 2 and LB-4, Bag 1 are composed of Tertiary Monterey Formation (Tm)
I
i
J
' APPENDIX F - TABLES AND FIGURES
Table F-1 - Results of Laboratory Permeability Tests of Fill
Figure F-1 - Index Map
' Figure F-2 - Packer Test Layout, Hole No. LS-1
Figure F-3 - Packer Test Layout, Hole No. LS-2
Figure F-4 - Packer Test Layout, Hole No. LS-3
Figure F-5 - Packer Test Results, Hole No. LS-1
Figure F-6 - Packer Test Results, Hole No. I.S-2
Figure F-7 - Packer Test Results, Hole No. LS-3
Figure F-8 - Interpretation of Multiple Pressure Packer Tests
Figure F-9 - Steady State Ground -Water Table Along Section 1-1'
' Figure F-10 - Steady State Ground -Water Table Along Section 2-2'
Figure F-11 - Steady State Ground -Water Table Along Section 3-3'
1
�1
II
I
�o
I
a
Project No.
1851578-04
Scale
tdOT TO SCALETO SCALE
Eng./Geol.
OP/RM/BRC
fffl
Drafted by
LAF
Date
8/9/95 FIGURE NO. F-1
J
1
I
1
1
I
1
7
I
11
-
-
D,
/aPPyROX, rIEL D� D6NS/riEs: � '-'�
I
�
_'�
' I CuTrrn�Cl, 17ES�RIIPT%o/JS; I I I
�/1
!q
li
I
II
II
I
I!
�.IItl1
'/O'_!
I I I I
Y_ .72�y
I I
ilL/0�L
I
!
!
I
t iYl
I �PhY�
/
y.l[tLvl��
1
,
!
7
I
El
I
I
I
•_ I
q�'j
1 II i ��L
%
„'� ']•
Bro�wTn
J-/�� �/w:�ll�h
I Rrl? I .ZF,cf
cl I slnn�)�
,r}�.�,<S
_' I IE
tea,
r
n I e.
I
1
j
I
i
$roc.3v1
i�W
I�I,wfe
5!i!J—ois'f
si
' s
ft
s-j ±
c�sg0
IIII
II
.i�
Tem!
&-'o
I
I
I
!
I
I
I
Ira
! I I !
I
! I
IT'// �veo
J
PACKER TEST I-A`/ovT
Project No. 85iS7d ob
Project Name Newao,4& ao,4
Hoye # LS -t
Engineer OPIRarc M%U�J
Date `1/13/R6 Figure No: Fz
Tes{ed 1800 691
ILI
I
1
I
1
C'
7
11
1
1
LJ
1
' II
IIII111 ilk
II
I!+
fCN7TT��'�ESC�PT!
, `I
Zo
_ 8rnwn - 61�cE _san
a/
��
: Du:7� raven
✓ I
I
L; I
Tq,n O iA'tl e I wi
'Doy (I
!. 1
I
11
--�—
_,
-E—
f
"�I� h-nick
I!�
I , I
JbaL-
, Tp-I
P�bk tib�,.
Project No. /
'PAGKEt? TcST LAYOUT
gwpocko-
Project NameNe�orlei Nora-h I lU�l�u JI
Engineer OP/RM/'Bfr-
yoLE N LS -2
Date ±LMLI4 Figure No. F-3
Te-4a 1800 691
I
1
I
I
1
I
p
1
17
,
! ' `'''
� T APPR�x, r'/LLD ,17E 51T1tS: !
''
---�—•
--'—I c aiTri�4—DEsc�t�PTioas%----T—.
f�rnwy,-.J!Ylz
'5-f 4o
i7d? pC�_ 1
i�
IS
j,
li
,
—
3
- 2• -
i ,
to •
�
I
sT- —
I ! I
fI—
I
G
I
G O�11I
n
Cu�oine
Sri+
�SYWL�_•
e
I,,._ZQ_,_
i
.. .._
. _.!
. _�
'
_,
_I
I I !
'FacKER Tts7? LAYOUT
Project No. /85/5'7B-06
Project Name AyporaP Noryll
.NpI-E # LS-3
Engineer !�P/Rr44 w
Date4ho-alOYS Figure No. t-4
jeo-4 1800 691
I
1
I
I
I
H
I
f_ I
I
u
H
I
--�-1
it
tl!€I
'I lip€!1111'I'i
!
'•
� i I�
i
l! i
i I
I!
i I_
. i�
11i11
I It
€€i11!!I!11€li!I
—II
I
I
IIII
i
I
i
I
I
_i
_Q T�
I_'
(
I €
!-
! I
! I €
I/ I
Iv
I
€
LI
l
!
I
l
I
I
I
II
I'T
IJ
)
I
I
€
I
L
I
I I
I
�
I
!
€ I
I1—
I
I
;Pke-5s
C4
I
CP
si�
,
I
I!
I
!
?AcKF.R TrST R£SLIL75
Project No. /ffTIT 78 •o
Project Name New�oir Na�fh III Ilul—Ii
L 5-/
Engineer bP/Rm/B�c
Date 9/i3 MC Figure No. F•5
%shed 18013 691
I
1
1
1
1
1
I j
1
1
I
1
1
0
1
1
1
1
n■n■
��
niu■
N
_
C■■■
■■■■■■■■
■
■
■■■■■■■■
Nunn■/J
/1■r�m■
N■n■■■■ri21■■■■■■■■■N
■■■■N■%I■■I�
�■■■■■■N■
■N■■
�II■■I
W■■■
NNI�/
■
■■n■■
NoWIN�I►\■/■N■■■■
�■■■■
■IIUW■■■
NONE
■
■
N
N■r�MAIN
N
■i��n©
i
SO
■ON____
�i%■n■■n
i� ■
-
a
e
�
N
■
■
"
i■ii
■
■n
iii
- � A
Project No.— I S516 Project Name
kC-Lls
,. - :.. 691
I
I
I
1
I
I
I
n
L
1
,ilf
IIII
��
�iil
flit!
!Ilf�
''
-
1I
0frd'
I
I
-�r"'"
'
• .SL�d
i—
1 '•
�
t
lal!—�!
-I
I jZ,
�Te�
I•
I!
1
i
se
I
I !
!
I
!
I
FT
lI_
I
I
'!
?o
I
i J
I
3b
I
I
I
i 4b
5v
I
LW
�jl
+
I
+
I
_
Cz 41a
RE
y
i PS
i
it
I
III.
III
I
pAGKER TEST 'hESULTS
Project No. 185iS78 •ob
Project Name1.lew�/•le. Nor+l
TIM
,f 01—C 4 L5 _ 3
Engineer OP /Rm /s2c
Date Jio•4/u/45Figure No. F-7
1eded 1800 691
M M m m m m m m l m m M M
Practically
impermeable -
no intake
Very permeable -takes
capacity of pump- -
no back pressure\
O J\
•
AMENNS
POPErMINNE
Packer broke loose -
took capacity
Plugged tight with no
measurable intake at
maximum pressure
EFFECTIVE DIFFERENTIAL PRESSURE, Ib/inz
Fiounu 10-9.—Plots -of simulated, multiple pressure, permeability tests. 103-13-
1478. -
Manual (A Water Resources
Probable conditions represented by the circled numbers on figure
.10-9 are-
Q Probably `very narrow, clean fractures. Flow is laminar
and permeability is low with discharge directly proportional to
head.
0 Firm, practically impermeable material; fractures are
tight. Little or no intake regardless of pressure.
® Highly permeable, relatively large open fractures indicated
by high rates of water intake and no back pressure. Pressure
shown on gage due entirely to pipe resistance.
Qi Permeability high with fractures that are relatively open
and permeable, but contain filling material which tends to expand
on wetting or dislodges and tends to collect in traps that'retard
flow. Flow is turbulent.
© Permeability high, with fracture filling material which
washes out, increasing permeability with time. Fractures prob-
ably are relatively large. Flow is turbulent.
QQ Similar to Q but fractures are tighter and flow is laminar.
QQ "Packer failed or fractures are large, flow is turbulent. Frac-
tures have been washed clean; highly permeable. Test takes
capacity of pump with little or no back pressure. . ...... ...__..
Qs Fractures are fairly wide and open but filled with clay
gouge material which tends to pack and seal when subject to
water under pressure. Takes full pressure with no water intake
near end of test.
0 Open fractures with filling which tend to first block and
then break under increased pressure. Probably permeable. Flow
is turbulent.
110.00
100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00
AQUI VER,INC
QuartitativeEnvironmentalHydrogeology
Figure F-9. DUPUIT ESTIMATE OF HEAD
NEWPORTER NORTH PROJECT
Section #1, SE -NW
0
O
O
0.0 , OIM
Note: Estimated seepage
o, ° °
a
where heads are above the
10.0 o
profile line.
g.
0
�'�•Q
o
'°
a o
o
.... Pond Only
°
qo
o Maximum Irrigation
o Conservative Irrigation
Profile
o,°
°
c, o
a
0
0
.o
•g
100 200 300 400 500 600
Distance Between Boundaries (ft)
700
11839 Sorrento Valley Rd., Sufte D, San Dkgo, CA, 92121 Ph. 619 794.2307 FAX 619 794.2310
110.00 -
100.00 -
90.00
80.00
70.00
q� 60.00
C
50.00
40.00
30.00
20.00
10.00
AQUI-VSR, INC.
Quantitative Environmentat HydrogeoloV
Figure F-10. DUPUIT ESTIMATE OF BEAD
NEWPORTER NORTH PROJECT
Section 02, E-W
�O8
^OQOOro�O00
o•0 0
p
OO
o• ° o
o
'o
°o
q O
0 01
Ct
000.°o
o
------Pond Only
Q
o Maximum Irrigation
o Conservative Irrigation
°
no
o• o
�0
Profile
0
00
Note: Estimated seepage
where heads are above the
.4
profile line.
0
100 200 300 400 500 600 700
Distance Between Boundaries (ft)
800 900 1000
11839 Sorrento Valley Rd., Suite D, San Diego, CA, 92121 Ph. 619794.2307 FAX 619794-2310
i M t ii i i i i i
AQUI--VER, ING
Quantltative Envrronmentat Hydrogeology
Figure F-11. DUPUIT ESTIMATE OF HEAD
NEWPORTER NORTH PROJECT
Section #3, E-W Profile
110.00
o °p
op O
o °000
0.00
O
°OOo
p
°O
oOOo
p-o °
0.00
°
Op
°
a°a
°o
0.00
p'°
°°o
op
0.00
a
°
O
�%
O
------Pond Alone
°o
0.00
b�
o Conservative Irrigation
p
o
10.00
°
O
o Maximum Irrigation
*.00
Profile
n
(t
II
10.00
Note: Estimated seepage b
°
where heads are above the
O
!0.00
profile line.
10.00
0
0.00
0 200 400 600 800 1000 1200 1400 1600 1800
Distance Between Boundaries (ft)
11839 Sorrento Valley Rd., Suite D. San Diego, CA, 92121 Ph. 619 794-2307 FAX 619 7942310
I
H
E
p
1
E
1
1
1
lim
APPENDIX G
LEIGMUN AND ASSOCIATES, INC.
GENERAL EARTHWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING
Table of Contents
Section
Pepe
1.0
GENERAL
G-1
1.1 Intent
G-1
1.2 The Geotechnical Consultant of Record
G-1
1.3 The Earthwork Contractor
G-1
2.0
PREPARATION OF AREAS TO BE FILLED
G-2
2.1 Clearing and Grubbing
G-2
2.2 Processing
G-2
23 Overexcavation
G-3
2.4 Benching
0-3
2.5 Evaluation/Acceptance of Fill Areas
0-3
3.0
FILL MATERIAL
G-3
3.1 General
G-3
3.2 Oversize
G-3
3.3 Import
G-3
4.0
FILL PLACEMENT AND COMPACTION
04
4.1 Fill Layers
G4
4.2 Fill Moisture Conditioning
04
4.3 Compaction of Fill
G-4
4.4 Compaction of Fill Slopes
G4
4.5 Compaction Testing
G-4
4.6 Frequency of Compaction Testing
G4
4.7 Compaction Test Locations
G4
5.0
SUBDRAIN INSTALLATION
0-5
6.0
EXCAVATION
G-5
7.0
TRENCH BACKFILI S
G-5
7.1 Safety
G-5
7.2 Bedding & Backfill
0-5
7.3 Lift Thickness
G-5
7.4 Observation and Testing
G-6
3M4%
LEIGHTON AND ASSOCIATES, INC.
GENERAL EARTHWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING
Table of Contents (Coned)
Standard Details
A - Keying and Benching Rear of Text
B - Oversize Rock Disposal Rear of Text
C - Canyon Subdrains Rear of Text
D - Buttress or Replacement Fill Subdrains Rear of Text
E - Transition Lot Fills and Side Hill Fills Rear of Text
3M4%
t LEIGHTON AND ASSOCIATES, INC.
General Earthwork and Grading Specifications
1.0 General
1.1 Intent: These General Earthwork and Grading Specifications are for the grading and
earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical
report(s). These Specifications are a part of the recommendations contained in the
geotechnical report(s). In case of conflict, the specific recommendations in the
geotechnical report shall supersede these more general Specifications. Observations
of the earthwork by the project Geotechnical Consultant during the course of grading
may result in new or revised recommendations that could supersede these
specifications or the recommendations in the geotechnical report(s).
1.2 The Geotechnical Consultant of Record: Prior to commencement of work, the owner
shall employ the Geotechnical Consultant of Record (Geotechnical Consultant). The
Geotechnical Consultants shall be responsible for reviewing the approved geotechnical
report(s) and accepting the adequacy of the preliminary geotechnical findings,
conclusions, and recommendations prior to the commencement of the grading.
Prior to commencement of grading, the Geotechnical Consultant shall review the
"work plan" prepared by the Earthwork Contractor (Contractor) and schedule
sufficient personnel to perform the appropriate level of observation, mapping, and
compaction testing.
During the grading and earthwork operations, the Geotechnical Consultant shall
observe, map, and document the subsurface exposures to verify the geotechnical
design assumptions. If the observed conditions are found to be significantly different
than the interpreted assumptions during the design phase, the Geotechnical
Consultant shall inform the owner, recommend appropriate changes in design to
accommodate the observed conditions, and notify the review agency where required.
Subsurface areas to be geotechnically observed, mapped, elevations recorded, and/or
tested include natural ground after it has been cleared for receiving fill but before fill
is placed, bottoms of all "remedial removal" areas, all key bottoms, and benches made
on sloping ground to receive fill.
The Geotechnical Consultant shall observe the moisture -conditioning and processing
of the subgrade and fill materials and perform relative compaction testing of fill to
determine the attained level of compaction. The Geotechnical Consultant shall
provide the test results to the owner and the Contractor on a routine and frequent
basis.
1.3 The Earthwork Contractor: The Earthwork Contractor (Contractor) shall be
qualified, experienced, and knowledgeable in earthwork logistics, preparation and
processing of ground to receive fill, moisture -conditioning and processing of fill, and
compacting fill. The Contractor shall review and accept the plans, geotechnical
report(s), and these Specifications prior to commencement of grading. The
Contractor shall be solely responsible for performing the grading in accordance with
the plans and specifications.
G-1
3M4i
I,EIGHTON AND ASSOCIATES, INC.
General Earthwork and Grading Specifications
t
1
LJ
I
1
The Contractor shall prepare and submit to the owner and the Geotechnical
Consultant a work plan that indicates the sequence of earthwork grading, the number
of "spreads" of work and the estimated quantities of daily earthwork contemplated for
the site prior to commencement of grading. The Contractor shall inform the owner
and the Geotechnical Consultant of changes in work schedules and updates to the
work plan at least 24 hours in advance of such changes so that appropriate
observations and tests can be planned and accomplished The Contractor shall not
assume that the Geotechnical Consultant is aware of all grading operations.
The Contractor shall have the sole responsibility to provide adequate equipment and
methods to accomplish the earthwork in accordance with the applicable grading codes
and agency ordinances, these Specifications, and the recommendations in the
approved geotechnical report(s) and grading plan(s). K in the opinion of the
Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper
moisture condition, inadequate compaction, insufficient buttress key size, adverse
weather, etc., are resulting in a quality of work less than required in these
specifications, the Geotechnical Consultant shall reject the work and may recommend
to the owner that construction be stopped until the conditions are rectified
2.0 PreRaration of Areas to be Filled
2.1 Clearing and Grubbing: Vegetation, such as brush, grass, roots, and other deleterious
material shall be sufficiently removed and properly disposed of in a method acceptable
to the owner, governing agencies, and the Geotechnical Consultant.
The Geotechnical Consultant shall evaluate the extent of these removals depending
on specific site conditions. Earth fill material shall not contain more than 1 percent
of organic materials (by volume). No fill lift shall contain more than 5 percent of
organic matter. Nesting of the organic materials shall not be allowed.
If potentially hazardous materials are encountered, the Contractor shall stop work in
the affected area, and a hazardous material specialist shall be informed immediately
for proper evaluation and handling of these materials prior to continuing to work in
that area.
As presently defined by the State of California, most refined petroleum products
(gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that
are considered to be hazardous waste. As such, the indiscriminate dumping or
spillage of these fluids onto the ground may constitute a misdemeanor, punishable by
fines and/or imprisonment, and shall not be allowed.
2.2 Processing: Existing ground that has been declared satisfactory for support of fill by
the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches.
Existing ground that is not satisfactory shall be overexcavated as specified in the
following section. Scarification shall continue until soils are broken down and free
of large clay lumps or clods and the working surface is reasonably uniform, flat, and
free of uneven features that would inhibit uniform compaction.
G-2
' LEIGHTON AND ASSOCIATES, INC.
General Earthwork and Grading Specifications
1
I
I
I
23 Overexcavation: In addition to removals and overexcavations recommended in the
approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated,
spongy, organic -rich, highly fractured or otherwise unsuitable ground shall be
overexcavated to competent ground as evaluated by the Geotechnical Consultant
during grading.
2.4 Benching: Where fills are to be placed on ground with slopes steeper than 5:1
(horizontal to vertical units), the ground shall be stepped or benched. Please see the
Standard Details for a graphic illustration. The lowest bench or key shall be a
minimum of 15 feet wide and at least 2 feet deep, into competent material as
evaluated by the Geotechnical Consultant. Other benches shall be excavated a
minimum height of 4 feet into competent material or as otherwise recommended by
the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also
be benched or otherwise overexcavated to provide a flat subgrade for the fill.
2.5 Evaluatio /n Acceptance of Fill Areas: All areas to receive fill, including removal and
processed areas, key bottoms, and benches, shall be observed, mapped, elevations
recorded, and/or tested prior to being accepted by the Geotechnical Consultant as
suitable to receive fill. The Contractor shall obtain a written acceptance from the
Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the
survey control for determining elevations of processed areas, keys, and benches.
3.0 Fill Material
3.1 General: Material to be used as fill shall be essentially free of organic matter and
other deleterious substances evaluated and accepted by the Geotechnical Consultant
prior to placement. Soils of poor quality, such as those with unacceptable gradation,
high expansion potential, or low strength shall be placed in areas acceptable to the
Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material.
3.2 Oversize; Oversize material defined as rock, or other irreducible material with a
maximum dimension greater than 8 inches, shall not be buried or placed in fill unless
location, materials, and placement methods are specifically accepted by the
Geotechnical Consultant. Placement operations shall be such that nesting of
oversized material does not occur and such that oversize material is completely
surrounded by compacted or densified fill. Oversize material shall not be placed
within 10 vertical feet of finish grade or within 2 feet of future utilities or
underground construction.
3.3 Import: If importing of fill material is required for grading, proposed import material
shall meet the requirements of Section 3.1. The potential import source shall be
given to the Geotechnical Consultant at least 48 hours (2 working days) before
importing begins so that its suitability can be determined and appropriate tests
performed.
ItNI
3OX495
' LEIGHTON AND ASSOCIATES, INC. 1851578-06
General Earthwork and Grading Specifications
' 4.0 Fill Placement and Compaction
' 4.1 Fill Layers: Approved fill material shall be placed in areas prepared to receive fill
(per Section 3.0) in near -horizontal layers not exceeding 8 inches in loose thickness.
The Geotechnical Consultant may accept thicker layers if testing indicates the grading
' procedures can adequately compact the thicker layers. Each layer shall be spread
evenly and mixed thoroughly to attain relative uniformity of material and moisture
throughout.
4.2 Fill Moisture Conditioning: Fill soils shall be watered, dried back, blended, and/or
mixed, as necessary to attain a relatively uniform moisture content at or slightly over
' optimum. Maximum density and optimum soil moisture content tests shall be
performed in accordance with the American Society of Testing and Materials (ASTM
Test Method D1557-91).
4.3 Compaction of Fill: After each layer has been moisture -conditioned, mixed, and
evenly spread, it shall be uniformly compacted to not less than 90 percent of
' maximum dry density (ASTM Test Method D1557-91). Compaction equipment shall
be adequately sized and be either specifically designed for soil compaction or of
proven reliability to efficiently achieve the specified level of compaction with
uniformity.
4.4 Compaction of Fill Slopes: In addition to normal compaction procedures specified
above, compaction of slopes shall be accomplished by backrolling of slopes with
sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods
producing satisfactory results acceptable to the Geotechnical Consultant. Upon
completion of grading, relative compaction of the fill, out to the slope face, shall be
at least 90 percent of maximum density per ASTM Test Method D1557-91.
4.5 Compaction Testing: Field tests for moisture content and relative compaction of the
fill soils shall be performed by the Geotechnical Consultant. Location and frequency
of tests shall be at the Consultant's discretion based on field conditions encountered.
Compaction test locations will not necessarily be selected on a random basis. Test
' locations shall be selected to verify adequacy of compaction levels in areas that are
judged to be prone to inadequate compaction (such as close to slope faces and at the
fill/bedrock benches).
4.6 Frgguengy of Compaction Testing: Tests shall be taken at intervals not exceeding
2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment.
' In addition, as a guideline, at least one test shall be taken on slope faces for each
5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The
Contractor shall assure that fill construction is such that the testing schedule can be
' accomplished by the Geotechnical Consultant. The Contractor shall stop or slow
down the earthwork construction if these minimum standards are not met.
4.7 Compaction Test Locations: The Geotechnical Consultant shall document the
approximate elevation and horizontal coordinates of each test location. The
Contractor shall coordinate with the project surveyor to assure that sufficient grade
G-4
3030.495
LEIGHTON AND ASSOCIATES, INC. 1851578-06
General Earthwork and Grading Specifications
' stakes are established so that the Geotechnical Consultant can determine the test
' locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal
distance of 100 feet and vertically less than 5 feet apart from potential test locations
shall be provided
' 5.0 Subdrain Installation
Subdrain systems shall be installed in accordance with the approved geotechnical report(s),
the grading plan, and the Standard Details. The Geotechnical Consultant may recommend
additional subdrains and/or changes in subdrain extent, location, grade, or material depending
' on conditions encountered during grading. All subdrains shall be surveyed by a land
surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time
should be allowed by the Contractor for these surveys.
6.0 Excavation
Excavations, as well as over -excavation for remedial purposes, shall be evaluated by the
Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical
plans are estimates only. The actual extent of removal shall be determined by the
Geotechnical Consultant based on the field evaluation of exposed conditions during grading.
Where fill -over -cut slopes are to be graded, the cut portion of the slope shall be made,
' evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for
construction of the fill portion of the slope, unless otherwise recommended by the
Geotechnical Consultant.
7.0 Trench Backfills
7.1 Safe . The Contractor shall follow all OHSA and'Cal/OSHA requirements for safety
of trench excavations.
7.2 Bedding and Backfill: All bedding and backfill of utility trenches shall be done in
accordance with the applicable provisions of Standard Specifications of Public Works
Construction. Bedding material shall have a Sand Equivalent greater than 30
' (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and
densified by jetting. Backfill shall be placed and densified to a minimum of
90 percent of maximum from i foot above the top of the conduit to the surface.
The Geotechnical Consultant shall test the trench backfill for relative compaction.
At least one test should be made for every 300 feet of trench and 2 feet of fill.
' 7.3 Lift Thickness: Lift thickness of trench backfill shall not exceed those allowed in the
Standard Specifications of Public Works Construction unless the Contractor can
' demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the
minimum relative compaction by his alternative equipment and method.
G-5
3=495
1
LEIGHTON AND ASSOCIATES, INC. 1851578-06
General Earthwork and Grading Specifications
7.4 Observation and Testine: The jetting of the bedding around the conduits shall be
observed by the Geotechnical Consultant.
G-6
3M40
PROJECTED PLANE _— --
1 TO 1 MAXIMUM FROM TOE —___ _-? --- FILL SLOPE
OF SLOPE TO APPROVED GROUND ---?_ -- 4 REMOVE
— �= — UNSUITABLE
NATURAL—_�=----y� 4]'—TYPICAL MATERIAL
GROUND \
2' MIN. _1 j'so mm.
KEY LOWEST BENCH
DEPTH (KEY)
NATURAL
19' MIN.
LOWEST BENC
2' MIN.
KEY
DEPTH
CUT FACE
SHALL BE CONSTRUCTED PRIOR
TO FILL PLACEMENT TO ASSURE
ADEQUATE GEOLOGIC CONDITIONS
OVERBUILD AND
TRIM BACK,
DESIGN SLOPE
PROJECTED PLANE
1 TO 1 MAXIMUM FROM
TOE OF SLOPE TO
APPROVED GROUND\
2' MIN. 15' MIN
KEY LOWEST BENCH
DEPTH (KEY)
KEYING AND BENCHING
HEIGHT
a' TYPICAL
PH BENCH
HEIGHT
REMOVE
UNSUITABLE
MATERIAL
CUT FACE
TO BE CONSTRUCTED PRIOR
TO FILL PLACEMENT
NATURAL /
GROUND /
UNSUITABLE
MATERIAL
FILL -OVER -CUT
SLOPE
CUT -OVER -FILL
SLOPE
For Subdrains See
Standard Detail C
4' TYPICAL
BENCH HEIGHT
BENCHING SHALL BE DONE WHEN SLOPES
ANGLE IS EQUAL TO OR GREATER THAN 5:1
MINIMUM BENCH HEIGHT SHALL BE 4 FEET
MINIMUM FILL WIDTH SHALL BE 9 FEET
GENERAL EARTHWORK AND GRADING
SPECIFICATIONS U
STANDARD DETAILS A u
4/95
FINISH GRADE
SLOPE
FACE
01 ►
__ _____ _ _ ____ ________-__ =_
-
___ _-- ='— ___ _ _
_==- _____ __= __ __- ___-
: R --�=
--___- _______�____---
=_ _ '='OVERSIZE ____-
�� ==WINDROW —__ ____ ___
• Oversize rock is larger than 8 Inches
In largest dimension.
• Excavate a trench In the compacted
fill deep enough to bury all the rock.
• Backfiil with granular soil jetted or
flooded In place to fill all the voids.
• Do not bury rock within 10 feet of
finish grade.
• Windrow of buried rock shall be
parallel to the finished slope fill.
JETTED OR FLOODED
GRANULAR MATERIAL
ELEVATION A -A'
PROFILE ALONG WINDROW
JETTED OR FLOODED
GRANULAR MATERIAL
OVERSIZE GENERAL EARTHWORK AND GRADING
ROCK DISPOSAL SPECIFICATIONS l u iuu
STANDARD DETAILS B u
4NS
NATURAL
GROUND
-- ------ --------------------
- - - - ---
---------------------
COMPACTED FILL ----- -
BENCHING REMOVE
UNSUITABLE
MATERIAL
12" MIN. OVERLAP FROM THE TOP
HOG RING TIED EVERY 6 FEET
CALTRANS CLASS 11
PERMEABLE OR #2 ROCK
(9FT.3/FT.) WRAPPED IN
FILTER FABRIC
FILTER FABRIC
(MIRAFI 140 OR
APPROVED COLLECTOR PIPE SHALL
EQUIVALENT) BE MINIMUM 6' DIAMETER
SCHEDULE 40 PVC PERFORATED
CANYON SUBDRAIN OUTLET DETAIL PIPE. SEE STANDARD DETAIL D
PERFORATED PIPE FOR PIPE SPECIFICATION
6'(p MIN.
DESIGN
FINISHED
GRADE 10'MiN BACKFILL FILTER FABRIC
(MIRAFI 140 OR
2% APPROVED
M 3 EQUIVALENT)
20'MIN.
.NON -PERFORATED - 5' MIN.
#2 ROCK WRAPPED IN FILTER
FABRIC OR CALTRANS CLASS 11
PERMEABLE.
GENERAL EARTHWORK AND GRADING
CANYON SUBDRAINS SPECIFICATIONS
STANDARD DETAILS C
t
I
I
I
1
OUTLET PIPES
4.4, NON -PERFORATED PIPE,
100' MAX. O.C. HORIZONTALLY,
30' MAX. O.C. VERTICALLY
15' MIN.
-- BACKCUT 1:1
OR FLATTER
f:ff== -BENCHING
—=-------- t
/
\
KEY
----
DEPTH
\
.t l
=_ =__2°%MIN.-►
�
�_ _
/
t
2_ M
15 MIN.
��KEY
12" "MIN. FROM THE TOP
WIDTH POSITIVE SEAL
HOG RING TIED EVERY 6 FEET
SHOULD BE
PROVIDED AT ` FILTER FABRIC
THE JOINT - . ° (MIRAF1140 OR
o . APPROVED
OUTLET PIPE
�8% MIN.-. EOU IVALENT)
o
(NON -PERFORATED)
\ T-CONNECTION FOR
CALTRANS CLASS 11 COLLECTOR PIPE TO
OUTLET PIPE
PERMEABLE OR #2 ROCK
(31FT.3/FT.) WRAPPED
IN FILTER FABRIC
SUBDRAIN INSTALLATION - Subdrain collector pipe shall be installed with perforations down or,
unless otherwise designated by the geotechnical consultant. Outlet pipes shall be non -perforated
pipe. The subdrain pipe shall have at least 8 perforations uniformly spaced per foot. Perforation shall
be 1/+ to Ile H drilled holes are used. All subdrain pipes shall have a gradient at least 2% towards the
outlet.
• SUBDRAIN PIPE - Subdrain pipe shall be ASTM D2751, SDR 23.5 or ASTM D1527, Schedule 40, or
ASTM D3034, SDR 23:5, Schedule 40 Polyvinyl Chloride Plastic (PVC) pipe/
• All outlet pipe shall be placed in a trench no wider than twice the subdrain pipe. Pipe shall be in soil
of SE>30 Jetted or flooded in place except for the outside 5 feet which shall be native soil backliill.
BUTTRESS OR GENERAL EARTHWORK AND GRADING �
REPLACEMENT FILL SPECIFICATIONS I IULJ SUBDRAINS STANDARD DETAILS D �fw
4/95
II
'i
NATURAL
SIDE HILL FILL GROUND
FOR CUT PAD
/ FINISHED CUT PAD
A � j
-� _ -- c • t PAD OVEREXCAVATION AND
(Mlltj-'£ \ RECOMPACTION SHALL BE
PERFORMED IF SPECIFIED
BY THE GEOTECHNICAL
---- -- BENCHING CONSULTANT
TRANSITION LOT FILLS AND GENERAL EARTHWORK AND GRADING
SIDE HILL FILLS SPECIFICATIONS ��uunu�j
STANDARD DETAILS E
4/95
- SEE STANDARD DETAIL FOR SUBDRAIN
DETAIL WHEN REQUIRED BY GEOTECHNICAL
CONSULTANT
2' MIN. 9 FEET MIN.
KEY UNWEATHERED BEDROCK OR
DEPTH ....-�- MATERIAL APPROVED BY
THE GEOTECHNICAL CONSULTANT
CUT AND CUT -FILL LOT
REMOVE
UNSUITABLE
GROUND
MIN. 1
PACTED
------------
OVEREXCAVATE
.- •
UNWEATHERED BEDROCK .-
MATERIAL -.
THE GEOTECHNICAL CONSULTANT
OVEREXCAVATE
AND RECOMPACT
(REPLACEMENT FI
OVERBURDEN
OR UNSUITABLE
MATERIAL
t �
I
-t
�r-
1 -
-
�-j-a•
,
-
Tr
, -
-
1
_
� T*-
i1
-
-; -?-L�Y-
t' j l _
- +_-'-i
T"t' i
t l
_ 1-1-
. r+
I FT
';--I- 1
i +-*�
-�
�_
} -• -!-
I. +
- �
�Lt-
-t 7
{ r-
,-'�-
-'-
''T-,
- - -
-
i
-' ..1__
-
- -T -T•-
}T
-. r-r.
V 1
+-
1.1
I
-
I"�...-'�."-
?
i '
-
- -t. T-
�:
-
,7yI
- •
1
' YT
-._
-`�-'�"
' i
(-
I
�_?
I
.,,
.1�
.1.1
. 1 I 1
1
' {
I
1_�,.-
1 -
'
`i
--f-`
' -
.
•
-TY:y.
-
r 1'
- r
I
7
t^
!
,
•-,-
1--
T-;-
--t- ,
=L-
- i'
µi t
i
�.1T'--j
.�,
{-T-
t-T-'._
7r"T•
4
L
,Y
._T_,
.}.
I
1-�
._--+_
't"T'
_
_
- _ -
_''-_r_,
_
-�._.._r_.
1
,
,.�-•_
.
_yam
!
; I
-
'
+�
.L
'-'
i +-
-YF-'-
r-i^+-i
_'r _'__
..
'
-T �
'
..
--t-.7._,_
_l_'
T
r
-+--i-
1
..
;�
--"-'- ,
t L
-i-'_•-_1-.
-J_T.
'-F-._�
'
�_1�-_
��.L
r
_
t-'_-r�-
' i
!_'-+-_ri-T
,-1-Y-
1 '
1-
,
.�'ei
_
_ _
�L=:-..;-:
-r «_'_
i
'-*_ T_
_f-t.
-1_}...: -
-•--+-'-
I
r-'r
-i-'i--+
-i...
A-j--•--•�
'yr--0I,'{-
-t
Y
1 I
1
'"
r-'1-1-+-
-TT
�Y1--I..�._
P
_
I
-
I
_i-
+^
i
'�
•4.
'
-
'
!'1
-,'--t-�
t -1
y
_+.'
I
, I
^
I
_ _r
T
1
1
-
;
1
-FTC-
,
_
. ,
i_{.
h j• �-
-r 1
1
-•-1-_ }
-1 T-
_
+
+ t7
f ' -
--'r'-4
__i._
"-M-
-?-i
1.- �--
1
h- -
_'_�__i'.
--T { 1';
'F.'1_-L
;
-.-+-t-
7 i
---F
-r- -
j
--;-.-i_
+_.1.
..t�_11_
�--.t. „
?
_�-_r'.
_'
.'1"•
-1" _a_
_ 1 L
r
I�'?
�_ ^-
r
{ r
- -}'-
'1- __
'-1 -
r {
I
_1._
,
1_
i i'I
1
- r:
,
-
-
-
rr-I-,
'
._r_r_r_
-4. -''__-�__,
--E_
_i
r__�_• _
.t
.i_
,.
1
-�,
1-!.+
I
-t ,-
-
--
-t"
-1-?-
I �-
`I-"(-+-
--♦-I-
-'
,--L-i'-
f-j-
_
-r-
-1
--i•
_ _
y
-�T'}-
+.
-t-'
_ T
t-.
-+=:-r-
.T:
--.I-_..
_ t
j .:�
I
..;,-.i__
- , +-
.�=++---j
_I`.i-'-
-: .T
.� ,
'i. 1 i
jam"
I..--1---.«
-
;T
-'-
j
T-i----'..L
.1 ! ,
T'
.a-. i'
-+-�'
1-
1.
T_,
_L I 1
7'-_:T.._.'
_-
.•
.I
_.--
-_
�'�-'�-
t _'A-
-1--r'
,�_'
'' -�'
i..!-'I ."
I
`f.. i_
r
-+.•
7
'
�1'T
-r-�.
+y
-,�{_'j-
HT
-;
l�
,
1
I
I I
'
.�.I
,
Y-�.Y-
+--r-_
�.7
_
�--+-r
-
I
;,--�-'
i 1-
!
j--'•-.r
t j_'f_
�-_r ,
!-J-..._
ty-i
_h�
I-t__',_-
��.?,
y
_'�" ��--
r-4-�
-Y-t�
_+-�--L
7
_J._+.,'I'
_;'
-�-*'i-'
_i-r-I-
-+-, I
!-
! T
--
7 T
-r I
1
r i
-i
L_;
-_ I
I-+-t
--
'-T '
!
r r - -
1 1 �1
�--•-
I-Y--` T'"
L
:
.1_f-»-_'
--" -
-.-_ice_
-'i'--r-i--
}-+-r-
-i' -
t't -
rl _
-1-t=-�-
_
'-t
'- •-.,,_
_ .--t--T-
i---'-
y.._�-
j
} -- - --
++ ^-
_
`r -t-
-5-�--
-Y-J-r
._
, r-7'
-±--F-I-
--j-'
t-i--T-'
' >._T
_ I r
_
-e'h' .l
_ . +T
_.-j _
.1.
_{_
_ 'I
�--•-"
__ __
-i .-;--:-..
-}.�
_
f.
_$_l.
'
'Y'-�-'
I 1
- - -
-j-{.
r_ _
i-::- -
I
-a
a-,
-
1
-
-
.�,-
'_'
-�-+-
- -
_
_ .
Ti--�-.
-
-
I
,'
L
1
-
yl
+-1
r
,
Ls
+-
T-
1
}
I
r-+-`-
+,-+
t
+-t-�
1T
1_t..r
+
I
.r1
T-
+
j
I '
-
'
t
-T
I
'
II 'I
-"-YT
r .
I :
r
I
r_
-. „_•-_
.•Tt-
_�.{...._
,_-a-
-
-T-r
r
,
-
i-�-I
�_ rr -+-t-
I ,
,
-T
-'--r-`
--_ _j-
-r-j�-?--
--rr
___
'
,-
1
--`�Y: T-
.., r
-i-
I -�-
iJ-.,____,��..i:.�__
'
-f. -:-�-_
_
-
- ' -+_-_
-r-+-`--'--•-
--.T_
T _
- -i-
�>_
_
_,-_1_
{ I ,
1
'
Yy
-
''-F
..t--1
-_
-_
'- -
�-i-:
t
.•-.
t
�---!-
.t ,
__t_�'_-r_
.I t
-
1
r7'.
_ 1
IY_
-
4
_'_"'_
- --;'-
_ yl �
-J'_y _"1 .-
_-h.-T_.� _,._:__T'
_ I.
j
'+_
f '
•.
r._�-_'_
'_
I
'
T-
:
Y._•,-T-
'
�
_
t
_ _r=
i_y
'� - .-
_ __
�
__
T-'t'
+1'-T�'
__ _
;-?--j'
---T-__
-h-•-_�
_ ..!
_
, '1-
1
_
'r "I-
-i--�
_
,
Y.--F..
- _'
--T r-r- i-;--
-r-_.-r-
_ t_ •_
__
{
_ _ :
r � �
-� i'
-'� -r'
-^--{�_
'
!
T-�-
�-}-t-
-1 I
"--""rr
1-
I
-4--i"r
I
_I
-
r
_r V...._
_�-�
1
i-,
+_t_.
__•_.L _1_
,
.T
__i_a-.,_
f__
_
.T
.
_T.1_•
_
TT_t.
T
_ _
r
_
. _.,
�Lir
-
T+
I
-
'-i -1- t
-t-1-,L
-r_y_
r
I
-+-:-.-'
^-1-r-
-#--'--1-
1
f• I'--1
- -+-
-
-
-r�--
-:.1-
'T-
+-
r-
r -
rt
'
Ft-r
- -!
-
_
!
T"-1!
-
-
-'
--
-!
-
1 ,
1
1
�
I�
T-'r-+
_.
T
-"'-
_�
, ,
-
� I
- -
�rT_
TT7
__
- �� I
_ _
_
_j _rT.
-+-+--t-
'
-1_ `-�
_1-a�
--t�
_
_�:
-T T '
1
1
-�--+-
1
- :-1'-''
--1_ �`
. {:-F
1 i
r -�_-
k
�.�._L
_ L�
!
.,"-, -
-.{_..}-
} I
--`-1-1-
I ,�
, ,
-r ,
,
•-T,
_•-✓-. -t_..
I-i--1_
.T
_1T_
I
1
_
-i?•
1
,
�_*.
_!_._
T1_.r
1 r
t
'_
«.
.✓-y--
_
-Y- -
_ �t
-r�ti:
1-T
,-t-
I
,
1
T- -r
-
-'-
!-V -
--- -
-
_1 _ I
, -r-
--'-'---+--1
_T -•-,
�t-+-
I-
I
-
-;-�-T-
-y-+- -i
,
i-j'
�--' 'i-
-Y _•_
i_.-_ I-
'
-
{
-, -rrt
:
-1 - -1-
�.
I_
-Y_
! ! -
-tTY
'-{
_,_
i
t y-
y
i-_ 11
1 �_
�.-Y-__
- _:
_ j
-r-t--�
.,-
_ i1
-� �-.
T ...
_+ y 1.
-r.--_(
-
;.
_!-�_;
_
^.�-'-
_-1_
J- i--_
I'-
' -'-f_
''-T-*-`
_L.
--r'{' k-
._r'-!-�
-T
-,_--
-i`
-
- -
, -r -T'
-
- -�'-�--r-�-
"-t'T'
-F--1'
i-
1
-
---�--I-
-
-
---
1 1
+•-i
,
-,-
.1
--
irr
r ,
-
1
t
- -1--
T• I
I
r
-a. _
r +
_ „-�-.
-
_ _
-' t
+
1_.r_
i
._+_
__
r
T�
^} r a
�
F
a
.j� _
_'
1
1
1
r +
1-}-I
r
-
I
J-+
�
i -t--1
1
11
r
L� F.
T
r-t-
, r
=
jlj-.',�'
+ F +
,
-!
I
_
r _
r i -
t
- -
t';
-+_
-_
, -
--
-_ _ _
�
- i
j _ _
,..�_
_
_
I_.
i
_+_ _!-_
�'�" +
_+.. T..
1.:.5__
-
r,�-r
'
.II
Y
t-
r
'
I
-
1
' _r _ r _
,_. r . • _-
1
T.}_ •_
r
I
- T_t ''
�. J
'�__I-_-
- 1
I
1- -i_
_ i-
t_i"_ L
T-' _-
ri'
__!. ' I_,•"'-
.'.Y-'
.
t _...
-a-1 -i-
-T--1-_J-
.. .-
I
p
r
t-'(�
-
{
i
_L__J
1-i
_ __
�_ _
_
-!-"�' .,-
_
-fir
'I
_
'
_ __?'
1 T
_ __
i I
_.y.,_
-+'+-
t
-
1
-
I
• -t-
-I-
I
r'
' ._+
T`
,.1'
•
r
y
-"''-_--
t
-•--'
, r
T
l r`T
•r
-r
TT
•-.--..
+ _ rY
I I
.
-t
I .,._
._T •.
,..i .1.
J-4-+
I
-,--1
J--t-'• _
^I-�
__f
'
j',1,11�'1,
t :_
+.a ♦.
.i1.1
_ ,
r
`'+
r
r_r_; _
-
___ _
+_•_ _
_ Lr
- ' -
_-,__,-_�_1
_+ 1.
-i -•-Y'-
{ _
I
_T"t._i'_
___+
._'I _.._
-
it -
- �
_+.. i.
-"t--i-'T-
'
-'fit--
.1 '
- _1 i-.1...-
t'+"
{
1 y
-+--�'-
I
-1- _�1_
+t
1
-r-+ -1'
1
I
__ -
r Ti-
J r
_ _ -r
-i..
1 - i- 7
'!"- -1-
{
I '
-'•-`r-'
1.
- - -
_ t
-
T
_I
_
-1-- _ _
r YT
I
t'T
_
, r
r
r
-�'_ -
r
_,_;-
•-_t_
.-..-1--r-
J -- ----r-
, +
- '1--
-,--`
-'-:_� --
.
-- --,.
_,_J
_,. t..-
l
1.
"1-
- -+-
T .i
--✓---
-
_+ ,
r
"- --�
-
- - f'
-•
i
-- --
_+ r'�'
- _ �
__ -'
�(
:'I '-
�
'�_i._r
_ _
-i
J
-
r
I {
' r-+_
,
T '
1
�
I
'TT"
r ,
f 1-"--t-�
r
1-
I-I-T.
•_ !f-
+`
, ,
r-+
r
+j-+-t�
+ -1-•
r
1
- +
T1
--'
r r
-t-t
r-
_ 1__! _
r-a
t
_• .- _
� �-1
, -'
I
r-r-
- i
+-r-k-+--ram.
♦ _r.
1 I
_+. _}_
t
--�--------'I--
r
..+. i
-r --1-'
_-_i_
-
r'--
-��-�-
r-7
.'
.i.. -
-
--
��
--
'�-,
-J--"
-a-'
--+-Ti-r �
- =-
•�-
t
-- -
,-T - -
,
+--r'.-
�; '
-1-r---1-1.
_?-
1 •'L--
_+. �
-' �
- -i
.i- �.
- _
-t-1 ' i�-r-
-'�_
I
_ _ -�
_ _'_r.•
�
i-•_
1
..fit-
_ _ _
.� r
I
.-t-"�-1_-
i
�'-rr
I
-Tr�_
I
�t
I
r
,•
--
-,--:. •
1 r'_
_'1
_.+�
r
_�_
1
-'1 -�
r
-'-
- i I
1 "?.��
7-
_.+_
','Y--"�
I
_...��._
J
_ " !_
_
-s_.?-
1 -
t
_ _-'L
,!'
'T".r- f _
- "-
.Y �_
I
-. -_
- _-.r
1-'!-
T-�
-V--
T-{
f -- -'
-
-"Y_
_
r-±--t
-=-r
--Jr-y-
-J--
--
_r
t-
-r
`
i
T
I
I
1
t
r
I
{-'1'--
:��'
-L"
-!
_-i--�-:
'
1 �r"
_-1
'_
_ _
rr Y
I__~. _
-r r +
•_-1 '
r
'_+_
_.-v_
�-";
a
-I- -._r_
r
: _-t
it
��
'�11+
`T
.t..i..l _,
-+-�
_ I"_l�__
_.�. t_ _
J-
_ �' -
__
_.�.y__^_
-1
__ _
:._}-_
I
_
_ ___ ..�
T�
_ _ _ -
1
i j
_ _ -
4
!
_ _ _
T
T-.T-
rI
t'�'�-
--rT
"T-'
_'Y"
T,
T !_'.-
+
_ V_
-1-+-'
__T
T
•-i-�_
{-i-T.
_}--'-.:_-
+---
Y_i-
_r _r
1
-�-_i.-�_1-"'-
y
♦
_ 'L-
t
'
_
� -r �
I
r
r
._'
,
-'
rr�
•
i.. I.
_
. + _
_t-
:.+
. -t-
rZT
-Y-
« r
, T. �- 1_
__L_F. �.
.-F-
i-
_+_.-, -
I
r
t
+ ._
I- �..�
_ L � -
� _----
- t -�-+
'
-i -
-•--' -+-
-' -�
�
f -
-
- - -
- .i- � f
-
• . t-
_
_J-
-1 _.I
� _T
•-
_-
_ _1 _ 1 _
- T.-L
-I ..
-
_
I
' 1-
' � _
.�
It
•1 -
1
1
. -,-Y-
�
_
_
_
1
I
I
-_--_
-'--
t
-I --_
,
1
, -~
�.i-•
-_ +
_ .y.
.y_
' _i-L
r !
-'- t--, _
--
1
!
r-
-J
'
�-
1
--'
- r
t
T. .t--�
{
-
-
-
I 1
--
--'�-_t-
.�-�-
y -{-
-
T
-
1"-
r
-
•1
I
.
-�'-t'_
-, 1
-t
1
. r
-t-+
; V t
L +�_ ..
-r ,
L .J - -
_•_y-'
r- i
r. +-1_
_.1 •
.• +.1_.
j r
_J-_l._+
a_ J_ r
.J-.+.r
._ 1_ V .,
r
__1-._
_,.._ .1
.4-
_t _J.
r�
.r..'_j.
{r
i
}-y a
.
r
, 1
ti_
I I
�
_
-
ice.
t
_
'
_ ':-.
"�
_ ^-i
f
l' J.
"t_T'1
.r'-' -_
_._
___r
--T-t`
-�•�-r-_
1
_J-' _
_ r_
I
r
-1-+'
.+_t-r
.L t..
_}-.
„
I 1
+Y-i_
--1"_1_
I
'
I '
r
+
I
r
i 1
T
'
1 _ •
{-r+-+-��"
... t r
.. ..
f
•
-
-"_ _. r
,yam.
--
..
_
_j.
•-
_
- - - - 1
1 r-z-
_ -
_ t
}
- F 1
I
- .._-
, _
-;• +�--
i
-�-'
--- -
_
-
-
.+
_tT
I
I
_4-
-
r
I I
I
• ,
r
I
r r
"1 r
r
'T
r-r
�-{
._r-t _y.
-�V_.
.1_T'
_1.1.t
_i-
_
�T_
-4-L.
I t
y
,-+'-r-
1
1
-r T r
-f .� -
[ 1�:-f
.T_...,--
-:--'_
_'-..-�
r r -1
"_._-+
I
_' '_
_. .I-
't-
_� ..--..
..1
-
-
I
' r-_r'_''_t
i- ; . _
- _
�:
_ -
_. -
_ _
- •- j"_
�.-...
r�
-
--' `
.-:
-1
+r? -
- L -
.,,.�-:_
-1:-.:-
. .�.
T I
_� ''
t !
_..-_I
�t ''rt'
.' �1
I
._,-,_"-
:
_• - -
r� T
' _-_•-
t Y
,
��.�.
.i` h
t
r ✓- ,.
+ r
?-' �-
"+-.-�-A._
:
.. 4---
+ -!
„�♦r
-
J
�✓ I
.--_. T
-i-•
+ 1-
r I
, ,
ri.y
T"'-
r
--•-
1 -
i`
- "•.yam
t-i_
---`- -r
.I_
I
_ •
r r _
__ __
• _ _
..
' 1-
t
_ - +
t t_? .i_
i -
_ _
T _
_i a_.
..' -
� ! -
:
,!,_i-.'-
r-1
Tl
a.}_�'.T�
y ____ •- �..'
+ ._
T-' 1
- -
-
1_,
1
+
_+_
!
_-__r_I
i �-
�.•_.
1
.j-__
T-t'.
_ _
17'T-
_ _
_ _ �1
L
_ __ J
;_.�
1
I
_"I_-{'. T-
_
:-t+
i.
t
_f_ l t_
I-
_ I
i
ti
`
-
_-4-"j--
_} •_.T _
I_
•�
_ _ _
t-t ,
, _
-r-
I
_ _ _
r r
T
-•� _I
-r_ -r._
�-
-r-+
_
_ -I-
1
__-f._ t-
1
- -
�.
1
-�"_.
-�*-
^_
T _
I
_ _
_ _
, r
.i _t 4
J
?"j
..T�r _
I
rra�nn _
"1:. 1
_r._}^
- ..-_
1
r
1 J i
.+ �_
1
-+-r _L
I
r
_ 1
1�
I ,-FT
-r- _. 1.
.1_., 1-
-T
+._ 1
_i _.
•i
_.�'
!
'
I
-t_-_-_i-
I
1
- r�
r
__f I
-!-t i
1
1 _.�
_ -J-
-C I
I
i_'-r_�-
'
_r.
1 1
I
_-�r_r-
y_ ,
"�'
'-•--
-r-' r
1
y
r
r
-
I�
,
`-i_
.r
,j...
_
:
.1-^-
-r
, __
_ .?_
•r
_ _•. i
.' ___
f
,-r'f----
_ x.:
-r�-f-'._
_ _.1 �__
r
_ ___
1 r
r_ _
r
_ .1_:-
- -'
i
-r.1._}_
L
-
_
__
_
r
ry- �
_ _
+ t
-�--
.J_r_
I_1
.�..
1
..,-r..�
._ _J-}-
�'
__ _ 1-
t
..'_. ..
-.....
r
T
•-.•_ _
t_
_:__.."
I I +
•_. _i.
_' _T_ r,
_ _ -
_.YET
__
__
r
i
--
r-r'--
-' -�-
-A -;`-
-Iy-�-
't-Y
Y {�
1
.-�-- .
r
-1 +.
1
..i•T�
.-.- e-
.}.r_�
:
r
r
_ �. _-F_
I
.. t
r
r
..�.. «.-...
.. :.
-0
_
___
I r
..J. .-.._
I'
i
I
i. _Lr
•-, r•_
T•_..
.:_ ,.
•t
., _
t
r
,
_
-i -•
_iV
r"
__ _
_ _ _
V
"
_
_ _ -r
,
r
_t
_ _ __
_
_
_ _
-F--4_T
_ _
.J
.'✓-
_ ,
_r ."
__ _
_
__ _
--Y'
QQf
_J V.
_-,-r
.
i I _
'
-{---
�I
©
I
I
.t
T--1-
i 1-
T-i-
•
,-,
i
r
, I-,`
,
t r-'F-
,
-f
,-r
I-
• -+ •-
+ •
r
•� -♦-'
1
__ T "t-
- `'1 ,. -
r._" - r
'
. y. �_..'
I
_._.._
. y...+.+ "
_+
• -
- -
_
i
-«
i
*-..
_
-•f-.:'"
_
- - _
-Tti
- - _
"♦--r,-
I
t1-
L-t+
- y
}
3
I -T',
`
I
, I
. 1T.
:
r
.
i
:--A-
r
-a'!- .
1-
- r
I
!
.t
r"i -!
�i
-I _{ - J
/
_,..:.1.
1.
t-,
f.•
_1
,._•
- _
- ,
�
'r
+;
-Y.�r"'.
r
(
�'Y - �_
_
i T
-'--a -
i
,
--y-'-
-t
1
j
- -
_� T
i•
-1
'-�-
.� - .1..
,
_r
I
•
-
.�
+
"I`
_i
-!' r
.
-
1
, r'
I
i
t �
,T-
_
-
I
-i- :+-
- - - r
I
+1-__t
t -+
-J
,--+
1 1 f
--+'T--+---1-
,
�
_+ -.
1
�_.-1__
t
7
7
Lam_
� ,
T_ - -
.._}_.
-1 - I.
l
_r_
--
T
__-.��--:.'�._
_
i
• . '
r
_ . A _
' t
- i
,
_,-_�. ..
-•
r r_
. I
-�--•-
_
r
- 1
_ �.._
- i
..1.
t
- r -r
_ _.�.J. ...
I
--
1
y_ _ __
- .4
_.i.
i
_ r_�'-'�
i•
-'I`
-
,,. _i _I
_t _
- --r� -
'
_ . -_r
_ _ _ ,-
- -'1--
.�
'
-•- L. T
-
'1
a"_.
t i
-j-+-�-
_
1
- - -
'~
_ _
r
--r-f--r.
_
t r
-:--` "'-
r
_
} {
-
1 (
_
-
rT -
_
_
�-
�.1
r
-;
�--
'
_
_
t
r
r
1
. 7-
I
I
,._
�
�
�
1 ..
_,
-i-
___
, _„
-.T .,'. _ __
__ _r_
_ -1 ___
i I�i
_
"T
-
_ }-,-.
1 ,
.Ti_
1
_
rT'-t
_ -
I
_ _ _
_ T
,
_ .1
T��
_�
-+-t�
I_-4--�--'i--
-
: 1
-a---F-
�--�-
r
:
7
+_
'.J.
I
r I
_J_.+ '-
�r y--
._I
,
.r
i
, 1--
-_
�-A--{-.r
7.:'
r
-t r 1
:
-. .T
rF`.
Tr
r
'T"
T r
_*_`
I
'.t
,.r T_
i
y..i _ t -
,
..�"
�•-}-I-.
"♦• r-.
I
"-r .i-
- +..:
J_t_•
, r
+-., :
„
._a--_
,
� +- L
-
-1 -r-Y FI
'I T.i.
-i- �
_?'
r'i T..
-T
Tr
_-i --
_-i_�
"'T--�-
T--t-r
- � -T-
i-r-
i _
`-i- ,
�"
_!"_
-'--*-•-
i
- r-r�
--
1--�r--+'-_T_
t
-` -- -
-_
._�
T_r'1
-i_+-
-
_�i-
-
-r•i-.
_
r
-�+
�
«-}
-
-�_
'
��..
r
--1 -'--+ -
'
-' . L- :-
+ , '
- -
r-}
:
-.' _�'...
, r
-• _
t fi
-�_+_1._
I
.,i--1- ._
_ „_
•___
.
}.
_
_
;
r
�
r-�-r
.
r
-
:
1
-
-
.T
-r-E'
-�'-t-
I,
r
I
T.-0_
r
_4_ --'-_
_ •�"
'i .'r.
_
_{' _
Y�"
T
+T-!'._
- , 1-_i
_; _
i
.T -
I�
__rT�"
-rJ
�,1--T
- �...
}
_.ti-
-i`I--"--
--i-�-i
-,
-j--i +
+"I
�-
�-F-�
-, 1
,-t
-l_
-T
,�"r�.1_+
t
_
_1
:
_ - - _
? j. r
1 --_
-1 ,
'
Tt-
}- _.' _
7
...
'1'
r
r t_.,.
r
_i .{..
--i-.{
�.__
;-•+--_1
-r
7 #
j '-
F
i T
+
i
1
T «-
,
.
I
=-4 -
,
-'-�-
-i-'
r-�',
'
�'-�
-- -
T_.t
- -
r
-
� _1-1-
_ r;
_
+
t-;
f`;
-`iT
tl
1
1
r
j
r,
1
t
._++----f�'
_�
- �-1 -I
t , -
�-t-r
,
T'1-
{ 'Y
-TI{
I t
I I
, T-t
1
r-•. _{ .._r
�
4, ,
I
"Y `(
r
1L_�
-1 f.
I
11 J_
-_l_S -
T I
1_ .
r
-'-'--+.
_.1.
.I-r.-
..J-_I_
1 fj)
- -
.T_.
_.i_
- Lr.},
(
-i. 1'
_-F .t._
{
-t __r _t .._d._'
_.«. i-
f
.rY..i
l _ +_
I
-
`} �-T.
1
_; :
T.
_i_.+ -
�
_.r
_ _ _
I t
- T.
i
-,. .
_r '
-r-..�; _.._
._!-_'-_"
i .+,
-_ _ -
i
=r, -. L-. _
- 1._
_ __ .1 _
=
; _'. -�
I 1-+-
-1--
1
�
-+r-T
.t-,-
-r_'
-t.
T. _r_
1
T, +
1--L-!
r-
+"_
_
"_tt_j
_t--� _
-
f_
_Y
_
_
__
1_ -
_
.�.____'•
r+�
_' --
7 r
-'
'r-rT--r--
,..
.«-'--�--1
i
'i,
r,
r 't-1
_
_ I 1
r • ..
__
I
- J
+
I _
I
- . t
-1-
,
-
-
• T
,
_
t i
j r -
i
,--r-
}
i
1
j
r
r
1
:_r
t-1
"}"'-+.
..J _
r- I'
.t _
.{- _i
i
i
-,
t r
r}
t ;
- {-
+`I ?
«
-
}
-
- 1
t
_
�I
-'
{
T --}T-
I
1
' �L`_ 1
1 -i"-•
l�
+-}-+-
I
"-{-
1Ir---t�-
r
-I f `
-i
I
'Jr _�"
+
_I'-t ' I
--i 1
t
,
.{.�
+- . -r
I 1, J
-r
}
f � +
: t �..
".
. t
I -
i.
T 1-
-t ,
} �-
- t -
}
y�
--1 i
'
' -t-
_ 1..
, -t
L t-'-
.1_
n-
-
t
-
� rT
T{--f-
T'T
.- 1
_ •�!.�
-r i
' ;.
I T,
-t-
I
=t�'t--
-
<
1
-
-
�_-1-t
..
�
1
- � 1
"
i
`I i- J-
�� r -
i
-
S -'
i-+-+'
_ _
r-
-
��
� 1
r
; y
-'--r-i--a-:�
T
j_
I
1
I
I •
'
t
�
I'
1 �
1
1
.+-
_
�
;
t_L_+-
'
_ .
i--�
I �_ 1
.-J-
-
. '`
I i
_.•-- .•
4-
-I-Y
�1_L
�-t--,
-rt_T_.
� .»-.
r
J-
I
-T�-T-
-'_t_
I t
-i-}-}�-t-'�
- , .1
�
-�-+-
- -i-
i' ,_,
-
- '' -
j-
1-
C 7"...
--r -
r'
-r f-
_' ,1 ++_ _-1'
}
-+. _�
_
a_... -' -
: -{
:
- --* -
t
a tTl
' -+
r T-
.•-_•- ,--
t
__ 1
I I
-'
I
-i._`t_.
� , -
r T �-
i
I
�' T 1
''1-T'
i., r.
..L �.. ".-
,�._I r -+t-
r'r'
..J_
I
'I 1
_ .r. I _'_
y
- -
.1
_
Y -'
- -
! 1
i
+i_.a
1 I
+
i � 1
- �
1_ J
I
-'- it'
T i �!
-+ _
•-�_'_t_-!_i
_+ -
�...+�-
`�
-F
.�'T_
„-�
'-
4' -
'
T- -
I ,
'-
�I
rT
i
I
'
I t
T-
-
-
j-
r r
-f--
i
1
-y--{--+-•_.
,
_ 't-+____
jam-
i
__�; -+..+-1_
-t-
_�-•-,-
1
-'. • --
-1-}-
I
- ! _'-_
r
---
._t
j{
- ,_�"._-_
-T'{--r'
-
-
!
'"1
1
y-
_
_ -
_ _
�-
.. -{'-
_}.!_
I
-+'-- 1-
1__
Ii
_ ..,:. 1_
,
�" _�'.
..y...+_
i I
_
{'-�-_L
_ ,
_Y._
t I
T _-F.__.'I--'
_ ..y -
LL '..1
. �.+_-1
Imo'
t I
_ _�-�---1._
_-"_t -
f
-I--i-
.L_'
t ''_
i'^'i
t
_ ,
_ --__
i.
-:
.••--r _�
j.
_.F_.,_•_
_y -_,
_{._.�_
_'"'ti-
_ .�
•i
---•-
:
}..+.
-
_ _
r-++{--;
_i
I__.L_:.
r -
_ "_1 __t_
--L_}
�-r.
1 !
"LT-::-.
- ,
-
. i1}
777
r 1
- �
�
-F
-"
-• -_
I I'
-I-a
�.
- -{."
- -1'{
�,,.
1-
_l
_
_i_l�
- 1
_ -
`
+
t--
-{•-
J-1
1 I
~1
-
.- t
I _ _
_.it
i-
L r 4
'
_ L__-'.
�
t
il
--I-r-•-1
;
_ -
i
1
- F
r
r
_
,r�TWT
�k
:
r
-�
1
_
�-�
- I
;
�
+__I__�
I
' '
i�
II
I
i-
-r
$�
f-I
-
't
i
-
---
-
{
�..
+
_L.a
i f
- ;
}-r
I f
-1-
+,1_
_ r"I {*-
_
f ;'_
-1-
-i ,'
- -
�
,._A.1
•._7.
_r I
4
;-�
11
I
!
._
I 1--i
-rY
I
----�
t�-,-..
_r,
I
__.-+-.�k.
_�_
r
�_---.-�.--y
-4-_
-
.-1-_I_.•..-
,
y
T_.'
- 7..
�'_ (-
r
_'{--�-
r
i t
-+ -�-
i
-
.�-.
t
��
r....
i?
' 1--_j
-I'
L._t
r -
�-�-+
__ .f-k �_
_.J....L_
�F_'_
r
_.I.Ta-
_t--_t"__
-i-I-1-
_
_ _
- -�-i-
_ _
., �
-.1-i-�._-1-1-.f
}
+
:i.
'
, ��
-r_T_.1_
_
.Lt_
__
t
_ ,
_r-i--�•
'
+ }11
-Y
Li 1_i
�
_
T+-�
-!
- _L 1
t
-
r
_
-+-
_ T.� I
-1- I -�-
_f
- --I--
1_-r.l'_
_ _
_r_
F
-i
i-_
!�
_L _
( .:_
_J__L.
I.
-�
�.�.
i..}
`•_� 1
_t-'_1-
+-L-
I I�
iTT
- =-�-
I
-�--+--F-
-' 1
t
r
- r--� -•
: .
i
_+
~ --j,_
_r:.-i
- -L-a--
1-L-
'
-•- ---
-I- •-
T-+
,
L �-'
y
-1
1_ •_
,
I-'-f`
I
-, _L-'t
.t_+
1�
I L '
-t_.._.1 _�-� .' 1-i.
"
-'
-f-.I
��
_
-F--,- �..
---1--
I
-f .,-r
1+
1
- .-'-.
-_--
-+-t "_
_
_ i_•+
-��.yI-IY-.
_.f.Y_+
_t--'_
-
_ .-I
-I'
_L.�
1
'
__
y'
_f.J_
I
t- -
+
-�'-Y ,
_
= '-1
_L
i
_ _L}
i
..;_..j._i. Y 1.
1 _-F--i--i" _a ..-. _., r. _}.
i
'
rj' 1..
_ 1.
3.1-
I
_
T
y--
-_�'i'-
T_
_"
T`lr
r -�--
'- T
_-
' t
•-
4-!'
-'
; A-
LL
L -
;-
1
i 1
_ _rL ..._
- �..i �-
, _ ,.
I
_1 i
L.
-F-�-_i--
!
-L .1.
1-:.
+.
_1_J-�
-:-
��.
L
._L
.�
"
.1-F-+-
._1 -
- - {" - - `
-1-
-`-
�i : !._
Ti
;-�--
-r-•t. _
- -i"--
{� .L_
1
--!
F I
I
f
}-;
_ ,
.
I
I
.,
.
lil
i_
-.'_ r'
+
.-:-
�--�
i
L .:- i
�--
- y.I- �-
-1- i-
-t-1
r_. • -'--
_-f-,--y
-
- _, ._I
♦ _ _
-_i
�-f-I
7-
r+-- F
1.
!-.,
- j.+
"r
+i-Ir--L._._
-,
- ~-
II -+--
r I
+-t-"`
!
L �.
1
t-�--�-
_ 1.+..
I
.
Y _ _ f _ _ _ .f _I _,
_ A. _,., _I� :
t I .. -i-.-%
I 1-L-'I---'-i-
'+-r 'I-
_'
,
y
' r
_ k.
.y--`
-I-,
r
-
L
- r
--:` -+
J' . _,.
!
.+' ..
_-T
f
I
_�
!
I
,
r . i_
4,
i -- r-x-
_
L `�
_ _ -, -
_;
+-i
1 , L
_
`
'
_
`rt r
y� J-.}
' I
-r f
+-_
. -
__�-
- ' •.
' 1 I
_
T,
-t
-f r'
�i
+-
-
_._t _,
,
- -�"___
i
y'-T_I}-
-i -L
.'�
- .--j
-�_
-'i-!�-
1
-i--'
I
-" -
'
-+-
+
_ _'
.r
.
_ _
_ '
_ _,
1
._♦.�_F
_ _, .J
`-Y
`-'--1-
r
.�_. ,_
--'-!--
r
'YL _i-
,_L
1
_
_T-
1
--+ J_
."L-.'
:
r
-I-'L_
r
r'
. ..: _
+'_t
♦_'J--J...a.
1-
"-�'_
y_ i_.
_+__ ._
r
-1-i
_t _r„
__-L
. (
t
!•~-
1
,
1_
1
_ __l-}.L
•`�-'-
1
--+-_I_ ,
_.__
-+-'+-'--
_1--.
__ _
.. _ _
:_.L.i. ..{--L_.I-
,
•-1_i -1.- ,L_ .1- -1. _;-*+'.4-
-•-_ - 1 1 1 '' _
T _i_.i-.+ 1. _ �.i•_.. .{
_
"t
"L- j 1
,
-- - ..
~W�__
- - L ' L-
,
,-�__
_..t'.�'
1
-'-„-i-
.1--•-r
_
t -i
I
-J"_•-ti-
.a_�,
-+--
'f
a
i"
I
ar
--t- -11
-L-
_ _
t
_
_y 1
I
-i-
-
'-
t 1
- �--*- --
- L_}_
1-
_
--
I.-
, -
"i--'
j_1-`
'- - �-r
+_-r-
+-;--r
-i-L
-*'F-LJ�1
'1�.-
1
,
i
1-�_'f_
-may.
' ' +-
.1-
_I-1_1
1
-
_
I
'--' _
.1_
-+-
' }_
�-"
' ; t
- •I_�-_ L-
k
_ �_-%I.i
I
I
r '�""�,^'_
(--
r'
r
,
-i-
_
-
(L _
" �.' �_
._ L--i -
, -
-+- 1
-y �.
1 --'-
- -T
.i.
-+-'r j-
r-;
--�J'--
-
_
_
-t
'-�-.i-
;__L_'
-
�
1-� +"-
i-!'-'
I Y-
-
-�_
Y
_.J_+t.
Y- .i_l
F
J.
. _,-.
t
f -{
}1�
~-� 1
�.•_
_ ,-a-;. �._. __i + .i ,_1-L_
,
.,
, t
t
�_,
1_.,
_i_1
,
',L.
_
�-i
, 4
I
^
1
I !
,
r'
.I
__�_'-".-i
T-
r
-,..
.._;..1._�
T
�...
i•_
T^ ,
_f_.' r--_'
I I
r
T
-i-
.1.-
1 L._.,
+ I�I
. 1-
•-
Y
r
_
+__
1 r
+
1
-:fi�'_
! r-
_l.
r +-
} _ ,. -.L. r
"t_"'"1'"F" -
�. f
i--{._ i._ -1- 1_•--1-,
ti.. _t .
°-F_
�'
*___
i
i }-t-
1
`F T
_ _I_'.i-+
_
�--�--
'_
_
.-.
-m 1
_
- I-
- - . _L -I-
' -
i r
. _-•----
L.,
-
_ -_ -
�_
_
-
+-
-_ _
-
- _,
.J _'
i ._
. !
.+
- ---�'Lr-`
_ ___ _
} -- 1
+-.-L__.....t
_ _
Lam-'
_��.:
__ _ t-
_
1
i-: _
�-' J.,
. _i _
I
�_ -t
3 _
-[- i
T_1_1__
-:. 1 ,-
'
_Y.. !"_•-.
I
_ _
:-1 1
-J I
�--t-
__ -1-_�-'-
-T,.
r-�'-1__
-
- -4-
-I
r
-1-44-
_
-
,{
.+--L-"i'�--''
--'i-1
-1-+ '-
I
-�
-F'{'
s. J
_.
��,
-r -1-r-'
`1. -a �_ -� _ - I
'i Y" T Y _r y'., .
" ,
�-
L `•
:
L
,_
!
ri-
---F-,
-.
-i L_'�
F---�
I
"-L ti-
-�T;
.1_--.'
-�-
1
--L-4
I
_
i
I
_
?-�+-
_T
T ,
'♦- a-
I'
ll-'
«-4--
'-�._
-.. -rt
- .
"1 _� +_
.J _
;'I--r _,
`t`
_'; -+'_�- _� T
__,_ r
.1. + I
T } -F-, - +' . _i_... j _ L..I.
J_ ' 4
,
1 }
-� i-
+
e0{ FI
_ , _
�j
-ReI
a
k £
}�
CY ` 1
l e -
_
4
- -777
-r -. -
1
-L_-:. +
T
'-+-
L
_' -'- _
f
+µ
4
_I .
_ _i-F
-+..� t
-1 {�
_ T_J-i
, 1�L- L
'
_ --L_ �
�. I �
�_
I 1
F
-r
I
-h-i-t-
'
1-
-_
-i
`i-
- ]�-,"
- 'L-
"i_
-}_ .
I!I_-}- ,-
"T-+
'.r
1 --L
T +-', I
_ 1 a .I
T
- I ,..
1 -
_I' :. L• 4.1_ • _ f t
+ _1 1 - �. I f
-f 1- -
'f T ,,. ..
i I
a..
_ L T-
._-* ,f- :
_{ _
-
i-
-
- { _
___
L.. _.
-
_ k
.
-
O
TL,
1
I
7
1
,
I T
� +',
f Y
i'. _t i
.� -;
-��._
_L
-1
i
+^
I
1
_
{'-
'
I
- •_
+
_- + ._
,-�_L.
_
T
_
_ _
, Y-
i
1
'�.i� _ 1
. +_
L-_.1
-
_ __
_ +- :_.
-
T,
•'
' -
_`
_i _
f -. 4 .._
!
__
- 'I
1
- i
L
1
.r.
_ _ +
__
_ __
_
t
I
'i
_
.rjoVm
1
1
1
r
t ,
�--I
�. +-'
L-I_1_
._i +..- �� _.
,-_r
7__`
-" •_+ .J. 1 --+-
.�-.
1 ,
♦
�1
�y'
T
I
1
i '_
p A
U�SV�-O
-
t
i'
-
- "i
- - - -
-
- -
-t
..1_'
_ __
i
- .L_F.1. _ _ -
- r'-- - _!_..
_ _
'
- - -t -
--
._I.-+.__+
"+_-I-
_�. �_
�y_
- .L
I 1.'1_
- {
L
I _
_
, �-
.
1
--1.-..{.
j_!_
�--I-, I
�_:._ 1
_
T
t
_-1
' -I
I
_
-
-r-1_t
-
I
'
- __
-..:.
F_ I
.- 1
-- -
J
Y
'-
-
+
.
♦
1
Q
.
I
_.j.
*
i f-
• -
_ ___
,_1
- _' ,
x
. . .
r
__.___ +.
_' �_
- I
11
-L r •
i
-}-j-1
-"!-+-,-
_,_.,_
{..7 .I_
_�_ .a_.
-;
_-L_-�_f_.
I
I
,
-1 -.i
_�-Y __r -F
I 1-r
!
_ __L_
1
1
-i-1_ .t.L '.� ! -1_
Y )-' t-
y
1 - - - -t -` -I - -4 - - - 1'
r t
-+1
�
i tin
'4
L - 1
T
_ _ _
��-J
- --
-`
- .
-L__.
.I
- - -
_�
�- _
-
_• J
- I
r el
_ • -
-
a F
_i _,-
_
-- :
- _
4
t
-i-
_ -
t r.-
1 '- 1
L _
�i _ +
_
, - -
; 7
+ r
-+
_ F
i
-T" - -
-
'- '
+
I t
- y-- }.
, ,
_r?'-r'
L-+
:: -
1
_Y-, �_
Qc1i
Wl
S
__
_
-
__L�
i
'}
- _
+ .T �
1
+f
_ ..i
_ _
_�-I--_
-I
_
_
-
1
T"'.I
'-�-
J
_ _
i- ,-
_
"+- + r _
_ ..
_
t -}.
..
L._.:
_. -r.
_. _,_+-
.! -1
T
.
1
_ -f J.. J. -
'r
_ P'
Y e li_
j+
_
j
TI
_ -
-_
-
l 1
t-i
_
L
_
_ '-y_
-1-i-
_
_ _ __
_
._
_- 1 --�
- .L
_ ._ }. -,
i.�
,y
_ -�
_�
j Y L.
,_
--1
L
'
•
_ _
_
`�-'
-
_ l_- rt..1_ 1 1-
,
--
Y�__L
±_
T
_� _ .
i_1 -
_ i
-L
__L•
1
r +
1
`-
1
.-+ .
i I-F
,'-- _ _
_r-t _ _
_
'-j-.
._
- -1
'-1
�
r-+'
'
. L
--
_ _.
T
r
;-
r
- : a.
1
1-
1- 1-,-.
+
I
-'
1 '
i
- 1-
- -
1
_ ,
__ -F• -1-1
Y"
i r _
- I - I
-r
r { 4 + , ;
r
-
t
- _
-,
'
I
!--r -.
-
-I
i-
' `
,- 1 _
- '
T +
-
t
I ' 1
Y - -
+
i
y ,..
-
+-
_�
_ .-1.
I
+
-. --r
1
-
T
fT
1
!.
r
;- I
-
-'I-+-
r
-I-'+--
'" -
-
- -� -
-:
_ .
1
' -''
-
'--
-
_
,
I
1
r
;
T „
T
+
: -i-T-
r1'1
-{-
_
ri
- �--
r
}
t
--
_..
+
1
-�
-+-
r
}-
'
L
!
1
ri
-
11
t +
..L+
~
,.
.l •_
"
+ 1 '
;
i
•
( T
. , I
-
i
L_I
.
_
-
-
+
-
-
,
1 i
-,
, ,
--r- i.
L _I-
T-
L _
�T
jl� '..
-
_L
_
'
-!-
+
-1-
L.l.n�
T
.4�
, ,.
L.•
'�
_ ♦
-I
1 -
•�
'�F�
L-
_
_.
' I __
L
i -
''
- { '
. '-T
+- ,
f I
"-' { J
J7 _
- y'
, y
, L
I
_ -
'1.
i-
1
•.y.+
•
1r_.
,_+.i
1 '
Li
I
_
+-}'♦
,
_'_ L
-
M-,-
_
I
.a I--:�
�. 1
� _
7
1 ~
'� t-� -
{
-1
-+--+-'_
'
.�_r -L_
I _, 1
+'•',-
.1__r r- '- -
f _
- - -1--
,'1-Y-
_ '1
r
- -
li 1. _r
, 'i- + }
i- µ - - - -----
I
1 _
'F •--� - L-F-
J
1
r t__
J '-�
+-
.w
'-�_ -
�
_
_
'y.7,�`
��
.;- -
_
- -
__
1-L.' L
-j--1 - -!'- -r-
I-�•+
1 -
-lv
-
-L' - -
1
1 L.�-
- -'L-
I--
_ _1
1._
1 1
_ I..._ _
'
_ _
I
-ri
1 _
_
_
-I
1-
-
-
__ _
L.,._
1
- - -
- --
- •-'
._
_�. _
_ _A _._
.,
-
-- -'i
- -
r
- -
- -
-1` �
_
_
_
}
+_r
....-
__.�!-
'
-r
-f
»-�
t
L-1.
'- -..
__L..k
.l_F._L
. .
_-L_�-
r
-1_4-:-
- i
T-�
_ I I
.. i__ -��..
I
..F_1 -
,_� I
I
.-
_
_.�
_ _ _1._
__J_
1y7J
:_ _
_,
r
_
-
1.
j..+rt
-i 1..
-r.
-T"
I I
-1-
y--1-
-
.J_
_ 1-
-
' '-I-t-
L.�_L
I
�1-1-.
_..+.....
mil-
i I
--.. �+
"_ ! -L- r
%
__.
_,
:-t r
J.-y-.•-
� __.,_.
_y.�.-L
;
_._.__.
«_. r._«-.
L_1 t
__ }_, _.
.r.j_
..-:.
I __L
..., _+.
r
�- I _L_
1+-.-
"` ---
_ _
_.:.
i
1 a J_
-
_ ._'- - _ _:
i
L :_
. -
1
_ _t_�
I
I '-'_
__ __.L
_ _
'_+- i
_1_i _ __
- - -
_ _ _,
--
_ *-=_.+
-1 ----
+_.� _
'/
_ _
y`" ' --,•
_
_
- -
t
_ _
-+--1
- -
_ ._L-.,_ I-
- _
__
_
-1 ___
'_
- _.
- _ • J-
-. I r
,.-+_
•-y--:_L
_ r I
--
L
--
- _
-
1
--�1-I-
-Li_i.
�1
II
.f}..
-
-Y
J._
_
+
'
r , �..
.,-i•_L.
.+ -,.:_
1 I
i_.1
1 �
,
;
I
i ,
i" - - _
'
--
'
__ --
-
-- -'--
--
i-:_ i
,+�
- .
r
-
_.-
r
�' -t
--1-.r �
•1_.-l.
_1.._-
t
'• -
1
1 I
'
--�
-
+- '
..-L._T_
i
«.-
't. ... _..
_.- ...
_.,. ,_,
- ..._
-,_J...1
{- -: -
r _i
_...--
_
-' ,. _-
- -
.. .: .. 1
+'
: -
_'_._
I i
- I .. __
..I .1-- `-
I
. - �---
-"'" J
..
;-^. -I"
.-'I i-
,
--: _ 1 --
r
,
+ -- :
, _
- -�
. 1
- -- -
- r - .4
��
- -
_ ��:.
..
•
_. i_.:
_
J --
+_
1 -.
4 ,
I
.L I
'
I
-
-.
1-
1
-- -
_.1_
.i -T _
I
_,..
I
1
Ii�LL
1
I
=Y- -
r
-
Y
T..;
i
1"
•
- - y
--1-'
'
1 - -
;
-L+
_
i _'-
;
J- ,.+
L r
,-.
L
-
'L
'._"-_-`
-
-
I- 1
1-�
. 1 L ' i
„�-r
-r .i
..
F
r
_�.,-I, _.
-�-_i_�
' {
. I
_ . , f•
, .
!
- I
,
- I - ,
-'
-x ;.
, l..
-
,
�_L. ,-.
-,.�--.:--.
-I
- F ii
_,. t
_J
_}
i-. -J
_L-ti- i--�-
i , ..-1--•-
-� i _
_l_'
} -
1
I__:.
L
'
'-
' `
r
-r
-1--ti-
., +.
_, ._
1
_.
r
'
- ,
-
-� -
L }-"
-- .- ..
_
,
_- .-..
,.
_ L-.-
i
i- ,_ _
J.1 .1 ._
L J
...
. -:-
-, ,
! _ •
.
-�
.T_1_- _ L __
- s :
_
�;
� - �'- _ _ r -. .
1 + - _
_
-
_
1 r
,y
.
,_ 1
I
-
1
r
_ - _ ___T.__
-
.. I 1
.., _ .{
L __
_...-.-
F f-�
+
_
�J
i ,
I
t
,
'
,- f
_
_. _.. -
��i
r..,..�
+
. -
_ ,
;
. _
_
f
1
_ ,-- -
- .-i
l_
--
-r
I
/i1
._
I.
L
�`�'
+
i
}
J
r
1
�
i
',
"I -I
,
t -,-
,. .1
.t ._
_i�_.t
I "t. -
+f_4"
_
t x
♦ _
'
-
T,
.; . _
,. , .
_
. --
I
- i
, ' {
t • 1
! -
+ _ .
4r
-r
1
- +_,
,-
r �-y
,
, -
r
_L -
i
'_ _.
-. y _ L
1
, i
T L + . - .
, (
L
- 1
_ - ,
T
.-.J-- { .-+.
_ L _
_
-,_
F : _
, +
I L
I
- + t- _I
'
'
_
I
i J
„
GG ep
i (:~•JI
i
'
}.! 1-
_L
-I-•
1 L
_
i
'�_..
..
.
1 1
j
`
I
h
1 LL
1 ,
.j-
,_
i'
+ _
,
•�
-{.
_ __
i
{
.. _. _ ,
L..
f
'
.- ,
-.._ 1
/�
-� ' - .._I"-
�
-+-,_ `
_.+-.._.. -
t
.._
T
_L_, ..
l -- -
I
-t--t + --
�-
I
_-
�--,- -I-- -
�r
i
+
w1l
_L
J
'
_
- - -t-
+ ,-
J ', -
+-i-�..
L- +�_
' I_ i, 1_.
r _
-,_L .}
i 1
- 1
r
1 r
-. '-_
_...r
y�
l+ F 1-,->
1
-1-L
-+-I-L
_�-+T
r
._._'i.
•
r
--+- �-
- +-- *-
I _
,
'-. 1--- -♦."_.
-___r
.+..�.-.-
1
_y_
I
r
_
__-'_-
'_:_
__• _
j
II
.
, -
♦
-'
, +
- -
{
- _
t-
L
- ., _-
ri
_
'
-
,
L, _
_J
.+. t
-_
_
'
y 1
-t_I_,
-f_ f•
_ -_
+ _
•-1,� L
y
-.I -t-1-
CI -_
- 1
-1
- _ _ -,`
L f 1 -{
-1� YI
:11
i_-_ _
""F
'
T -'-
}"
i
1-
_ L -
. '_
ti
1
-i
i.~_
_'
+_ - 1- iT?+.-
_+_ _ i
- I -_-��
T+-1
T + .L_
1_._i
1-�
T L
'-~
_
t _
A -
(,a
_L i
l-i-T''
i J--L_
.�-_`-�
' I'
7i7
.
i_. i
.
-
I
.
.,
1
t t
,
Q
'
j-:
- -r j�-4"-
-+'-I-�-
_ _
- --
-T
_ _ ,
i _
.-+. ♦_.
.L .-
�..1 ..
I _
-
1- r
+-,-1
-_�
_ _�J.
i }
-;
-
- --r`--r-
F
I
-1-.
.. .I
1_
-
i -�-
1
_+;
; r,
+.L
I
t -
/{ry
�}'!T"'
.LIB
Q�p�
O' Q�j
-s � Ja:
-.L.
i i 1
L..�
�- -
I_ jI _{_.
i'T'�-
_. 1-_-_}-1_T
.L
.1. I--i..
.
`y- I
* ~`
1 11-;
y_
-
-
; J -
,
' -
-� r
+-
1- - }
-� .
- ' _
- -
1 L -+-
+ .
-
_ t
_•__i_+.
_
i
__'Ir1
+-
'
-•-
-L-r-'- -�
_r}
-
- ",.:.�:�
.
L-:
-i_L r; r
, _
.ti _ 4-_
_� 1_
t }
-
r -1--�
+' f -Y-
-I T
-T
-r- +.
I
_.l I
+,.
r-
-
-L
_-. _._
--
�__
-
_
-
`+-•
-
_._ ,
_
_
_ __
k ._1
-
i i-
1
.
1
LLLL
_'_ -_
r r -+-
- i r , _ -
+T
- ,-
t -
_
__ _
'_ _
+ I
- - 1
S. _
+--`�
'- . --
`I
---,- - -
.
-. J
.. J
_I _
_
1 t ..
-,-
r' .-
4_1
+-a•
_
+ +
-• -
_y,. 1 ,
'r
,
- +
_L..I _
-."1
'
_ _
1
_ + r
*-
t
.
i-.
_r_.
,1 ,
t
�. _ ..L
+
!, .,
-I
-j..
r 1. +
- -
_t._.r...
t_r I
'
--
1 I -«
_;
t ,
�+--`
y_
1
1 _ 1
_ __
! ! 1
l - �.
,
I
I
-1--��-i
- "•--'
1
_,
_
L
, 4rt
,-
y T
r
r {
..
L
T
- t
t
.
,:
. y
_
-'- .-
_.
-, _
a _ .
_
L_`_i_•�
r
-y
-J. ,
i.L
+ -
I -
-+--i
T t
-
r_ i- -
1 -T
-'f-+ K- _
- _
_
,"_
- '_�
_
-'
!
_. ._
-.
r +
.J'
_.
,
�
L _.
L-I
J
• 1•
_I
_ I. ! 1
i
L...
!
J
L
_
1 -r
t_i
T 1 J
i
,
-+
1-1
J4.
1
I
�- 1
'
-t--f'- __t-
,
+
•__•
_ .�-i_-T_1
1
I
_ ,
, ,
i
L- L_L
�
,
J--.._
I .
_ _
_ '
-
1µ _ I--�r_�-=i
-,--may
-
1
L -
-, t
T
r- _ -
- _
r
_ 4.
(C/�l'
I
_V _.�
-1
1
ALL.
-
i
f
T.._.-
-r ... _
_`-'I_ '
�_ -
_
� I
-�
I
-
`
1r_
II- f
A 1
_
L
�. f
Y _ ...r_t_._
r
_
I t
L _,' -
_L-L
y
� _t-f ',-
,----
�- T
1 - ._l-"1.
I '
-f I,--,-
{
-1_
-�-
:} -
t
y
I 1
1_1_
I
_,-- _• -
.-
I -
,
}1
_
'
..-.-.-,
'-I
-_1-_... _
_. ___
-
_.
,
y -A _,-
�F 1_ ,1_-1
-
-�+-
- __
1
#
1 I
_
J- 1
Y
_ T--`-�
-+_ _
_, -
__.Lj - - . _
-1. _ '1-T_ l _L
..
_
, I'
r=i �.
I
r "I
1
.T
r
_y_ �_
_ _• _ _{-
._� _ _1' _ '1
1
-L
�..
i -T'
-L-
t .,.
«'
t_ _
_l.
.+ .L -.
_
-,
_
:I -f
... .. L..
�'
..
i_-r
�rY--.
i _r-r
.._
+
r
-•1
'-4
_
L_
- .�l
'
1
�
r`
._L_
I
mot. �. _r� -
- _
1_-_ L___ _'
'
;-, _
_ L
_ •-'
,
_ �
r ,+
t
i I
I :
a
t-'-1-,-"�
µ _ L
J_'_1
i
,..h-I
r
�
--
i•
I
-i _
_.
.I -
�'i - -.I.
... ..
,.--+-t-I---+"
1_-.
_-__-_.+-`--
I
,__
I
y
.--- ,-
"_ �_-. _
r
_,_._
,_--
'y-1_
�._._ ._
tI -�
_ -+-J
_.t
:.
.I-t�
_.,__�_..,_
ti-
I_ L
,
-;- _,
�-
-j_y t-
1
+ _ i-�
' ---L.-
, .i
L_.1
1 _4
L�' ,
-I t-t
'-i---
-
'+
_: -1
t- �
'
, r
i
..e1
4 -t
..J
I
'
♦_ ,�-1
.
t
.,--. i ..J
i
'1
i
I 1
..I.
4T
J
!
+ r -
-t-
4+ r_..I_:
1-
-+' I_
I
i.
L.
.
; 1
_,- .-1-.._I_
i -
a.
'
_
LI
1 F�r-
-
y..1 _
11
'r_L. -1.-
L _
1-- .'A
_
_
Y I t
_ _
i-
-
,
i ;_i.-
1 l
t-' -
} I
i
)4.
-
- --.-
*
-
.-
-'
i ,
r.i
r
y _i
..
_ ...
1
_ _
� , -
, ._
-'
-
_I_.L.�_
_:
-
r
'
I
i
'
�-i_
1
�.L_.. .-i...
I
I r-
�_`_
L ' -''*
1
i
-I -
y
I
+ _'
t�-T
r ��
-tT-
+: j.-�,
'`T
1-,
t- -++
__+
,-
L.
+ a+'�A
_J
-
- `
-r�
! ._
i--_ �_�--
-
1
--! - -
.r .
- '
�. 1-
..L.
_
1_..
T�F
_
-_ -
I'
.�
..
T -I-1
„1,.
'
-I _
j}
-_. ..._.
-._ ..
T'_.',
.Y
- •-,-
-t
-
��
1
1'
i_
r* --
,
+�+- ..._
I
-
i
_
Y > _'
t ' ll
-
_I
- -
-..+ _ _ jIy
-+
• r L+-
+_a_. .�
t-
_ _ _
Y+
- _-
«y
i +i
�t _ L
r_,,�
i_, _
1
i _.}.
,.
t *�
t_. r_
_ _,
�_ .I y
Y - ..
,f
+'.
+- 'L
_ - 4- _
1 I
-i
T'
-t t_1
L. ..1
j-
J
+ 1
I'
+.
-{
"
I ...
`
- r
_ + -L-
T-
,
. < .
1 j_
,.L.1
,1._...
, _L ..: ,
r• L
-I--}-I"
-
-
iEq
...- ' -- -'
_ - -
,
1 _ __.
* -;
, I
�_ 1 - L_
-
_� i-
I
v-
( 1
, 1
- -
' ' i'
, r
'---
I
'
r
'1--y-7 -t
:.. I
'-+-
-
:-, L f
_ I _
_ -
- rr� - -�-i-t
_ t
-
-�
-
-- _ +
, 4' -t-
- y -i -
T
:�-:_
..., (_T
_ 1 _ .� � .i---
I .'-a--,_ �.
-
-�
-r-
- - - -
1 -
1-` L I. -,-
I-, =, -+
,_ I
,"
_i. L , .i.
- . 1 _!-
,L _r .
r
r., i -
+_, .-+_ L�1
,
.I- j`_1-
4 _I . .
- r r
1, j
r 1 t +
1.- _
ti
1
y I
.
_I . _
_
,,
I
_
h•
.l_
- -5•'-
T 1
LI
f --
- _
I
,
._r-`- +-
�-Y--
a
�'
, !
�- --�-
--`
I
t
r '
4 I
._L_L__ ,
'�
L i
, .1�
Y r
-' -
1
1
` -
Y "�
1 -'�; -+"t
J" -i-.
}-�y-.
•.-±-�
'
- ....---
'-T r l
,-�
t -�
. }L
T 1
' r 1
11
�' -r
,
-T-�-
`
I
i
-•' _ -;- + -;
. _
_ T' L-
'Y'
y
~1
i
I
(
1
1
-1--. [_Y
T
k
�-` T
r,
,-
>-1 �+
L �j.
;
h,
-,}-
T
•
_
i
-+-I
-�T_.
r'_'F _'+'..I
l
'_,_L .1 -1
1
!"
_`.
�
LJ---
r� - 1-{..
�_ .'r-+i,
�IY -
+ j -_
I- ,+-Y
,
-_
i" I_
-}�I
t '
I T+
ET__T
I
I
.may,
1 '
!
' .,
�T
I
+� � T-i _
-1� �'1 y...+ r-
tr
� L.
-F
+
, , I
+.i--�
�-i-'t- -
1 T-.1-
I.T : .1_1 _1_
i 111
u"
i #L.
'
`• -
A
,
-
�j
.- -I'
�
_
_ __
__
_
_
_
..!
_
1_ _
-
-L
T
�
I-
JI �. __
i
t,
I
.}T
1
,-1 -'`�
,
-
` 1 .J
,-
�
'
.- -
Y - - ,-
_�
_ _ _ -
"T'
_ _ _ _
�
-t
Y
, . L. ,.. 1
I. _•!
n. l_ I
.,." j
j 1 1
I I 1 i,
1 -,
I 1
r
7 I .. ..
-, ,
r , .
-
- T . , -4-i
'
-r-•I I
T
-1
1
, _
Y -d- I _a•_
-I
L
�-Y� � -I
i i-' r .
r I
l 1 _ r --t--
-
I
1 I
I
I i i'
7 -
. 1
L4
- -
-� L. _:_-1-,.
T"., I
r .r
,- 1'_I � '•1
.1-�-
,-.
"-�--
,. �L .. -..1_
-I I
1 .�.
{ 4 _a.
.
'I----It..-'L
}
-
1
1 -
+..1. 1 I I�,1_
i..
_
-�
r
I
-
_ -
!
-{--j}
1
-}
.I.
1
,_1
I
-
,
,
7 VT
Fj_
rj
__
I .- -
- -
___; 7-
1 --!
T
I
47
T
7-
t
T
_7 7
4
-i -
-+-4-4-
-4- 4--
-
44
4-
j,
.. F
1. i__4 -.1-
- _+_L -_
- - -,-
- : .-,[-
- I 1
-1
-T- t-T-
1 T
iti
.4
4-
IT
t
J -
4
j
tc
f
7
-i I
T-
i_4 --
-- --
L
4+1
14-
_T_
7.1.1.
Ltijj
-.1
+
_711
T
A L
TT I
4-
+ i
Al-li. �_
_4_*,t7
I I
T 7
. I
t
t
-
-]--j
- - - - -
! ; .
-t-
-T- 4"
T_
_T
tI
-4-j-
'-I-
I
�, I
, I I
-A
I I ,
T
T-1
f
--f +
I,r
+
t
+
-7 1-�-
4 1-
t T -
-4-
+ T
-1 4-
T
j, i -
f
►dti
N
-f s
I A
J
IT-
44.4..-
S%A
'T
T
-4-
-
T
4�
4 - - - t-.
p
1
I-, YIR111
,
.7
T_
A.
I
_T_
7
_.L
7
'_T
.-1.1-1
T-
T_
I
-4-
I -
+,1.4
T_
7- 1—
4?
_T
44
_L_
4
F
r
-4 ++
T_
J
4
L a
-d
-
-1-T,
•I •I
I
4�
v
4
A
r
7
4-
T4
_77
_T
_.
T-
- r-t-- _�
T
f-
4-
�
_4
4�
+
-7-
-A
J t
---- ---
J�_
J
-�_L
-
4.
t
L
T
-:-A
i �
4-
__4
+
'T-1
4-
J
I
Tj
4
L-T
4-
r
_7
4
_j___
Ir
11
I —T
t .
7
......
tr M
J
44_
T-1
_7 -------- r_
TT-T
1
-4
4
-
-4-
--....�_.T._• -----
i
-
r
T
71
T_ i
4-
L
�G
j
--t- -
7
4-L
74-
Ti
J_
Tt.
7--
7
4�
H 4 +
I T
+ -i
F,
T!
7-t-1-A
P� PZ
_T_
4
-4
4-
4L
1
-4-
1
t
77-11
4.1
_T
•d
T
-44-4-am-
I tT
4'
L
J,
I
L__
T
L
+
4
i 1
i
41
r
r
4
7
T�
. .
-4-
I t
_7 4-4-
+ j
-
.- -,
I
I i
4
-
_4
J. -
- - '
i
i I I
I
4-
T
4�
_4
Fi
I
-4
I
--T
i I
J Tt 1
it
I
I I
I I
I
I
-
-,
-44, -j
-4-1-4-
I -
[++4 -
4-T_
1:41
tt
-T
7
_L_�__
-4-4-L
-4
-4.4
T-11
4
F_
4
T
4-4
-4-
-4+
-Tf -
TT
7�
::rT
_t
_1 +
1-
_T
_4
I—
_T
17
f
.1 -
1
T T_
rl
_�7
-4
4-4--
_T
T-r
L
4-Mt
_T_
,T_
I-
T
-4
L
7
_T1
Ir
444
_Tr__
Ll
-t-4-
-
L4
4�
-T-
f
T
t;
-t-t
t
7-7-
L
7-
rT
It
t
T_
4-
J_
1.
1
1
L
-i 4-
I
7
T
r I
I
1-d
-1 --- IT
+4
-+t .
L
__t_T
L_
-L.-
li-4-t-
-TiT
t
t-
i
I
.�ws
I
�t
I D -
I IL Lok
I- i
-4.4-
-T-T-T-
4
t
4
_j
L
4 L
1.4
4+[1,1_+
LI- 4
i
4
1
41H
_T
L J_
TT
-
7
4-r
-
-T-4
`-i-
r
1
1 '
1
I
�:-( i
,
-r-+ r i
1 1-+-
j'
- -,--•
--
--
-r
�
+
�-
-,
*-i--
I
1
- F-
__ �
I
, -
- -
!
- -7�-
- 7 - '
i
--r-
- 1
1
t� T;-ram
�
�
y-+
i�I '
Y� -
-T , � -j
I
t-!-'
-r- L
..t
�
=�--
i i
-
_-�- iT
I C
T-
-
1
L
-
--
-I
- -
-�
i
-
-
-
--
--- l.-
"'-, ."-
--' -- -�--
r- �--
-�--�-�
L�-�
'-i--,�•--
-'--��-
1- -
- -t" - -
-i- -
--'---�
--- -'
--
--"_L---
- -
-1 ---1
� �
- - T- -
- -f -'
I---1-" -
-"�-'--+-
1-~-'
'
T
I I I
.1
�
_'_.
�1 I
i -r
II_-_-1`J`-
.1
•
tr:.
;-
i -1.
,
.''_ - r
-• __
-1�-�-,
� i I
I i_t--{�-��-r�,
I
--
-I-:
1
+
I - -
_
1 _I'
-_
�_
- } -__'
1. _
�
!
7 !
_I I
•.•- i_ ;�-.
I 1
• _�
-1-_�---'-
__ ,
-i"-+ -
�_t-f
- -
,1-+-�
,
j � I I
I
i
i
i
I I
�
I
I -r
s
:
-.._.
--
__•.
�
1-s-
- ,
� _ v
y
I 1
._ T. --
1 _
I
-I-'-•-
,
U,
+-•-
I , I
-{-_}. �..
�
i--r
L ,
1
1 __
!
I 1 1 1
_� �
_-
IIr tI �
1 .I. L
_
_ _
,
_L_
- 1 - � ��
,
_
f
T
.�
.-�_ -
..1-!
J.
T
r r
I
1
1
1.1. w.
._� `-
1
T
p� If
N��
�
-r-
I F_
_
1
I
�-
I
•- r
LI
T t
I
I i I
-4--`T
1
I
1 —
I
T'
I
1
-
_r�
I' r
V
JI-
-".TTt�
rr-.-.
-�aI1
`_'ii
.'- .
r� --
1'
1�t
I�L! L•-�LL,�'
�r-
I,i
L,{._ _'r__-ti_
- _--
.��}
�1I
lii'
_
-1
-I
-
----
- I
--
--'+ _-�T;--II_�?I
-
—
1,'
p _LI _
- - �4 _.
---at
_�1•�';
r� ...--_
-- �-Y
�-
-j1---T.-!!----!t1-_
-- j
"
- - -
- '-
1_
i-
y
i'i
_7_
t
jj�
'•
I
�i--
1 1-:_
1-'
F 7'
1
{...L_L
--1.
.l-L.
._L
_ �-L
-i-
r
- i
1
i- i-
"
+-T
-•--•
Qt-*--
r
i t
�-t r
{ �r
1, 1
-�1-{-
�1-T
i I '-
-I-i i -r
I
� .1 i !-�
1 t
!
L j
I-1
l � �
y-1--�
,
'i
1 L
�I i_
!�1
"rT�-f--I-
�
- �T
� "i- 4
I -�-�-
II
J
I i +
�-I-�
- ,-i-,-,-'-
1 ? � i
T �
-
T�
}-I �
��1�•
-I
T_�_
�-r�
r
1
-1-�.
L.h.-._I-�
•—•�
!
1
-_.
�_ ,.--I_
r
I
-t
�
-r
I r -r
7-
JL
_ { 1 i
I_ -•.
- I
�.
-+---a
_I
!_
i
r I• ,
L
---�--C
�._
.�_.L
!-, !
_}'-!'_i-
-T
1
�-�-T
;"_
J,..—
-1_ ,-.
t�--,-
-�--i
-
_
-}-
r-i
_r
r
r
�.
f-
,r
__
-
-�
I
t '-
r
F
-
i
j
y
- I
�1-mot
.-�- •-
+ T
r
'-r '-
�
- ", �
�
��L
-,.�. IItJ
1' r
tQIrF Y
� ._
4
I
-t - -
��
-ram'
! '
��
�-'-� i
I -t-7' �
-- I--'-'
1
� '-
I
i 1
_
- -- �
I
r I
I -+
-
i
_ -
.� -.-L
.--+,--:
-_
Y '
�!
DO
�I-•-
.y'
> r
r-r
-t '-"-*
y'i �'-__�
i -'
-�'
-I
-
i-'-
__,
- r
I I
L'-!--'---=
I-i_ t_
I
�T
I
- I
'
I
..
--It
-}-{-
f �
1
1
ji
_
1-
-1
I
:
T
�--{j
_
I
1
_ _
_
I
_ _
,
I I ,
1
_ _
- -
_ '
I __L
�' T
_
_L__�__
.---r-1-
1 _
_.L..y____
I
-_,-_-•.-J--
_ •_
7
--µ----1
_ __
j
I
; -}-
__
I
-
7
_ _
1
I
--
_ _
�
_ _
t
1
_
-, -
_
-- - �--•_.l
_ _
-- T-�-
_ __
- - --
_ _ _
�"-7--�
�
-'-i-
}-
-r
,---
I
I
' .. 1. ;
__- �'
r
}._t.y__
-
_
' _
- T
.+ r.
-`
_ _ __
__ t.
T
_ 1
_ _.��_
1
_ ___
_T_r__,_
_
__F_ V_
+i
_ _ __
-_
T _
_ _ �.
_ _
+
1__E_
__+
:
_
-r-1-1__
�_
I
�
Y_ r
_}_. r-'�
-ti-L
1 T
-,-,_y_
__
_'r•-
_ _:
-i
i
T•�1�
"-__
-
!-{-
-
_L
.
-___r
�-r--
1--
I
I,,ey7�"
t":
L 1 11
r
I (j'-1-f-Y'Y-'
i --+-
r--�-
-I
-�
r
r t�
=-��-
T
�
`-TT
1
@fig
�
y_ 1
I -!-
`1
T +-
,--
T
-I.-�L
!-r1'
I �'
_�-f
I
1
i
i
r'
*
I
I
- 1-
1
�1
I
T
;
-
1
_1
-
--
--�
-L
-I - -
r'
1
I
:
,.
, I.•__+_
r-
_r.,
I_i __r._
'-,�
' .
T r
i
�
�
}tj-p�-";
--T-'
_'--{�"
-�-_+ _ _
i�r
t � -•_
—
T—
1-:-?-
-
,��
�_.!_
T-''-
+._'-" i-
--
+-._ _!
�Jt.
.1 r.
- _-I
r
-{-1
_ t '
{-+- i-
- -F
.�.
_!-�-- ITT
i I
I
�
�'_
I
I 1
1 7 r
�
I'-t--i-
,�
,
I
,
_ I_ __
i
__..—t—
L
_
I_r_
_-r- r-
—Y 1' 1
t
�I .ih"t-+
i
T+-T
.L
- - 1_.1
i�
-,-
—`
-+T
I
Ll
- r- �_
-
_�-r `-
t-r
-� I--i
Ir-
-�--="'-
T-i-�
-i- i--1-
I�. _�
__,___�
--+
--ri�,--I
�--rl_'I--T�f..
-T--'
�.-'--�--
�_j +���-'�-I�_--1--1�-�-
� � _
+-i
-y _1 i
_i--�-'-
-}-�-.•
_ .�
-r-h-T-
-j-�y_
---
-- -I �_i_
I
1 '
�--�-.L.
.�...--,
: j-
-�_
1
�
--
,
�i�
-
-•
r -
I
T. -
_ I
T(-
-
--
__ _ _ _
_ _T_T_
�.r-+
_
i �_y
; i
-'-l-'-
, ;
,i-
-• 1 w
- j_r-
t.-F-
-
�-
- -
-
r
T
I
i�"-"j
T.�_i._-.1-�i'-'
--1--r.-j-T.i-_
-14_1_
t�
J�--
+ --
I
-
'
I..-4_
_I'
'{-
-t-r"T
1.
Y :It1"-
ary'
_Y I_
-•- T' -l--'
L,
1j�I
_�-_ J
�_l _
_ _
_L-_ i-
-I--i
_ _..�_.
� �-
I
r j
T!
_I._': _•_
+ i
_r_r
.T.
_I I_I
j_�
I 1
i I
1
I
1
1
it
1
- -"i--
ry-
__, H-_L
._L
.yJ.
+
1
I
I
I
I
(
�
I
t
,
I
I
,
71
L
l
!T
�__
J-j
I_
_
___
1
T
1
__I
1
'_ I
r �
�_
r-I-,-
-,--j-;
+-7-
1
r 1
,-
4-4
i-
1
I
+
f-1--
:--I-i-
�T
I �•
1
��-
-f"
I -j
- - I I -
t �-
i
t -�i-
, -i T"
I
.
l._
�-
-I-
I--`-
z-�-'
,
I
, -{-
I � —' -
,----
I
I�--
;
T�-r�
I
;
+-^i
��?�
-• }I-�-L��,
f
T-
- -+
-t'i_'
ii
•-�'
j _'rT
i
`-!-
- ; -+-'r--
,
-
-T--�_
�+
t
I
I' I, .
_.r�j-
�,
i ?-�
'_
� i
�_
--
�
-!
{
-
�
�
��
T
r
__
,
..{-J_
-,-r r
_ _ -�_
t (
}r
,
_ -
I
r
-
{ j
_
j
+-t
__
_ _
i J
i '
1
T ?
_
__i'
�I
_�_
t
r
I -
I-
I t
*
�_.
I
I�
�-}I
L-L?-�
�-�'--{'.-FT
r-"-
�1
-1-�
1
,
I
�i--r-'� 1_
-T
-t
�
�-i'-�I-
.fir
-�Y_�
,-r
�_ -+
j�-i
�
I
I
I
� -(��
�t-�
I_
_'�-
_
_
_ .-t-
i
'�
-
-';-'1�
I�"�-
•
_i.�_
-.L
�._L
_T�_.
I-
I
•
T
-
�-I-r-r---�-i
!
;-�--r
-Jf-
i
I
(
-r
--r't-F-
---
i
+i--
T
-�-�
-j--
-t -
I
I
,
'-_y+
_.r_,--
T-
_f-t-
-
-•
_.TT:
;
�
1
-'_-I- ,
"-�
�
,
t
-
-- -
-
' I
1 �'�-+
_.i._
—N'--�-�--
� 1-_i
'
i
:
1 I
�
, �
�_
.. �
, -�-._
,
T
I '
i I
��-'
�-j-t
.
.
-�--t. I _-
_1 t'-r
I �
i
-I---I-
�
-t;
'
'�_
- - -
-i -- -
_--;--1--
-' 1-,
_L
-I
_• _
_�
_
_i
.1..;-.�
�__�
_ -*- r_
—L�
'-,- �-T""
�-i_r_
; i
_.F-Y i--.
_
_{_. _�_
_'_._
_�_.L._.�
• -*_
_r_;__'_
_UAL�!J
�'' - -
_��_
-`1'--+-t-+-
�
�_!�.�.
y-_
_ t_-�_
_�__
-�-r_T-
_ 1
�I-i.�._
T_�'
_
_t_1
_-i_
��
-f__ -t
Gmdi
.�_
--7
' __]-_•
— _
�_1_
-
_.��
1�
1
_
�
_
I
_L
__I
Tt
_
� _t-
1
i I +
I
+;�
_
�
�
I
-
i _
-
I
- I
'
I
�--�-•
I-iI{�i ;-
rT"
—
,
-t-�-T.
.-}_
+-:1-
'.i�--r-
I
,_ _
r_�._.:_
_ _i__
_ _
—'-r
1 i J.._-
�i -*-
_-I-�"_
f
-��ia�
;i-!_
1
_`_�'_-r_
_1.-�-
' 1
k-
,_
"1
-'f :
T_-
i-
I
-�""I- r
T
_L_ -
} - -
-�-__-I
r+-
��
I "-r_
--�--� -r
_'�J
_L
_
.h1--r-
I
-
1_
-j
.-i
----r-t-1
I
-r- ._
-
+
i -�
7'-'f-•-
i--r
._r_,_
7
,
I
_'
-;-�-
.I T
1
.
--
-'-
-T---
4----r
-
I
-'--
1 H
-- ,--
'- -
-- - -
' _ +"""r-T
t
1 I r_
- 1 jTi,-'�'
fi
I �-T-'
-� 1--,
;
_
-mot
t-
+
;
;
,
•-+
T'-
'•r
�-
--
i�
Tqui
:
--I
j__.
--j- '---
�_._'i
---'-;-
1
'--�--
_;-L
y--�--'-
-++-,
1
- - -�
-'--'--1-
_
T._� 1__
1-
- _.r._
._
-1-
-_
- 1jI-
_'___
--
-
_ .}_i____+
III
-i-•
�_-
-(-rT-
5-titt.��-
�?
-r-
!
-r
--�'
�-
4-4-
1
I
L
y
r
I
1
I
i
1
_ -
7- 1t-I -
T
-
I
I
r-'
T-!
�-Y-
�,
•,
'I �;
��.-cam.
�__-..:.
--;
i
I
-; T-
�-rt--
I
•:-+-
ter'
-
_++-C..I
_
~ _-,--
I
'�
1
i-•-}-1-�
_
_
_t._'-
,
- _
_.-i_ }--I-_
Y-�-
_ _
t
I
'
I
�
�
I l
ii
�'_i__*-
I
i
,
I
,
Y-1_
I
I
-1 �--
' I --•-'—
L
i
' I
�; �
� -� I
}I
I
,
j
t-I -
�
- r
I.
,
'
; �-
j
�y
I�
�-
I �
J�
I
' �
t
I.
� �I
--{--,�
i -
-�I
I
�-
T;
1'--
1 �
•
T
i
-T-�
-+---I
�
-t-^-
I-i�
..
.}.-+._
-r1-
E�}�'
I
I
-r-
1
_
__r
�
L
'
r-
L-1"'i--1-
-t-
1
1_
i
I-
I
I-4'
*
•-
A --:
;rt-
-h'f - �-:
-
-;--r�--'-'
i-
-' �'-----1---'I--i
'^1--
"1'.15.
--
I
-
-�-'
— 1
I
Try-
T-'
-F-
T-r--
-t--
-'-
- -
I"-
--
-
- -1-
_
1
- -
.I rI
1
a
_ f
LL_
'
_
II
r_..
i
T
1
µ
-!
_I--
--L-
_
r
•
�.
T.
�'-
t-`_l-
I
t
1
1
_L
I
.�
I•
y
I
1
1
if
--
-,-;
,
�.T
'
I
I
_fr_
7 r i
rY
-{�_-
�
L
_''
-T',
-
-
r
-
�
-
� �
---r
1
-
--
I
I I
-
•_T_-r
-
i
Tj
-
-
T-t-
1
I
,
,
C
.
t-
I
i "i -I�
f
'•
I
I
,
,
I
-�
i
-T
i
- 7
+
.r_.
r .
I
, �-r-
� _.-�'-
r...
t
I ��
1
I -
-L-'
:
.
i-K.i.�
f.
t--{'{ I
II -
r-t
�
1
"I
•
' �
I
r
.
T-
I
i-
-i-�
I
1
+-
1
-Y-�-
,
-_1-
:�---
-i-r?
a .
�
-1=-
,
*-
-r
r-,
i-
z*�
� J.
-+-
-I---;-
I
--
.-
- •----'--r
..-...`..
-f--,---1--
---�
r-r-''`
' -1--T-tom-=-•
_Y__i._r.
,
.-Y-i-
I
'�---1-'-
- I
�
i
-
-'I--
-1
-
•-?_--
-
-
-
-J
�-- -
-T- I--
-
�_ �_1
_
-.._I
_'
Jam_
1
i
-
F
-�
_I +.
f
14 _
1
;
;
I
I
i
, I
1
I
_
1}`��;r
I
I
I
1
J
'
1
1
I
i
I
1
• y-
I
i
I
'I
.
-}}�-�
, -
i_i.
- -�
_.,_--r'j-�--'--fir
I I L.
- - -
4_ i__
- f-'
:
� -
_! , r
I
T-F-
� I
- -T -1-
-+
-
.:--
�-t -�
-� -i"-
{- t �
-?"-+-"
_y
T I
' .i
__ -t't
i .F �_•
�-?'_.
�-.J
I rt-'
_' __'y-
-"_'r..'
I
-1"-
_ I
-I-'
I
�_�
1
't ,�
-Y
.1
i
1
Y
,
Ti-
_
1�-F
-�--
_ _
i -i- j
i --
•�-,
; _
� -� -F
_ -
_
{ "-'-•
--F--��-
1-'r-1
i
.�-�-�-•
I
,
�T1
_
�!-i"
---i_-�
--rt--j-�
�'--{._
,
T
y- !--'
- -t�-
-
----*--
1
-:-
-+-�-�-
-�-
_-f-^!
�i
�-�--
.I,--T''
�
-r-
-_�_
-� I
- 1-
-i-
Ir}
1
'I}
_�I
_r
'
_
;
__ _
__ _
� _ .r
�'.
-�-,
-� I
t
�-r
ty
+
'
-
-
j
-J-T-
"
+
I
-� -i-.
I
—
;
—
�--r
-
r-
-�----
r
- ,-r-;-
i
-�--i-
--'
I I
1
I
--{--L-r
I
i I
-
I
I
I
-L
,
I
i
I
I
---+--_J
t
i-
I
I
1
I
I
1
r
-----
I
--
-
1�
-�-
LL
_�_+
T
-
- t-'
--iii-a--T-
a
r-
--,--1
�
- '-
-1�--
�
-
-
I
' t-
-+
�-
�
rt-�-
j-
ZT�
_
i-'_
�.
o
~
SceTe•
-
:T'
�'
1_
1_
_
'1
r
_i}_.r.
1 1
'-
I
-
L-L-
1
j{_1I
1
i__
jL-_y_
i
-
-+
'
-J
-1..-
I I
,
� T
,-
I f
I ';
�L�j_--Ir}L-11
I
(
1
I
I-+'
�-
I
T
_-'
I
�-
i
7 I�
-I
i ,
A t_
T
-
._I
Y
�+,-
+_ -"
'-'•-I
iI}-t-
��"I--
I_-�-j---'j-'+
-;-r-?
-i�-1
4-
-r
t_
_
t=-I-
_7-i
--'_'�"I-7
I -''.�k
-+.--{-
1._ii-"-j_
_1-_-
_Z
I
_�_
- ;
_
i_,
---
I
i !
--{-
Y!
-i- 1
-_fY.
i,--
,
-tt-4--
_4 ? t 1_-
-4
F
_4
L
T
L
-T
T
14-r-
7-
It
If
7
T T
4- - _; -
it
I
F
�5( 4
J -
T_
T_'
4
J.-
: I I
i ; T
V
1
I—, T
TL�
t
-H I
7_i
LL
Ic
I
1-7
. -
_T
i
-
-----
.....
r
4�
-
-F�
+i
7
T-t-
rs
"o
4-
7 777
+
JT
f
P
t
1
L
r
o
43
off-, a I
4
FF
•
'Pt
T
L
4
-t4_
-4-
T-
-4
_4
T,
F_
FF
T2
u
_1
_J_
-r-
t
4'
T
i+
_T_
t
4
T
i-A -
T
fin
t-T
T
-r-
4-
_L4_T_
4
J- -
7
4-4
FT
1-4 1
_-7, ,
F ,
_T_
2V
_T
T
T7
if
7
T 4
+
-j-
M
p P,�
1p
-4- i
F
t
4-
i-4 -
-
-4 -4-
-
r
T-T-
1p
T
I
L
f
T-
_T -_
- 1 ".-
-
141-
1 T
r t
I
7 _T__
-
T_
7
_T_
_T-4--�
4- i
......
_1 1-
41
4-
+
Lf
4
7
--r-
L
17T
fir'-7
tt
i
WA
+
I
I I I i
i
t
-i-TT
it
7-
I
it
lI
It
7
-T+4
TT
L
7-
4_1
-ILL
T--
J-7
44-i-
T
+74-T-
I t
41
I
p
4-
4
-r,41
11
r
-r-
!
1
1-
'
i
1
I
f
j�-
-L-
+--
t{-
_
-i._
II
't
_.{_
!
I I
�_
�.
-i_
I
T
�
-'�--
-I-,l_y-
I -}-
-+
-�-i
_
1 i
F-.��
�._
_+
t
'
-�
_,
L
i
tilt
_
I
i-'
_-t-..
I
-{
+--t-•
..1-
•
_ .L L
_+� ,
I
rl
L
t1
--t
I
�1.
!
I•
-
I
_.L
I I
!
T
_L
!
�
!
��
t ���
in
r'-
L.
~_
I
1 -j+--?-
!
i
I
i
ii 4'
1
}-
I
I
—{I- --
-
-
�
�-
I
_, +--
+-'-
T-G-
-+-t
I
-'fi
--�----
-•
--
- �- -
+
- -r--
-
- j-
+ Y•
7
- -�-�-�-
-{-
-1-
'
I
- ---1-�
I
-�-'
I.0.r-
-�-
!
1
----
r-
-T'�
- a-T-
--r-�-'--
T�
�F?r -
---
1
-
!a_
-
-
Lfl4_
-,--
-J-I
i
- -t- -
` r
-,
- ---I-
+-�-�--
�-
- - -
- - -
-
-i'--I-
-
- -1-+
i--
_I-
_.
d
g- +-
--
y
L
r �I
I
I
-j
•'--L-
L��ILrryy--
�
}
=. -I
I
,
'-�
I � I r-
I
�
I 1
I i ,
•
4
I �
t
�
r--
-t
�-1 '
,
-�-
�}�
��
-�
'
I
-l-
!
�"1--
1 -
-`--
1
-
I
�
-!
,
-
-
-I-}
}�
+ rT
T�
k
r i�
-
I
I�
�
i �
A
I
ti
- -
4
,-
--
-
-r-'x-
I
'
T
I
I—
, -
. -
--a--1--+-�-1--
•T
'-+-
1 ,
--
1'
_
-,
-r--`_
+-
-•--_-1-.
'
� �._
,r--!—'
I
1=,
1
�J_
I
-
-r-_F
.�
--I
'
�
-- -.�
� 1
. J.- -
�;
_
-1 � --=-
j—r
-j-- - -=1-4--
�-
I
—;
__ �
_ I_
- - - -
-'r !
1 1-+-e-
T—I
--'
I 1
_
-
I_
--
_r.__l.
-` --
- �-�
I
�
_ •-
_1_ 1_y-
-1 -
} -
-�1
_
--�-�--
+�i-1_-t_
I I
- =--�-'
� 1
T � +_
! '
T-r----
_:-I-'
'"-�-
I
�_i�4
i'
''--
_
F
-,-
-L_. -_.
�'-t-
_
-
_L.
-'I--
_ _'_
-1_"_--
,
- _ _
-y-
-�
L
�_
.�
I
•
, _
-I
i
-�
-I-'
T
-
- --'
• �
- - - r--I-
' -i -%-
I
-r-i--i-
-+--I-�-
-
'
--
-
��
1 -T --y
-fi-Y_J-_-J--L
- :-
�
- -
L _ _
-'
�
?
_ �'-t-_L
1
I
�-
i
'
i �-••
+-
_ I_�_ _
J-�-'
.+--=-Y--
r
-LI--L-
_1-1
1-
- -�
i- 1
I
- -
- -�-:
1
I
!
- �._ I
I
'
{
�---L
i
I
'
1 1
-ram -
•
-
- -�'
-1
f
+h
1
+
i
,
-
I I
I _
'i
-
1
Y)-
r
I
1-1
-1-a
--L4-
�� -
1 L
I
r t
I 1
-
1 T.
-
J- L_L_._1
- —
-
-
-I
-
+-,,_
j_>r
- 1-__,
�'_'_.�
-1
; I
,�
1
_�-}_
+_L.
1 .'"I"'
1
, -I•
{-F__*X:
•
_ '
_ ,t
_
1_
-f =�-
--
--
t= -
-�-I- -
-
i
--i
-
, '
�'-
--i
,-
r
-I-
F--i-
:'",
_
>1 1 ;
L•_;
i
_ • _•
_
, r--!_�_
-!-�
.T
1
_-t
,
�_�'
1
_L-I +
_
_ L�_
H-4
IF
_i j. T
- 1
-
I
-
- -Y
-i--k
--
1 �-
I
-;_ _
�.
•--T'
t
- - - +
-
-
i
L'-
- -
--!
� _ .
L•-+--f
_—'--'-
_ �_
}
_i_i•-T
e.r-_'_ '
- --
.+-'_ �
-
IA^;-
i I
I
1 1
1 -
-+-
j
I
- r
-+-
i
: T +
_ ,r_
-'-;�-{I-
_j
r
T_
t
'r1
-
-
i
T •V.
4,
+
-
; - I
1
~-I
`�I � -
',
1
I I I
G
I 1
-
• r
I
I I
1
I
I
I
-IF
1
i 1 I
I
18-
I
-'F-J--1-
I f
-+-{.-...
1
,;�_
,�.
f
y-1
-a-----'-_-
^.. F-.
,-
1
-"-'-t'1'
7-T"T-i---'-�'
-t-
1 'i
'
- -
1-�,-1
- r---
_..L -
I
- 't-'
- -'- -
._1
Y7-�t
- --
_-i•.'r_.
- -
-'r t' -'r--
_
-
1
- L
�
l_'
.
I I
-
' i
-r-1-!--
_
1
1
t"
I
I 1
I
�-!--�_�
! 1 -1
�- ,
1
, -' _
I . -
~
I I
� ,
'
� �
F
1
�
` i �-'--'-'
�
r
I
�._}�
t I
�1 -
i
-• 1 i
�'
1 �r�
_
-
r I �I
_ � �
-
I
w I
-
-t
r
•
,
_.,_-, _--�__f-L_
I
I
I
I
-L--1-'
--L--�
- -1 a_
I
� ..I__�_
1 I
I 1
r
-y_T-.
-
= t'
� 1
,
,-F-��
I
r_l.
;
-r._
,
,
l_•
1
-r.
--
___
i-
-
�_1______
__ �_.r___.,_.
__.r_•
-L._,-_�_
_
_._
_ _ __i.J._
_ _L_+�iT1__y�
_-
-
__ __,___L
I
• i,_
!�
f
t
r
�
I
I i�
I
�
1
I
,
1
_
1
:_
J-
i
_
_
I-J I
1
i
, h
i
i
r
I
I
I �I
1
I I I
I I
I
I
I
I
.I_
_,T
_�.
_
{ r
r;--
` _:_
-'"--...__
,
-�'--•_+_•-1
---+--i-
'
- I_J--•_-�__•
--i_--_�-
'JA
I
�
i
�L�.
1-
71
t T •-
-.,__•.
;
, I I
,
—t.
, x.-}_-r
i
_ _-_-r-
I
_ - -
_. .-i-
i-�
T
_ -�
�,-�-_`_--i
t'
"-j-1- �
,_f-�_.j�'
r-
_ _ _
��.
_ ___J..
_.
T i +
-`..
_I_.-�-._L_
! -1
}
I
I
I
� - _ _
_ _.�_L.
� I
l `+
1 '
I
44r
y-i
I
_' I
-1'-r
- �
-T
-
t-
'
I 1--
�' -
1
-_ _•_
+-�-
I
,-7
1 __
i-ll--F-
�
-
-+-T
✓-
; i i
i -_
-T-"
---•-�-
7-f--:-
- _-•-:_i_
T'1---!-
, y-;._
-!- -
�
-
_
1
-
+
Wit_.'
i �
"j
«..
'
.j-+--tt-
.-I,. '
� I
-
1
I-i-
l 1-+
I� •-
+ ,
. r
,
I
'�F "i-
L }
__�
t
1
-
•--r-I•y
,
-r-'-._
T
i_i�JT.
-1 I
-
I
- I'
'�'
a
_��' '
� t
�' �- -
_
I
,
-rt-
_
i T
_f
--
^h 7
t
-`_+_' -
-1 -t -j-
1-,
--+-y-
-._I
+
-T'-i--r
1
1-
}--T._
y
-1 '7
—, -'
-'-1- I
_,_'_ 1-
._1_ -
_ _1-}
-+-
~ I
-
- I -'f'" -
- ..i__
-,
: I
-� -
"+_'- i
_ -
N T
t
� ��-,
- I' -i--
{
+-�+
I. -
- -
I
.l._ �
.) 1-•- .
- I
-`-? -"-
-'• ��-�_
--i i-
__:
,
��
' I
� T
I �
-I}
I -
�
�i��_
I
I
I
r
�
i_• _
-
I
�
- --f-
1
.._�_
I
1-L-J"
I
I�
- -
�
I
---
{ I
I
t
!
r- - t
1- ;
1
+`-J-
'-" �-�-
L..�_
O-�
1
t_y._}_
_!._�---..
._-
'� t
___ F_
_}.1..+
1
-f�-..�_-'--!
•yIYI`L
...
_ - _
_ __
-
_
I_
1
1
-r
--L-
-L�-+
I
--'--r-
1
_:-;-�_���.
,
1
-�
.-
1
--
- i
i
--}-
-;-- r
- -'-*-
!
�-�----'
+
-
1
~-•- i
-�-
L
!
__
-
-�-
-; L'
-.+
--
:
-
_ -}-
r _
-. � �-+
---�-{---
!
- ----
- -•-- I
�
- �-I-E-
-
-- -
}
= --
-� --
�-1-r-F
-- - -
it
-- -
- -
'�-"--4--�
-�
� -�_
�
_�
; --� -'
---'
-r-
_
(mot
-
-
- -
--
-1--1
-I t
'
L-��_J�r
-
-
!_L�
I
-;__i_--r-r
?
..I
-
LrL_
.4-+l
L
�1_�
I 1 i
'
rt1
!
I
�I
iI -a- 1.
�I
- 1 -+-'
- -
- '
1-•
- -' -' - � -
-
--
'_
- +
-+'
-
- �� - J -
�--'t --I
--
- -
-.
5
-I-
j-t-�-
11
_• �
1�I
ifi
r- -i
-+-.�
I!
r
I
�; ;
1
T'
�
1.,
j-
1111
T-';
-
'�.
1
!-1 -! �_1
�'-�'
--�"-
-{--ti-�-+-T'-
-+-ram
+1_
i �
T
�
1�
_
I
�-I 1
! I
�
�
i
I I
-1-
J .G_�
I
I ,_
-T-"
i
i
I � ,
•wa
1
}
I
_ _I
r
..
1�-L
-
TF
T�
I-
T t�
-
I
�--i-�
1
-L .tom
__
_ I
7
-I__
I
- i-i-'---�-r
I
T
-j-1-f-
I
-f -i_
_«"_
I
i ! _-�
r -
i
t-�-�-
-J- i
I
a-ii
,,_y _
r
R _
j
'1}�.r'
_ice_"
�-
•{ _
•1 1! rY1r_
�!4!
�•_-*�
i�_
t
TI fIi 1�I
II
L�
__L
• I
1I j -
_L'tr;
_
4-+.1_
'
y
7
-,t
y-T
T
_
_�1�L
.
r.
L__
�
'
--t-
'
4 -4
it
IA-
..........
T
4
r-4.-f
rlr
+
4- 1.-
Ll
;it
T
1L
L L
4-
L_L
_41
L4-
66-
Of
F
T
7Z
-L
if
[C
J__
Ti
1 —17
t
51[g
I
JI 1, 4,
A I I I
I I I
I
T'
I
I
it
I
_T
L
4-_
_4
r a
71
C
tit
T
T
_L_
4
ETH
-I-
4-1-
1
_7_
T_
-------
L
I
L
T�
;it
-4--
-7
I
I _L I-
_j
77,,
4-
_J___1_
-4- la -4--
+4
Inn
L .
_T
-r-
It
T,17
f-H
T-t-
-A
T
I
_J_
-4-
4
Al�
Ll
T
144-!>
t
�T
it
ir
4-
it
r
7
_T_
im-
44-1
-4-
T_
t - T
-1-1.
-
I
T
-4-44
!�p
I
!it
I
TT
It
L
I
i
I
I
I
-
-
!,-Arc
I
I
"T
14-4-
4-
+4
-ILL
_T
L
[tit
it
7�
4
11
I v it
R
1-T411-1-L
L
7
_j
Jr
1111111
t
LL
4-
]*C
_
F,�t
fT
I-
++
j-
4
L4
_T
I
I
I i I
_J
L
4-
4-
_J_
-4-
A A
tit'
--+ La-�_
-�---t-
t-�_i
L.i-l-_-'_.
_ J-_
.
_ }--C_i tTr_
_t.J.--}-
--i-�--��'
-
`
i
-r'i'
-_j�-�,
T 1
- _•, ,-
_� -r--j-
-�'
1
II
IT
_ ! _t
I
. f_I
+ .. _
J. 1
_
� �
�i�
.�
SiYV
__ }-�
_• 1
t
�
{ _
_,
_r-�-r-
_1 ,<_�
_-� -I t
�
� i
I
�
L
�
,_
77
-''-f=
��;-
' �-�
i-
Q
"' V���-
��
' I
1
y�yy�
' �__i'
1
I-;--
-'•-�--�"
,
1 ��
I I
�
-'}-�
�
-T
:
H-�
�._
�-
'
L
L
I
I ��
T
1
�
�
i I
if-
1
I
' I
_' 1-�
�-i't_
'
_'i.
.i-�
'
+"J:_.
i--I
-I r
�
+
-
----I•
-�-
}
_!
_�--
�-
-�-i--If-
'gn
-4
-r;..
I
�_
�--j-1
I-I-i.�
LH
�
•
Ii
��•'t
fjT
� �
1
I I-'
�
1--
_-`--�.-j'"�--I"-�_
�-{-t
_ I �
fir.'
_
_1._
_,
_ i
_,
-i-
_
_
_f__
_
_
,
•
�
�
i
�
�
I i
I 1
I I
I
�
L�
I
I
i i
I
1
I
I
-L
+vie
d-
—it-
�
�Y
a�
4
_1-
�
�
I
"�-
iJ�'-'i-
- i i
-�-}_L.
__'
1
��.
!_.1_L-.J--•-_
+-J-..1_
.i_i
_r-�:-i
1-i"-+
,
1
I-1-
�
--
-Y-
{f
-r-'
T
F I
1
RPi+_
�-
-
-
-
I
_
+
_-ti
#-'
i,
_
rt;
-rl
tI
-mm
1
•
LLL
�.,
U
�I
i
�,
..
__
94
IMP.
1 _
i-
1_
-
I
-r-
It 1
14
_
}.
--77
I1I
r
I
r _�
11
_
,__,
t
.�
.
1 I
,;:
_
r
E'
o1,�2I�,Fi1
/
•,.•-
I ^ BH-7
r �:•••�� T D.35' A
0,.•�*1 • GW@@32
E•,,.•I I
t @30'
VTR -I
V_`� I \* *0 \
TA2D 30' 5TR 5 •• •,..-"
ii1l \ 21 -
. t,
L,00
\ I'0 1
j3
' \
,�
ak
F'
G'
,:, ♦♦. :`•'\ I'I - x 1 • i s r .
N 2 - ,• '` I. ` -'mot \\ \ �: 0 i j r- '_\, .1 �,_ \ . ♦♦
- .- - 4 ` _ . � r� -, \ , _,'.: ♦•�. A i t /F �„`� -- . v to e- "� .�
PI
4-
♦ i + GW Q125
\ -1H �F, ,\-10
- - - -'-IIIIIIIIIIIIIIIII-. - - - .. ..�:
- ....b-..
GEOTECHNICAL MAP
NEWPORTER NORTH PROPERTY, TENTATIVE TRACT 15011,
CITY OF NEWPORT BEACH, CALIFORNIA
0 Pr0j.:1851578-004 Scale: 1"=40 Date: 8/9/95
Engineer/Geologist: oP/RM I Drafting By: LAF
�•� a t ; ti, ♦• . v �. f_ ;�� v 9 CONSTRUCT PRNATE AN THROUGH CURB PER 6' 6' I LEIGHT NANDASSOCIaTES' ANC.
• -� rseo ; '.'-, • 1.3q 0 iz, -'I lr 12'
♦ . �.
4.i.
�2,�IIY-__,_
�♦ j ; . `� .. ''yt \ t � .�, \ CITY OF NEWPORT BEACH STD-184-L
/- ( i `� k♦ ', - Nam' \` -, , . \ PLATE 1
"' ' �+►♦♦♦ .I . : , / �' �, \ 1,0_ - ti, . /; ... `\ '`_A,t :#`-\�` ~ \ 1© CONSTRUCT GUNNITE DRAIN PER DETAI EON
\i"
\ . , ! . ` ._ \ \ ( \ :... ;; .. ♦, JAMBOREE ROAD _ LEGEND
,- \ I \ \ --z„ I \ ` 14 CONSTRUCT JOIN OF DRAIN TO EXI NG V-DITCH PER DETAIL HEREON
..i :♦� (m� '." i : - i - `` o f 4� \ 1 �' \ �'` \ 1, EXi �i 24 \ r. , �- / -• +
a - , ,_ N ' � ! I '\ \ I \.-. �� ` \�\ 1© CONSTRUCT TE RACE DRAIN �QT L ON SHEET 2 I 3:1 I. SURFICIAL UNITS
♦ �A O�,�, - 1\\ - \ram . i 1 1 �•-�'Q V -i , N i Y p
- - • � `.\ .! Ate_, ;,. , `,�•v i ,. , \ :' -- . -, ` . I _ -� `'`,:*�.':..,�V@ CONSTRUC DOW N, - _ _ _ fi� 'ARTIFICIAL FIL
\� N�22 ER D AIL ON SHEET 2 „I- L UNDOCUMENTED
�• - _ g - \ ` + _ `•,, �`' SUBDBAIN` Q CON UOJ 8� flWALL P DETAIL ON SHEET 2 29. / 1 I
_r ` _ - W TERRACE DEPOSITS
r i 9; ♦-,, \ _ 1® � PARKWAY ULVERT TYPE C PER \ I _ z Qt
r� 7 '. �� ` .�O : ! `, C P 1309 1' n DECOMPOSED "'
_. - \
!- : (�< • ♦,♦♦' �I �' T f . \}* \`\ �, , GRANITE SURFACE � f 11, ��+W SLOPE WASH DEPOSITS
Q�� i - lil;l s� y;' ♦, * \.. \ �, .- . l%1P SEE DETAIL AT RIGHT ' n
6110 w t LU^G - ♦ •' It n.,♦ `�" 4 g l \ 6 fi'. ; \` \ �Z6 ♦ 6 6- I Vt�I ALLUVIAL DEPOSITS
T.D.34` • , • �� - 6 ♦ i • , ��' fib x 7' LONG G.I. PIPE FILLED W1 CONCRETE WELD CHAIN TO PIPE AND INSTALL LOCKING
i t - ' SR 04' ♦' 2 I - 6 " % e 12 DEVICE. PROVIDE KEYS TO POLICE, FIRE DEPT. &OTHER EMERGENCY GOVT. AGENgES.
IC
w ®2s' f V i 77� ra, _ ` ♦! , 1 y\�\ ��?.�a 3:� BEDROCK UNIT
u �i s'' �/1 t 2z
b T 'VE
1; ' h aF�4 t _ G �� ` 4y £F ,.;` ,, EMERGENCY ACCESS AND ,� Trp MONTEREY FORMATION, CIRCLED WHERE BURIED
1" ;, 1 �J. >L0:1 F YF 1-N, x 2, RCP :,ti `' `9" ~I \� TEMPORARY CHAIN BARACADE DETAIL v'
I.\ 1
II
[ I I
♦ - -- w x «`''" '�' SEE STORK N ♦ H \ k \ > _ \` SYMBOLS
•+♦. GJ tx fSZM$�. t�" '",. PLAN ♦ _ -+ - ` 1 -
\ i NTS 3' GUNfTE W 6'x6•
`, `uJ'3 q F£Y9 fi ♦. ul` r ` i 8� TS t 4 x 1010 W.W.M. - • • • GEOLOGIC CONTACT, DASHED WHERE APPROXIMATE
3>>a `♦i -.� a is _ 1,S,q '`- ' ExlsnNc X GUN 1TE '� 1. ��: . ,� f < a . ; �_.; _ sx -- N - 4g' RCP
APPROXIMATE AXIS OF ANTICLINAL FOLD, DOTTED WHERE BURIED
}} 8"I �4 . / �z � .., ,� , s \_ DRAIN DETAIL 12
l ,srK I,�'xzz- ,m.a• - „' '4 - _ - _ ! f' A r- - `~�� " - NTS EUDINC'a-ATTITUDE- DASHED
I i WHERE SUBSURFACE
'-5 F \. .4+t` 1 1. `ate... cYy" a,"=i i_-x.e .- t'., ;
pp oximate Loatr� 1E
_"r.+"^---0 `n • ^ ''`` ' 3 'v`i Fs b $S' 1 K"4 ,t+. m . ♦ i '\ _ » 1' 'i �`' - `� - 95, _ . __ � - _ _ -
---'--._.. - "' a }' fit.Il`;R }411>•t' 7 r•, ` +a 6 _ 3 r m '`.`. �'L+. Z \� - - _ _ "` 20 `
` ` _ \� u- C3 `r", y \ ♦, ` �gi��,- . - ; ' mot tT' • �� I _ l ��_- 1� • APPROXIMATE BORING LOCATION BY LEIGHTON AND Y't tF....r , ,� �'f, v:; \06 ♦: '-�"t�'�°'�eFve - S.7 ..fie,�c,,.' \ -__ - _ - \ \ - `• -
\�1• , ♦ , ,, , ;•'4a;) 4q c . y } { �, -'' �„ LB - 4 ASSOCIATES, INC, THIS INVESTIGATION
"i _ /; • \K r 'tom. F,� � ♦� ..` 10I .. F y<e'0't .-h ";e : �t "a'i$ a- - . \y r . i - '
,"O -r_ • ` `- , "`: a, a :.�., ''♦,' _ .*a ,>ktz £,.+=r p8 •fir« - ""#,, ice'" _ _ 1�._. - ---- --.\ -
�j �� \\ ; _ f ®APPROXIMATE BORING LOCATION
L +; ,n i I �. r�+a- .. n� l, r , v t #' „< +j r: •.. - RO ` ✓ BH-11 BY GEOSOILS, REP
1' '� ..+-. ' e'a` i�r y ♦ �i nQ 7 �', � .rg, a,-. Yr �\ `. ��I \ / 2 / 4 / 91 ORT DATED
-- •• '0-t%'tIf.♦<-» .�„� s'-G 23 x. t1 �laiq?r ^„'' "'4-,,. c$- ;+ • -'lb _ ...� AQ \� -
r ' O i / " ,+y >.1t q<-';lz; 1� u b' o., i , , Zy. > , u(. OP _ . _ _ -- . _ -
- lAi!'. �Ui.., _ i - 'Y' .X.,�t x.:J A� .r . 3 ,i, m .'.. Y' ;, 'aft i 3 - tS -
"---_ }� N - 2, , to '`, }`r` `''`Y S _ 4 °' Fyn}, '2,`e -ti., ' i 1 2: 1 3: _ . - - -,--, f
w , ? t - f -� " t' ♦ I 1 _ _ APPROXIMATE BORING LOCATION BY GEOSOILS REPORT DATED
x �>',;_a.',�: - \ B
+y . _ l . `tea,' ^:J'=' �:.'--• u?'r,,, ..-� i . -'r d I12 - ���, - ! 12
I I - `! / -Y -r �'A- _s`.3 ° a.i !1"�� ,a ,a'�<,x. -lam' tr r. a, �/� - 'd _ _ .-
`r'--> I+ - ",1'< .- ,?; { `a :e. 1 ip y �`,. �+;iti. - I • J_-! i ' . rztv.r ,i/�V - _ !� \ - - 214191
'�y
■. - .X' 1 •,,^ .. -r .u'r -' l,. +Y', v t'=�'�•,;;u'� !' Y'`J, �" ). �I'+ ,:4..e :„ _ 't, - _ i%•- - - \
® APPROXIMATE
f, t RE(AI N0. 'Tb # ;n :ero »'." ,✓ ,� .-" 11 ¢ ), $ h T.D.3 IIJ _ I� TRENCH L
' �. ' y:_ ? ` '�; < :. x' h r _� ; : , :. , e �.• .'` _ _ - OCATION BY GEOSOILS, �} '' ' L`?,' ? v �' A Y €r. :>,'J d' cv - • �\ _ TR - 9 REPORT DATED
L \" ,, ` BUjER SEPARA PERMI� �„ " ...,..s .O c - R __ 2 / a / s1
' \ i :' .�!"Ty ST0lA PLAN : 1 r �G _ `\
\, : - \ ``' ` Z♦" \'_____ -"'- • i, '-z s '°"J q' -, i `• i 1 - ---,4�-'�e(4• 11i 21. `•� �0P OF �_-�-- _ _ •-- to - _ _ z `' - - - _ - _ . .
f♦, t„ \
' " - t` �' -''Q:, . ` 6 . C .` �81.OPE 1,; _ - _ _ `''� \ - ..? pF "` - - - \�YJ x j F■■ ■■i'' C SS -SECTION LOCATION
"_ ,. ■ .<:G .`t _ i,.: - �� ?1 11 �I ' ` �1[S 'Y 1 TOE OF_ "`-�. TD.46' !!y ; .713 - _ �C,�.'510 T1 - ,� f
'A' i ♦ $LQ, /1Vs 128 SGtj 'R y SLOPE yo ! ��' - OF F 5 O� Nj,' l� / /s i
-, - �� ® APPROXIMATE LOCATION OF BASE OF SHEAR KEY
t _ -, U f TOP eG2l .
.
_ ♦ �20 SLOEPE a
' f :I F SLOPE . „ , 1 i t2 ` r L , ,(, IIYl. FA F " '� // 7 <
\ "�Y P&
'''I:° IIk&I& . - - -'' ♦ _ - . - li I �O N 'tio' Its I \°s -"t _ • •' 1 �---,� _. 710 ��(j r 9 / $ APPROXIMATE THICKNESS OF OVEREXCAVATION REQUIRED
. _-
i" w - ' ' , T. -`�l"� ~, T- - - " - I '� .- N 1 h� 4 - �+-�fIQ� -' " `f0_ �- \ 4% 42' • __ 1 ``� Y .y - I `'` F _ 5 APPROXIMATE THICKNESS OF FILL TO BE PLACED ABOVE
+r �tJl �' ... k� ; :-', V-- 'i _i: •f` O t0 1•. +. •`rT - - [ ,x,. - - _ S` 41 46. + 20
/ c;__} �� F, ° PL r �, .. CURRENT GRADE
Iy. 4 . r \ r �• r % ae-, 'r i� 2V 2 / l T Y �{ �. \� 0 _ \
i_s'. - A o '�`' ram::_,;. '� 6 2 2`'t\R- „ �. o \ c_REMOVE EXISTING
1 - • 120 cgFS'es 3 '<.: , -- f19.42 - - . \
BARS WELDED �3.5 �iAx . D.c. ti , , x ,' b f r ,,: Te / 2.3 122':3 122.4 2.7 �' 1� 4 Z
µd r ' * x_ . - / 122.9 ' ^o _ CONCRETE: Y DITCtT<
(BIRD 1N ALVANIZED AFTER ASSE�LY) t " 'K°�4�> _-*:^ o o w
. ,.�%---� IIVI,.�.-�..,,;I
I nee ,"'-� AND JOIN .WFTtf '
1 ^� f 123.1 -1 �. ,? A \ DOWNyj}� : / 0
/. - . + �,`f'',"z t-1,FF '4£r X.s Fr ,. i. '?• -f "� -4 r / r0 1 .i `� 7� �_� %` '� '� \ \ ;\ - - ;7 -T
1 THICK, STEEL gym..- ^�,,
i!'>'. x S a= �} y iK: ' < '%' . r, 119.42 (/�� tiQ O 1 9 \ \
1. X 5". X 1 �, > w c . TC. `� • • 1 48' y G ! \ \ - -- . -_ - - .
/ 5 ER '0 4, ANGLE% - : + w-< F .+ ;a. POP y Qom/ (� --
.`- i 's v ,; �, ry •-- ° -., u-Fbyq,; r'+ t1<,,r» 3 d } _9--. - 'r7 1 R ERTI - O_� x �. " \ >
STIFFENER , L .8-�": a F: su $,:f 3 'l x=s.. 9.64 � 9a LINES (TYP 9' c? 'Y . \ ,
+ _,l._ -.1 .. M< :. Y, a�g y4 az�r �',`D�A ••<` - . . \"1-) + a - C) a, �+ ST `'\ _
' , x _ - .w '-1, t 4t4yiJw. r'i' . A �;jii. - - t y i t.. .wer?'i+$:4 ...: V rC e x 4 23.6 i .r' lJ� 9 `` - s
l SEE PLAI t �:fi �, . �„ �. �-�A . �, \ - N 5- c, \
`�'` i .S ,=�zn,..t�,.e;;�s.-e�,r„':;',z;:s 'r`" �.., i 119.77 - 6 - 6 e,/yam ` - _,
`,e'` - �„c'S+avi4 t.Y. ,g<"=,``un-F�=tsn"a a't.W;m.Yk.•-••' / - • .-� % X ,.Y[ i \ 1 m� A
FOR.° _ ..., �' � s. ...�., 8 43' ` i _ t' - o \ "I
V 1!- ^ ,..yam ev. -'a ,ie, a `e _`A` tif' - Y: _a-�. , '?k+s>4•' - - - _ _ •s \ -
'/. �. SIZE - C:, et ■ ? .t>- .,M 4, ✓1 ry'r,l lr'P`'c,'" Y,.' :u `l i,. ',f,,., - 4 ` -- .. ,- ,�• ` !
<d , _;;>< 3c>F'se k, y„w= ,r .0 ,'`Y.:X, S f`,,w.. N. r,.4 ¢i .',. '�'� 1 - , ♦ . _
/ q 123.9
�' `; - {', pR 5' ., _ >sf;.., �a ,,, , "'xa - _ �S' / _ • 1`0ATLERNA - -
• EX P DRAIN':.' g C„,•... s, o. o.[ o. .$ g �q \
ISTTN�n/3q"6.9C . - >:,s;,, ' s ' n Rp`AiE11Nt;[i 9 •v lC 4 1V o.5= & ~` S 1 KET h - I l '�j 1� G W �. 4
' 44PBON &RIP- s, A � Fes, � v - - I ` iq `� �� 0.51 :� / • .� 124.1 4! � \ � � � t 1
! 10 • ��OVED PER DEi , t - s f a s� ,, , ,, :rip BE BtiC s R ` 82 < '� ` ,% .4 n _�A ti �o 7 F\ c1 «
, ?l. miv. fA{pl. v q 119 0 _ m In _ ♦ 1 /
_ _ 2% TQ s' s si':- �...., �p� A, J' �! <,q 4 'V` 4 '\� 'y0 G 4 R7 .L�- �'fS , - e .
ty r �- { ON SHEET 13. STORM DRAIN, F .'.ri ter,:' ""t".�,y, TC c , ti k � `_ �c 8 \ DOWNDRAIN
C / _ s It aby'3;1C a5R3i try 1V S0 124.5 1 ; j
,' - { '! � `r ,,ia "'';rt ,� ^S�+" "' ' ! - _ . .' - - - O) .ti II- \1 ,tI - ' • 44' I 1 6 g - ',� -- \ \ � \ \ � ,
SDR 35 S€€ - - _ " - ■ i - 't alga ' K '4 -vr�> .r ( O, 1j91 1,R 5' 47 �5y T 2i 1 +9 - \ry,65 B \y 96 7, �3' - \ - `% `l . ..,.i,' � + '*"••.!
{ _ 1 4z: 4'�"5.4ja> a. ,. TC 4 1 __-•- 4s -_ to ��e I\�c \?y. � 124.s ', - ••\\ \ PLAN _ i I
PLAN F R SIZE -_ . ,,. r+ • � _Z \ ti 0. � O
BAND COUPLE Fl s . - g.:SS 01' 7 8 3J` I� ^ G 47' S� \�� \ \2� �0 \ \ a - � ` \ 1
_; _ - _ - { - • ., >x r. '§.-: .a c' 'F`°i L W '� \\9' 4 79'g2 f T.D.20' \ _ _ ` �2 �G� ` t� 21 3y ` - y \_ \ - . . '1
1 •' 3 " - .c £ .+,j''ir -\ -TC- i1 BR46' �2,, p ,li� 1 �g J 1
Y , ,fir£ Vim•, r EVC - _ _ 1 ;,, G IT' N. � - _ _ 1, ZcI ,y4 , \ \ ry
r ,aa 4 1� 4*a-1"r 63 ; ,1 \ t24.s JOIN OF j1
. / i ;; `z" r_ 4; 41 5 22' 22 .5 In 2 3' S` 4 I,. 5 4 211 260 �' . DOWNDRA(N TO I
•I - i $ i,A y 14 1 6 14 N - �� l• p 1 � i tc`/+,42 \ \ \ \
:AP 122.3 .122.3 122.s 122.7 123.0 6 �s ,� ce tc \ ry 4 6 EXISTING' V-DITCH DE"
6". , sF �- �1l �. \ NTS - .
e �,
. 6 !r �� 7 \yp2 x 123.3 t % X - la ` \ 1 \ �� ti e
G�C�/ ?err 1. Tci'2 �tcl� 4 ti� (\/1'2-3.5 s. R 122.s9 5S.3o� 124.9 �,,
'. V r 1 $ ia` �;�' YY r.-! .. 7 .,.. a - •�' \ 17 - `� V r+,� �.\ IV• 1�' �%• "V; ` \ t _ _ ',,. ..1
r ,a t - '' -*z ,V £",R f r Y�' K .;.�, t. '" 1 2 O- Oi' _ /
- 6. 6"I -,- $; .y �k-, ^,, ` f 1 r¢' , ;::3' ;; t£ 79 1,9.'S .� ^ .o. T \ 12.5. 'C `:>t - - , i
3Ar: " w" I', bs >"`:r;''' d. TC3T >C B' T'\ 47' 26' 20' 4 n 123.8 9 �18
�fr . t� \ t 125.2 h �' \ l
<v s IAA ` -- 4 a
� ', � s.
SDR 35 INLET ..DERAIL = I T .?Tt ' 6' M 3 VARIES 124.0 \\\ ,2 va ti
♦ \ 2X V •\ �I �1 J \
NTS' 't,>, w<µiy +. 5rA"> :. s - �\9os 77 08 �- �� \ ZQ y 13. 8' MIN T N �- tc �ti2 1 2 % t i
•.': 1201 , FK Y = ti _ - _ ti o 1 O v 2
t\ t- - _ .. z-a 'r , i3., i.,M w n _ >, , +•'' �G. TC '. 125 '.• \ '. Q ? f OF 1 ON 1 Rj 2 S ',, -
.`.I, '7 - 1 // _ • - „aw,- '' _ -< Y i t ; 'a' y,�4te4s r;A' i; _`F'bf'',s, �4,A 'L� w \�y0� 17yC7 •\1�' \�' `Z` _'tG �S' `S(OPf t 1Q' �ts 1.OZ 1' '(Go` \1 ' "� �O , t ` - _
ii _ I /// ' S `3� ;� = c. .,s±,A,^. ".:. .�,i�� �` �&'�,w ,<', e;;,.�3 i i' (t' ie �C '%C 4 1 M 4 '.�O \ I - 3"� 1 25.4 t ` \ -
+ - / 1 • ,t r.. - a, _ b'k.:£�„#., "tiw''rl'- ._ ! d_y.�'1Ss>Er�k''s:^ a$ :, --- --- 1 \ �J �4' '� - -
I z .ft•, ,.�.,�; s J .<,,�';..;'s,'`.>,^•;" ''7 v>s_"i�': ;i:,<.: pd _ 73' O 130 .\`L 0 �� ` 124.4 8 ,mod 9 12?.35 ) - -
4.
23' TYP 0� !? \ y
10 . Q I \229 I«-13' ( R \ \ a
�r � .� , I�. I 1,. 1 __�L -_.I.I __1I 11 1I-��._II "I! �. _��. I �_�;_I I� �II r "x�II, I ,� Il;/ �iI_-� l.-_I� , - _I -. 1. �I"1. 4�, I �II � _I � ! Iv ,.� _�_- _ - �� �-II - ". � � .I. - � .I�,. , , ,7�I + - j i - 8 "_ r i , 'tom - `' .>-•S,.'ma 3., r t. .5 27 2%' .5 J. 4 135 '�j� JJ' 't �A ` I�j n i -� \ ' i
/ji 7.D.25' ram. " '`' � CVC �S,`r --�- \`�� \5 "' h 124.4 11 .tih\� 1+�vc \\ T�4j N A 64' �' 3;ti �� , >
V' <, - .. � �-c . ___ - 7 `_- - -_�__._
1� _97_1 p 1-7�'' b___ -.11 . -_-
II
- C.// - � •, . ''8R Q5' ,`-,:`r:".a':.�a> STA 1+9 �T,.,.�u^,<,,;; - - -
1rz.,,;,_;: , BC "'_' Isplg ,- � !/- _ - - /-- OF OP 1 \� 3 ``t S / I \\ t23.53\ 1 t \i
i ; 120.17 n TC "' '� 3:1 14T Pif 140 _�ELfAVE f - - Z \ °!a `'� I IZ. -\ TC l t2s- �� 7 Q c 1
//�� , IV y'?�yA'x t, o II 140 _ -r-_ I3' \ %fit •sal T 66• \ ha 0 'A ° S\'�i .F „
(O x X a y' ;. - 9• og 137 _ I 11� Q r i ��' o/ Of �\\t�
wa z.< N + '` t --- -- 135 ! 1• 135 �� 1' Oei \�3 I
�■ ' �p �. `t' . < Eve ! / rp Ri 1�' OS• �� \\�I -� tt 1 ��' \3 t 1 }
s ,'� _ - �,, ate;-+s.a;# „a - 30' F<n r^� :r s wa'y -. .� c',S •J' `� �. �1, . o� '� ^'�. 1 N I 1� 132 i t t A\\ - *+I
. '-;a;,rt'S. - -=g"'`.�:: ss' 1 130 `b 1 12 - i _ _ - _ - - - -
o'r �` "° a 4y I - _ram a° ;\�. TC14 . _.� to 1 ( L Q 1 I 1 /� C 4„
„ ,^`< 2 " . ,.ii ,18 1113 - III„ s;: „tc - M 125 125 k i 1 - \1 SI.iALl:. k I 1 ,
�, r . < - 120 1+I A' 3:1 SLOPE I I 1 3:1 SLOPE `' - .i'' 1 ^� - - - -- - - j - �� BR49,12' �, SLOPE tzo I 120 - 43' IA / !f t� ` I
-_ _ - - - -
--.._. - -- - _ -_ , ----- - --__----- .._...-_ - - _ -- - -- - - - /I � -
_ - -- - - --- --- -- -
GW
,-.- ---.---
TRANSITION 2:1 SL TRANSITION '
_ �_. -, - -
..--ram
_
- _. r-
.-.--�''_-.. c �...- . _ - _ - - .»-� ..�" _.,-- .__----- - 7RgCT= gOUNDjJ3Y - - ' '- _
• r- - --- � SEE STORM DRAIN PLANS - - /PROPERTY LINE 1, J
_- - "- - - -'--- RETAINING WALL N0. 5 TO BE, -- FUTURE SOUNDWALL SEE
' ` -- ^ ~ '+ FOR CONSTRUCTION DETAILS -s- -
-T S
_ FOR CONSTRUCTION DETAILS -_ _ _LANDSCAPE ARCHITECTS PLAN - I
_- . , � ERTY DLI� - _ - -- - -- - _. _ - -- - -
BUILT PER SEPARATE PERMIT ,
, . . - - - - -- '-- -- --
- _ _ _- -I
•__.._--
..-- .,• -- -- -- --- ----- - --- - --
• .. - -- - --- - -
--. . r JAMBOREE ROAD, _•---- --`, -' ;"
_ r 1
-, t ...�.__....-�._.�__. - - t
�,.,.,,-_i-- _ .__ _ __
c �•.. ____ - - __ _- - ._ .
. - ---- - . _ _ "--- _ _ -.
_� _: i
: `
+ - _ . - - -
_ __
i
�j, ___ _________ __ _______ _ _ ____ _ __ __ _ _ __ ____ _ _ _
. --- _ _-
-
- i � T � ; .� � )
-- - - - - - - - -- - -
Ill I
A 11 I -- - _
--� / , ` ,
I -
i, i s,.
�A b „ � - 1i . � 4 1, ,
~a
I 1,
• . . REVISION REVISION FM : UNM TE SLVL1 OF:,+M BY : Roue cR�►n PaN
NJvEM ` DATE NTIAL_S APPROVED NL1lv1EER DATE fVT1ALS APPROVED o V4! - j
:I II -�. -I- --I -' I ,. -- .I -I - II s��
I
Qt10FESS/p
���vwc. �� NOS CONSUL T/N[3
h�
- STANDARD PACIFIC, L.P. No. 20596 m VOID RICH SCHULTz TENTATIVE TRACT NO. 15011 , l
--
. .. . d* Exp. 9 30 97 *�
- - � � - - - - - ` -CIVIL \Q• - 17320 Redhdl Avenue, Suile 350 (714) 251-8821 - _ _ '' -
-, - - ..Irvine, -Ca 92714 FAx 251-0516-' -I
IS,fS zwS1 �mwaehur bled costa me c�(z' rnia 9,2626 �r - LOT$ I `=.�_49 :.',
CAL 6
..
NEWPORT= °NORTH'
- STANLEY C. MORSE - RC€, NO, 20596 ' DATE,
'. - - ., „ 5, _ _ - - SURVEYING FLAN LNG.,. ENGIN@ERINc. CITY" OF=_`NEWPORT--BEACH ": 3FEETS,
,
-T.x _ _ .. - - - - . - -` _ - - . -
- _. .
I - _ - - _ . t - x - -
A 32540�RG 4 T6 0&-'
,
W
,
Y,.
Y
,n. - _ ,..
.
4 .._ .. ...� .. �� x.,, -. ,a _- .,. , ,. -... . «,. _,- i..,2 " t. , ^' .u. - ._ n x: -_.5 - .2 ... ., -„+._ �. M°ic, xa-_. �>� ..a - , ,.af.T=.
6 - _ -� _ - -' *,�' ` a'- - _. � _ ... ... -� - ..»- .d'm 'ea . : s w ..- . - _ _ -, .i i - _._ :. - .. _ . �.., _ ".-_ a S`.'.._ ......, . 1r._:id:`::_✓_ ,-..«,:�'�Yas•'^'."-.....-'"2��1?vL`,:>Yet4. <.: M£, _. ,..$..,,,' .
r.
r'
_�
. Qt C1QF-1N�T-PER STORM DRAIN PLAN
\ 2 CONSTRUCT SDR 35 INLET ASSEMBLY PER DETAIL HEREON
3 INSTALL 6• DRAIN PIPE ASS SDR 35
l { ,, ® INSTALL 8• DRAIN PIPE AIRS SDR 35
© INSTALL 1Z• DRAIN PIPE ABS SDR 35
\ . - (2 INSTAL!_ 15• DRAIN PIPE ABS SDR 35
`'� ,
SEWER, WATER STORM DRAIN & EMERGENCY ACCESS EASEMENT
20' !
10,
BAKER I ST. A1,
GRADING NOTES .��
a
GENERAL NOTES: m ADAMs AVE.ORANGE ,�ID?'
1
z �p
` 1. ALL WORK SHALL CONFORM TO CHAPTER 15 OF THE MUNICIPAL CODE (NBMC), THE PROJECT 1. ALL GRADING RELATED TO THE PROJECT SHALL. BE CONDUCTED IN ACCORDANCE CITY
OF COLLEGE ORANGE CO.
SOILS REPORT AND SPECIAL REQUIREMENTS OF THE PERMIT. WITH SCAQMD RULE 403. FORCOSTA wRCRouNDs a CITY {
w OUGH GRADING -PLANzs �R \ OF
2. DUST SHALL BE CONTROLLED BY WATERING AND/OR DUST PALLIATIVE. 2. AFTER CLEARING, GRADING, EARTH MOVING, OR EXCAVATION OPERATIONS WHILE z Y M ESA �,q. r I RO N E {
3. SANITARY FACILITIES SHALL BE MAINTAINED ON THE SITE DURING THE CONSTRUCTION PERIOD.
CONSTRUCTION ACTIVITIES ARE BEING CONDUCTED, FUGITIVE DUST EMISSION n $ a `�
SHALL BE CONTROLLED USING THE FOLLOWING PROCEDURES:'TE CT N 1
4. WORK HOURS ARE LIMITED FROM 7:00 AM TO 6:30 PM MONDAY THROUGH FRIDAY; ° GRADED SECTIONS OF THE PROJECT THAT WILL NOT BE FURTHER DISTURBED L� vlcroRLA
8:00 AM TO 6:00 PM SATURDAY, AND NO WORK ON SUNDAYS AND HOLIDAYS PER OR WORKED ON FOR LONG PERIODS OF TIME THREE MONTHS OR MORE O
SECTION 10-28 OF THE NBMC. ( ) } INEINP�f E - UNNERscM .
SHALL BE SEEDED AND WATERED OR COVERED WITH PLASTIC SHEETING TO10TATIVE TRA F- IN
5. NOISE, EXCAVATION, DELIVERY AND REMOVAL SHALL BE CONTROLLED PER SECTION 10-28 RETARD WIND EROSION. _
OF THE NBMC. U sTH < SL / BAY / U.C.L_, li
e GRADED SECTIONS OF THE PROJECT WHICH ARE UNDERGOING FURTHER / J
6. THE STAMPED SET OF APPROVED PLANS SHALL BE ON THE JOB SITE AT ALL TIMES. DISTURBANCE OR CONSTRUCTION ACTIVITIES SHALL BE SUFFICIENTLY
AND PROTECTING UTILITIES.
WATERED TO PREVENT EXCESSIVE AMOUNTS OF DUST. e r ! / OF ,�yE eoy . PRWECT
7: PERMITTER AND CONTRACTOR ARE RESPONSIBLE FOR LOCATING 3. DURING GRADING AND CONSTRUCTION ACTIVITIES' THE FUGITIVE DUST EMISSIONS ®149 ,f I T f
8. APPROVED DRAINAGE PROVISIONS AND PROTECTIVE MEASURES MUST BE USED TO PROTECT SHALL BE CONTROLLED USING THE FOLLOWING MEASURES: pFI
ADJOINING PROPERTIES DURING THE GRADING OPERATION.
9. CESSPOOLS AND SEPTIC TANKS SHALL BE ABANDONED IN COMPLIANCE WITH THE UNIFORM ° ONSITE VEHICLE SPEEDS ON UNPAVED ROADS SHALL BE LIMITED TO 15 T
p
E ' PLUMBING CODE AND APPROVED BY THE BUILDING OFFICIAL. MILES PER HOUR. ENTRANCES TO ALL ONSITE ROADS SHALL BE POSTED
WITH A SIGN INDICATING THE MAXIMUM SPEED LIMITS OF ALL UNPAVED ROADS. SAN i
10. HAUL ROUTES FOR IMPORT OR EXPORT OF MATERIALS SHALL BE APPROVED BY THE CITY ° ALL AREAS WITH VEHICLE TRAFFIC SHALL BE PERIODICALLY WATERED. \ `6
TRAFFIC ENGINEER AND PROCEDURES SHALL CONFORM WITH CHAPTER 15 OF THE NBMC.
_`G o 11. POSITIVE DRAINAGE SHALL BE MAINTAINED AWAY FROM ALL BUILDING AND SLOPE AREAS. STREETS ADJACENT TO THE PROJECT SITE SHALL BE SWEPT AS NEEDED TO
REMOVE SILT WHICH MAY HAVE ACCUMULATED FROM CONSTRUCTION ACTIVITIES `'G� PO�%� /O \\ � IJ epi
12. FAILURE TO REQUEST INSPECTIONS AND/OR HAVE REMOVABLE EROSION CONTROL DEVICES SO AS TO PREVENT ACCUMULATIONS OF EXCESSIVE AMOUNTS OF DUST. \
i ON -SITE AT THE APPROPRIATE TIMES SHALL RESULT IN FORFEITURE OF THE CONSTRUCTION \ /STORAG
€ SITE CLEANUP DEPOSIT. 4. NO GRADING (EXCEPT THAT NECESSARY FOR TRAIL ESTABLISHMENT AND IMPROVEMENTS, \
EROSION CONTROL, BLUFF STABILIZATION OR PREPARATION OF THE DEVELOPMENT AREA), 7=,�_ - - DYER I
13.1 ALL PLASTIC DRAINAGE PIPE SHALL CONSIST OF PVC AR ABS PLASTIC AND EITHER STOCKPILING OF SOIL OR OPERATION OF EQUIPMENT SHALL TAKE PLACE WITHIN THE BLUFF C7
}ASTM 2751, ASTM D1527, ASTM D3034 OR ASTM D1785. TOP SETBACK AREA ESTABLISHED BY THE BLUFF TOP SETBACK ORDINANCE. NO GRADING
OR STOCKPILING OF SOILS OR OPERATION OF EQUIPMENT SHALL TAKE PLACE WITHIN THE 40
14. NO PAINT, PLASTER, CEMENT, SOIL, MORTAR OR OTHER RESIDUE SHALL BE ALLOWED TO FOOT PROPERTY LINE SETBACK AREA ESTABLISHED BY THE BLUFF TOP SETBACK ORDINANCE _ ` BAY /
REMOVED FROMENTER THE SITE NBMC' ORSTORMDRAINS. ALL MATERIAL AND WASTE SHALL BE EXCEPT THAT NECESSARY FOR TRAIL ESTABLISHMENT AND IMPROVEMENTS, EROSION CONTROL, �CE,q /V /L,
BLUFF STABILIZATION OR PREPARATION OF THE -DEVELOPMENT AREA, OR. BELOW .THE LESSER
E OF 60 FOOT ELEVATION CONTOUR LINE ADJACENT TO JOHN WAYNE GULCH OR 100 FEET
EROSION CONTROL FROM A FORMALLY DELINEATED WETLAND IN JOHN WAYNE GULCH FRESHWATER MARSH.
;. �lFOR �
1. TEMPORARY EROSION CONTROL PLANS ARE REQUIRED FROM OCTOBER 15 TO MAY 15. 5. ALL NON -EMERGENCY GRADING RELATED TO BLUFF STABILIZATION/REMEDIATION SHALL
OCCUR DURING THE NON -BREEDING SEASON FOR THE CALIFORNIA GNATCATCHER. VICINITY MAP
2. EROSION CONTROL DEVICES SHALL BE AVAILABLE ON SITE BETWEEN OCTOBER 15 AND MAY 15. THE NON -BREEDING SEASON IS FROM AUG. 1 TO JAN. 31, REDUCED SCALE
I 3. BETWEEN OCTOBER 15 AND MAY 15, EROSION CONTROL MEASURES SHALL BE IN PLACE AT COASTAL SAGE COLOR
THE END OF EACH WORKING DAY WHENEVER THE FIVE-DAY PROBABILITY OF RAIN EXCEEDS
30 PERCENT. DURING THE REMAINDER OF THE YEAR, THEY SHALL BE IN PLACE AT THE END
F OF WORKING DAY, WHENEVER THE DAILY RAINFALL PROBABILITY EXCEEDS 50 PERCENT. 1. COASTAL SAGE SCRMS HABITAT SHALL BE REMOVED FROM EAST TO WEST TO ALLOW THE 00p�P rq�
I CALIFORNIA GNATCATCHER TO DISPERSE INTO OTHER ADJACENT AREAS OF COASTAL SAGE SCRUB. - IZ
4. LANDSCAPING PLANS SHALL BE SUBMITTED FOR APPROVAL, WORK COMPLETED AND A CERTIFICATE
OF CONFORMANCE RECEIVED BY THE CITY GRADING ENGINEER PRIOR TO CLOSURE OF PERMIT, a \O °Olrni�
` UNLESS WAIVED BY THE CITY GRADING ENGINEER. o ! 3' > 2'
i 5. TEMPORARY DESILTING BASINS, WHEN REQUIRED, SHALL BE INSTALLED AND MAINTAINED FOR �- L�
THE DURATION OF THE PROJECT. o TRANSITION WALL 1' 1' 8" °
00 00 Q 3' 2'
ITE DRAIN PER V) I �� TRANSITION
REQUIRED INSPECTIONS GU
ON SHEET 2
00 8"x8"x16"x2 COURSES J
I � � ��� •` ` '
1. APRE-GRADING MEETING SHALL BE SCHEDULED 48 HOURS PRIOR TO START OF GRADING HIGH BLOCK WALL �
I WITH THE FOLLOWING PEOPLE PRESENT:
• : OWNER, GRADING CONTRACTOR, DESIGN CIVIL ENGINEER SOILS ENGINEER GEOLOGIST CITY x
I - - GRADING ENGINEER OF THEIR REPRESENTATIVES. REQUIRED FIELD INSPECTIONS WILL bE I - - - - a $• }«Yj
OUTLINED AT THE MEETING. I r
F` 2. A PRE -PAVING MEETING SHALL BE SCHEDULED 48 HOURS PRIOR TO START OF THE I 133r SCALE 1 "=150' M 35 INLET ER
SUB -GRADE PREPARATION FOR THE PAVING WITH THE FOLLOWING PEOPLE PRESENT: I 8""� SDR P EXISTING.
OWNER GRADING CONTRACTOR, DESIGN CIVIL ENGINEER, SOILS ENGINEER, GEOLOGIST, °p
CITY GRADING ENGINEER OF THEIR REPRESENTATIVES. REQUIRED FIELD INSPECTIONS 134 CONTINUE W.W.M. REINF. STORM DRAIN PLAN GRADE,:
WILL BE OUTLINED AT THE MEETING. 132 p ( INTO TRANSITION WALL _
135 131 �M R%8"x15 x2 COURSES A��F ' {
GRADING FILLS/CUTS ( 130 41 40 3s -k- - - - - - - - - - - - - - - 10 ELEVATION =I
w w g HIGH BLOCK WALL
1. GRADED SLOPES SHALL BE NO STEEPER THAN 2 HORIZONTAL TO 1 VERTICAL. 136 45 44 43 42 37 .36 35� \ 11V11\J'ZION DRAIN 1
137 129 ` a
2. OUT SLOPES
FINISHEDESURFACE.TED TO NO LESS THAN 90 PERCENT RELATIVE COMPACTION 47�j�"" e I `yy �' LE D a1
138 128 ±
3. ALL FILLS SHALL BE COMPACTED THROUGHOUT TO A MINIMUM OF 90 PERCENT RELATIVE I a� 48 . �,y�� 33
PAD ELEVATION a
COMPACTION AS DETERMINED BY ASTM TEST METHOD 1557, AND APPROVED BY THE SOILS 139 127 112 111 110 109 108 `e90 V
ENGINEER. COMPACTION TESTS SHALL BE PERFORMED APPROXIMATELY EVERY TWO FEET IN I 49 115 1141 113 107 106 32 UlN I TC - TOP Of CURB ELEVATION
VERTICAL HEIGHT AND OF SUFFICIENT QUANTITY TO ATTEST TO THE OVERALL COMPACTION
EFFORT APPLIED TO THE FIELD AREAS. 140 126 31 I -�C( CF - CURB FACE.
50
4. AREAS TO RECEIVE FILL SHALL BE CLEARED OF ALL VEGETATION AND DEBRIS, SCARIFIED AND 121 122 123
APPROVED BY THE SOILS ENGINEER PRIOR TO PLACING OF THE FILL. I 141 ip16 I 11g 120 124
E'� I 117 118 125 30 ;, � � GB - GRADE BREAK
' 5. FILLS SHALL BE KEYED OR BENCHED INTO COMPETENT MATERIAL. 142 ' r 9 . HP . - HIGH POINT
i 6. ALL EXISTING FILLS SHALL BE APPROVED BY THE SOILS ENGINEER OR REMOVED BEFORE ANY ADDITIONAL FILLS ARE ADDED. 143 PVC -
BEGIN VERTICAL CURVE
7. ANY EXISTING IRRIGATION LINES AND CISTERNS SHALL BE REMOVED OR CRUSHED IN PLACE, + 51 87 86 85 84 83 82 >: EVC - END VERTICAL CURVE
BACKFILLED AND APPROVED BY THE SOILS ENGINEER. 144 52 92 gi 90 9 88 B1 80 7 28 27 26 25 24 2
8. THE ENGINEERING GEOLOGIST AND SOILS ENGINEER SHALL, AFTER CLEARING AND PRIOR TO 21 ` ., I CVC - CENTER VERTICAL CURVE
THE PLACEMENT OF FILL IN CANYONS, INSPECT EACH CANYON FOR AREAS OF ADVERSE I 145 53 78 2 19 `
TOW - TOP OF WALL
I STABILITY AND DETERMINE THE PRESENCE OF, OR POSSIBILITY OF FUTURE ACCUMULATION 54 99 100 101 102 103 104 �� �" t8 17
I OF, SUBSURFACE WATER OR SPRING FLOW. IF NEEDED DRAINS WILL BE DESIGNED AND 146 93 94 95 g 97 98 105 77 16
CONSTRUCTED PRIOR TO THE PLACEMENT OF FILL IN EACH RESPECTIVE CANYON. I 147 55 76 15 BOW - BOTTOM OF WALL
9. THE EXACT LOCATION OF THE SUBDRAINS SHALL BE SURVEYED IN THE FIELD FOR LINE s * 1 2 3 4 5 6 14 I o - DAYLIGHT LINE
AND GRADE. 56 MEET 7g 7
= 8 10. ALL TRENCH BACKFILLS SHALL BE COMPACTED THROUGHOUT TO A MINIMUM OF 90 57 74 �ti I 9 10 1312 ASPHALT
PERCENT RELATIVE COMPACTION, AND APPROVED BY THE -THE SOILS ENGINEER. THE 62 65 67 68 69 o o a oa
BUILDING DEPARTMENT MAY REQUIRE CORING OF CONCRETE FLAT WORK OVER 58 59 61 ILA 64 70 71 73 11 000gog o - 3/4" GRAVEL
UNTESTED BACKFILLS TO FACILITATE TESTING. 72 { I
11. THE STOCKPILING OF EXCESS MATERIAL SHALL BE APPROVED BY THE CITY GRADING ENGINEER. ys►
12. LANDSCAPING OF ALL SLOPES AND PADS SHALL BE IN ACCORDANCE WITH CHAPTER 15 -
- - - - -- - SHEET INDEX:
OF THE NBMC. - - - - - -5 ^ _ I SHEET 1 TITLE SHEET
I . 13. ALL CUT SLOPES SHALL BE INVESTIGATED BOTH DURING AND AFTER GRADING BY AN ---.-- ------ - a --- ---' ----=-- - ----_ ---=---s-- -'-- -- --- - ` � SHEET 2 DETAIL- SHEET '
ENGINEERING GEOLOGIST TO DETERMINE IF ANY STABILITY PROBLEM EXISTS. SHOULD _ ' _ -
y EXCAVATION DISCLOSE ANY GEOLOGICAL HAZARDS OR POTENTIAL GEOLOGICAL HAZARDS, r "7 -- _ -. r -- -=---------------------------- ----- ----- _- ._' - I PLAN
THE ENGINEERING GEOLOGIST SHALL RECOMMEND AND SUBMIT NECESSARY TREATMENT -- -- �- -- -- -- --� - -- - - - - -- - -- =a =•----- •---- i _SHEET 3 EROSION COPITROL
TO THE CITY GRADING ENGINEER FOR APPROVAL - - - -- -
_ _-- - -----'--- _.-"_ _ '- `• �" r" -fi -�`- - `� SHEET 4-6 GRADING PLAN SHEETS
~y^
14. WHERE SUPPORT OR BUTTRESSING OF CUT AND NATURAL SLOPES IS DETERMINED TO BE - - y __ I� I
___ -
NECESSARY BY THE ENGINEERING GEOLOGIST AND SOILS ENGINEER, THE SOILS ENGINEER _ - `--- - -- ----------
- WILL OBTAIN APPROVAL OF DESIGN, LOCATIONS FROM THE CITY GRADING ENGINEER PRIOR � - -- - . _. _- - - � , �: PRIVATE ENGINEER'S NOTICE TO CONTRACTOR _
TO CONSTRUCTION. - - - __-- - -
THE EXISTENCE AND LOCATION OF ANY UNDERGROUND UTILITY
PIPES OR STRUCTURES SHOWN ON .THIS PLAN ARE OBTAINED BY
15. THE ENGINEERING GEOLOGIST AND SOILS ENGINEER SHALL INSPECT AND TEST THE 6. A. AN APPROVED MATERIAL SUCH AS STRAW, WOOD CHIPS, PLASTIC OR SIMILAR MATERIALS A SEARCH OF AVAILABLE RECORDS. TO THE BEST OF OUR
I CONSTRUCTION OF ALL BUTTRESS FILLS AND ATTEST TO THE STABILITY OF THE SLOPE KNOWLEDGE THERE ARE NOT EXISTING UTILITIES EXCEPT AS .
AND ADJACENT UPON COMPLETION. SHALL BE USED TO STABILIZE GRADED AREAS PRIOR TO REVEGETAION OR CONSTRUCTION. CONSTRUCTION NOTES: -. -
INDEX MAP QUANTITIES: UNIT: QUANTITIES: -UNIT: QUANTITIES: UNIT: SHOWN rDUENPRECAUTIO� MEASURES TOO PROTECT THE
TO
16. WHEN CUT PADS ARE BROUGHT TO NEAR GRADE THE ENGINEERING GEOLOGIST SHALL B. AIR -BORNE AND VEHICLE -BORNE SEDIMENT SHALL. BE CONTROLLED DURING CONSTRUCTION i
DETERMINE IF THE BEDROCK IS EXTENSIVELY FRACTURED OR FAULTED AND WILL READILY BY: THE REGULAR SPRINKLING OF EXPOSED SOILS AND THE MOISTENING OF VEHICLES LOADS. OO INSTALL 12"x12 CATCH BASIN WITH DOME STYLE GRATE INLET 30 EA 14 CONSTRUCT JOIN OF DOWN DRAIN TO EXISTING 1 EA SANDBAG DOUBLE ROW, 2 BAGS HIGH MINIMUM 800 SSHOWN SHOWNONTHESE PLANS, OTHER LINES OR STRUCTURES NOT ]
HEREON
TRANSMIT WATER. IF CONSIDERED NECESSARY BY THE ENGINEERING GEOLOGIST AND SOILS
ENGINEER, A COMPACTED FILL BLANKET WILL BE PLACED.
17. THE ENGINEERING GEOLOGIST SHALL PERFORM PERIODIC INSPECTIONS DURING GRADING.
18. NOTIFICATION OF NONCOMPLIANCE: IF, IN THE COURSE OF FIILFILUNG THEIR RESPONSIBILITY,
THE CIVIL ENGINEER, THE SOILS ENGINEER, THE ENGINEERING GEOLOGIST OR THE TESTING
AGENCY FINDS THAT THE WORK IS NOT BEING DONE IN CONFORMANCE WITH THE APPROVED
GRADING PLANS THE DISCREPANCIES SHALL BE REPORTED IMMEDIATELY IN WRITING TO THE
PERSON IN CHARGE OF THE GRADING WORK AND TO THE CITY GRADING ENGINEER.
RECOMMENDATIONS FOR CORRECTIVE MEASURES, IF NECESSARY, SHALL BE SUBMITTED
-- DOCUMENTATION
1.
2.
3. A GEOLOGIC GRADING REPORT PREPARED BY THE ENGINEERING GEOLOGIST, INCLUDING
A FINAL DESCRIPTION OF THE GEOLOGY OF THE SITE, INCLUDING ANY NEW INFORMATION
DISCLOSED DURING THE GRADING AND THE EFFECT OF SAME ON RECOMMENDATIONS
INCORPORATED IN THE APPROVED GRADING PLAN. HE SHALL PROVIDE WRITTEN
APPROVAL AS. TO THE ADEQUACY OF THE SITE FOR THE INTENDED USE AS AFFECTED
BY GEOLOGIC FACTORS.
REVISION `
NJMBER DATE NTIALS APPROVED
1 2 Z2 i(O-(5biJ15s: Vr�GrTAi1. �flSIAl riv.i- CanlIGUI�RTIo�l,
���E
V-DITCH PER DETAIL CONSTRUCT TEMPORARY VISQUEEN SECONDARY OUTLET 130 LF
C. AN APPROVED MATERIAL SUCH AS RIP -RAP (A GROUND COVER OF LARGE, LOOSE CONSTRUCT SDR 35 INLET PER DETAIL ON SHEET 4 3 EA 15 CONSTRUCT TERACE DRAIN PER DETAIL ON SHEET 2 715 LF ® L-- ,r .�--,•.•• - _-
ANGULAR STONES) SHALL BE USED TO STABILIZE ANY SLOPES WITH SEEPAGE
PROBLEMS TO PROTECT THE TOP SOILS IN AREAS OF CONCENTRATED RUNOFF. 0 INSTALL 6" DRAIN PIPE ABS SDR 35 810 LF CONSTRUCT TOP OF BERM SOIL CEMENT 6' WIDE 2160 SF
16 CONSTRUCT DOWN DRAIN PER DETAIL ON SHEET 2 65 LF I ® }
® INSTALL 8" DRAIN PIPE ABS SDR 35 1620 LF 1 EA ® CONSTRUCT TEMPORARY CHAIN LINK FENCE 2550 LF
CONSTRUCT SPLASH WALL PER DETAIL ON SHEET 2 1
D. DURING THE PERIOD OF CONSTRUCTION ACTIVITY, EXISTING VEGETATION WHICH WILL BE © OR APPROVED EQUAL
RETAINED
APPROPRIATE, SIUFFERTE ALL E OROTECVE ETTED FROM FILTER FSTR PS, IC BY HE USAS TALL STANDS OF OF FENCES. IF INSTALL 10" DRAIN PIPE ABS SDR 35 150 LF 18 CONSTRUCT PARKWAY CULVERT TYPE 'C' 2 EA ®9 CONSTRUCT FILTER BERM VEHICLE ACCESS RAMP 1 EA
GRASS, CAN BE USED AS AN ALTERNATIVE AND/OR SUPPLEMENTARY METHOD TO PROTECT © INSTALL 12" DRAIN PIPE ABS SDR 35 1800 LF PER OCEMA STD PLAN NO 1309 PER DETAIL ON SHEET 3
AGAINST SEDIMENT BUILDUP. O7 INSTALL 15" DRAIN PIPE ABS SDR 35 200 LF 19 CONSTRUCT TOE DITCH PER DETAIL ON SHT 6 540 LF CONSTRUCT 3" AC OVER NATIVE 120 SF
7. A TEMPORARY BARRIER THAT WILL FUNCTION AS BOTH A VISIBLE WARNING TO CONSTRUCTION ® CONSTRUCT 2' WIDE INTERCEPTOR DRAIN 2200 LF ® CONSTRUCT 4" PERFORATED DRAIN PIPE ABS SDR 35 100 LF 31 CONSTRUCT 3" THICK 3/4" GRAVEL 120 SF
CREWS AND A PHYSICAL BARRIER AGAINST CONSTRUCTION ACTIVITIES SHALL BE INSTALLED ALONG PER DETAIL ON SHEET 2 INSTALL ORANGE SNOW FENCING 510 LF
THE 60 FOOT CONTOUR ABOVE THE JOHN WAYNE GULGH AREA PRIOR TO CONSTRUCTION OF 121 PLACE SANDBAG VELOCITY REDUCER PER DETAIL HEREON 1200 EA
ANY HAVE GRADING OR (INCSITE LUDING EPARALILATION OF LANDSCAP ION AND SHALL IN I PLACE UNTIL ALL SUCH ACTIVITIES 10 CONSTRUCT TRANSITION DRAIN PER DETAIL 10 1 HEREON 4 ® CONSTRUCT STREET DESILTING BASIN PER DETAIL ON SHEET 3 3 EA ® INSTALL SILT FENCING 1050 LF
CEASED11 CONSTRUCT 6 BLOCK WALL 2 COURSES HIGH SPLASH WALL 2 Eq
8. ALL REMOVAL, CLEARING AND GRADING WITHIN THE COASTAL SAGE SCRUB VEGETATION AREAS C2� CONSTRUCT GUNITE DRAIN PER DETAIL SHEET 4 475 LF ® CONSTRUCT TEMPORARY DRAINAGE INLET 10 EA
SHALL OCCUR IN THE PERIOD BETWEEN AUGUST 15TH AND FEBRUARY 1OTH. ANY REMOVAL OF s�-- �,..• .. .-_.y •.--- - .-•- " - , ® PLACE SANDBAG SINGLE ROW, 2 BAGS HIGH MINIMUM 3000 EA
WETLANDS RELATED TO THE SHEAR KEY AND CUTOFF TRENCH SHALL BE DONE AT THE SAME Q CONSTRUCT CONCRETE FLARED APRON TRANSITION TO V-DITCH, 15 SFl
TIME. SEE COASTAL SAGE REVEGETATION PLAN. Q ._ PER DETAIL 13 ON SHEET NO. 6 /
EMERGENCY TELEPHONE NUMBERS "�1-__`,.--",.,,. -,,"''`,EARTHWORK QUANTITIES
BASIS OF BEARINGS BENCH MARK
AGENCY NUMBERS
SOUTHERN CALIFORNIA GAS COMPANY 634-0251 CUT
SOUTHERN CALIFORNIA EDISON COMPANY 895-0221
PACIFIC TELEPHONE COMPANY 611
CITY OF NEWPORT BEACH (UTILITIES) 644-3011 FILL
COUNTY SANITATION DISTRICTS 962-2411
COMCAST CABLEVISION 542=6222, AFTER 6:00 PM 542-3975
COMMUNITY 720-4040
UNDERGROUNDBLEVISION SERVICE ALERT 1-800-422-4133 IMPORT
PREPARED FOR: I PREPARED UNDER THE SUPERVISION OF:
STANDARD PACIFIC, L.P.
9565 Most maearthur blvdloosl¢ mesa, cal2lomia 92626
2629000 C,Y,
2629000 C.Y.
0 C°Y°
PREPARED BY:
THE BEARINGS SHOWN HEREON ARE BASED UPON
THE BEARING BETWEEN O.G.S. HORIZONTAL CONTROL
STATION NO. 6249 BEING N 41149'45" E PER
RECORDS CURRENTLY ON FILE IN THE OFFICE
OF THE ORANGE COUNTY SURVEYOR.
MDS CONSUL TING
N0. 20596 m MORSE DOKICH • SCHULTZ
a Exp. 9-30-97
* * 17320 Redhill Avenue, Suite 350 (714) 251-8821
%q7F CLAUF\P Irvine, CA 92714 FAX 251-0516
1� PLANNING • - ENGINEERING - • SURVEYING
HORIZONTAL CONTROL BASED UPON CALIFORNIA COORDINATE. CONTROL
SYSTEM CONE VI.
VERTICAL CONTROL BASED UPON BENCH MARK NO. 3N-56-77.
ELEVATION = 117.59, ADJ. 1985
CITY OF NEWPORT BEACH
THIS PLAN IS SIGNED BY THE CITY OF NEWPORT BEACH FOR CONCEPT AND
ADHERENCE TO THE CITY STANDARDS AND REQUIREMENTS ONLY.
THE CITY IS NOT RESPONSIBLE FOR DESIGN ASSUMPTIONS AND ACCURACY.
PUBLIC WORKS DIRECTOR
DATE
THE CIVIL ENGINEERING SHALL NOT BE RESPONSIBLE IN ANY WAY
FOR THE CONTRACTORS' AND SUBCONTRACTORS' COMPLIANCE•
WITH THE OCCUPATIONAL SAFETY AND HEALTH REGULATIONS
OF THE U.S. DEPARTMENT OF LABOR OR WITH THE STATE OF
CALIFORNIA DEPARTMENT OF INDUSTRIAL RELATIONS;
CONSTRUCTION -SAFETY ORDERS."
SOILS ENGINEER
LEIGHTON & ASSOCIATES,;
17781 COWAN STREET
IRVNE, CA 92714.
(714) 250-1421 "
ROUGH GRADING ' PLAN
�c
SHEET
`1
TENTATIVE TRACT NO. 15011
LOTS 1-149� OF
NEWPORT NORTH`
CITY OF NEWPORT BEACH SHEETS
; - 32540\RG-1 DATE 02-16-% ` (
P
MAR 8,'1996 {r
._�_v �-�-.�.�-_� ...-r.�_f-.._�.� -.. __.. '.1 -_ ..�i �`_` 11�`... ..__� _ .:.1_:._ -:_ •�:i- - -- 'iy��_.: ___ v , aa•_.:�4L+���.J-i,c .c