Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutX2012-0204 - Calcspool
engineering
inc.
1201 N. Tustin Avenue
Anaheim, CA 92807
Fax: (714) 630-6114
Phone: (714) 630-6100
ATTACHED LATTICE PATIO COVER
STRUCTURAL CALCULATIONS
•
ATTACHED LATTICE
PATIO COVER
DESIGN BASED ON CBC 2007 EDITION AND IBC 2006 EDITION
LUMBER: DF-L #2 (OR AS NOTED)
CONCRETE: Yc: 2,500 PSI
MASONRY: f'm: 1,500 PSI
REINFORCING Fy: 40,000 PSI (GRADE 40) (OR AS NOTED)
ALLOWABLE SOIL BEARING: 1,500 PSF (1/3 INCREASE FOR LATERAL)
02/08/2012 02:44:56 PM Page 1 of 11
MProjects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012
POOL ENGINEERING INC. Attached Lattice By: D. Bosse.
Standard Detail 51 1 0-F Patio Cover
Detail 5-1: Attached Lattice Patio Cover
This plan has been desmged in accordance with the 2010 CDC and the 2000 IBC.
Patio Cover Properties:
Lcover 22.5ft column to column length of patio cover
Loh
= 211,
length of overhang
q :=
1500psf
soil bearing capacity
-gyp :=
100pcf
passive sod pressure
µ =
0.25
soil friction coefficient
G =
0.50
specific gravity of DF-L
Patio Cover Loading:
Dead load:
Lattice = 4.7•psf
Rafters = 1.4•psf
Misc := l.lpsf
- DL := Rafters + Lattice + Misc
Live Load:
LL := 10psf
Max. weight lattice
Max. weight of rafters
(CBC/IBC Appendix 1)
We,,, := 17.5ft ledger to column width of patio cover
hp;l := 8ft height of column
plat 4 dlat 6 Splat 12in
lattice dimensions are for uplift calc's only
7oouo := 150pef unit weight of reinforced concrete
ry,,,,,,:= 135pef unit weight of grouted cmu
DL = 7.1psf Roof Dead Load
r
02/08/2012 02:44:57 PM Page 2 of 11
W:\Projects12012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012
POOL ENGINEERING INC. Attached Lattice By: D. Bosse
Standard Detail S 1 10-F Patio Cover
Structure Period:
hmax= 9.5ft max, height of structure (used for period calculations only)
hmin = 8 ft min. height of structure (used for period calculations only)
Ct := 0.02 period coefficient per ASCE 7-05 Table 1 2.5-2
r
h10.75
T,,,rx:= s Ct ftnXJ T,,,ax = 0.108 s approximate fundamental period, max. value
Period = "Short period structure per ASCE 7 Section 12.8.1.3"
0.75
hmin
T,nn, .— s Ct ft Tmin = 0.095 s approximate fundamental period, min. value
Rigid = "Not a rigid structure per ASCE 7 Section 15.4.2"
SEISMIC FACTOR: cBci1BC
5eicmic Ground Motion Values Non -Building Structure (ASCE 7-05 Section 15.4)
Site —Class := D Site Cla55 (ASCE 7-05, Section 1 1 .4.2) 1,,is 1.0 Occupancy Importance Factor
Ss:= 1.640 Short -period Spectral Response Acceleration R:= 2 Ke5lpo1150 Modification Factor
St := 0.586 1-5ec Period Spectral Response Acceleration P := 1.0 Redundancy Factor
Ca := 1.0 Deflection Amplification Factor
Site Coefficients
Fn = 1 ASCE 7-05 TABLE 1 1 .4-1 Fv = 1.5 ASCE 7-05 TABLE 1 1.4-2
SDS := 3 T,� Ss SDS = 1.093 Short Period Design Spectral Acceleration Parameter (ASCE 7-05 Eq. 1 1 .4-3)
SDl := 3 F St SDt = 0.586 1-Sec Period Design Spectral Acceleration Parameter (ASCE 7-05 Eq. I 1 .4-4)
Seismic Response Coefficient (ASCE 7-05 Section 12.6. 1 . 1 )
C SDOscis C 0.547 Seismic Res on5e Coefficient (ASCE 7-05 E 1 2.6-2)
R = p q
Cs3 := 0.03 Minimum Non -Budding Seismic P,e5pon5e Coefficient (ASCE 7-05 Eq. 1 5,4- 1 )
0.8. Sl' lseis
CA := R CA= 0.234 Minimum Non -Building Seismic Response Coefficient (ASCE 7-05 Eq. 15.4-2)
C, = 0.547 Governing SeSmic Response Coefficient
CBCABC ALTERNATE BASIC LOAD COMBINATIONS USING ALLOWABLE STRESS DESIGN ,
(Section I G05.3.2, Eq. I G-20 S I G-2 1)
,
Sf:= PPC�s Sf= 0.39 horizontal 5eemic load factor (ASCE 7-05 Eq. 1 2.4-3)
1.4
0.2 SDs
Sfv := Sf„ = 0.156 vertical 5e5mic load factor (ASCE 7-05 Eq. 1 2.4-4)
1.4
02/08/2012 02:44:57 PM Page 3 of 11
W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012
POOL ENGINEERING INC. Attached Lattice By: D. Bosse
Standard Detail S 1 I O-F Patio Cover
LATTICE: Self Weight * Uniformly -Distributed Live Load
PROPFRTIFS:
bn = 4 width
do = 6 depth
trill w = 12 in
Grade = 2
Llat = 11.25. [1
bla(=3.5-in
dlat=5.5.in
A=19.25•in2
S = 17.646 in3
1= 48.526•in4
E = 1600000•psi
CD = 1.00
Cr = 1.00
dnotch = 1.5- in
CALCULATIONS:
wsol'F = bleCdlat-Uood
w's if =
4.7-plf
w := trib_w.(LL) + wself
w = 14.7 plf
w. Llzt
Vmax :=.
Vmax = 83lb
2
2
w.Llat
Mmax =
Mmax = 23216•11
8
V
3 max d lat
<
f _
fv = 12•pst
g'v =
180-psi
2 A — Anotch dlat — dnotch
f Mmax
b�=
f 158 si
6= p
<
F' h=
1170 psi where C 1.3 F 900• si
P F= b= p
S
4
5 wLlat
<
Llat
b:=
b= 0.068•in
= 0.563-in
384•E•I
240
5•trib w•LL.Llat4
Ll t
bLL:=
6LL = 0.046-in
<
= 0.375 in
384•E-I
360
USE _ "4x6 DF-L #2 LATTICE @ 12in O.CMITH 1.5in MAX. NOTCH TO BEAMS"
n
02/08/2012 02:44:57 PM Page 4 of 11
W:\Projects\2012\0093-12 Patio Cover- Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012
POOL ENGINEERING INC. Attached Lattice By: D. Bosse
Standard Detail 51 10-P Patio Cover
RAFTER. Uniformly Distributed Load
RAFTER PROPERTIES:
be = 6 width do = 12 depth
trib_w = 135•in
Lraf = 17.5 ft
Grade = 1
braf = 5.5.in
draf = 11.5-in
A= 63.25-in 2
S = 121.229 in3
I = 697.068 in4
E = 1600000•psi
CD = 1.00
Cr = 1.00
dootch = 0•in
RAFTER CALCULATION5
w:=
trib_w.(DL+ LL)
w= 192.9•plf
W.I'raf
Vmax
:=
Vmax = 1688lb
2
2
�.L,.f
Mmax
:=
Morax = 73841b- ft
8fV
3 Vma
2 A
Mmax
fb
fb = 731 -psi
S
5 w-Lraf4
S :=
8 = 0.365•in
384•E•I
5 • trib_w• LL• Lraf4
bLL :=
SLL = 0.213 - in
384 E•I
USE _ "6x12 DF-L #1 RAFTERS @ 11.25ft
F
µ . Lraf
Rraf 2
G F'v = 170-psi
Rraf = 1687.7lb
G F'b = 1350•psi where CF = 1 Fb = 1.350-psi
< Lraf
= 0.875 in
240
Lraf
= 0.583•in
360
CHECK REACTION AT LEDGER:
HANGER = "SIMPSON'HU' HANGER"
Zscrow 3501b Lateral load capacity of 5/8" dia. lag screws
Rraf
No —Screws:— Ceil —,1 No —Screws = 5 Check = "OK"
Zscrcw
USE = "USE 3x12 DF-L #2 LEDGER WITH (5) 5/8" DIA. LAG SCREWS"
R
02/08/2012 02:44:57 PM Page 5 of 11
W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012
POOL ENGINEERING INC. Attached Lattice By: D. Bosse
Standard Detail S 1 1 O-F Patio Cover
BEAM: Uniformly Distributed Load � Point Load at Any Location
BEAM PROPERTIES:
b„ = 6 width
d = 12 depth
trib—w = 0
Lbm = 22.5 ft
Grade = 1
a=11.25ft
b=11.25ft
bbm = 5.5 in
dbm = 11.5-in
A = 63.25 in2
S = 121.229•in3
I = 697.068•in4
E = 1600000•psi
w,,If = 15.373.plf
W.isc = 0•plf
d❑otch = 0•in
BEAM CALCULATIONS
P := Vm.
P = 1688lb
w := trib_w•(DL + LL) + wselr + wmiso
w = 15.4.plf
w-] bm P max(a,b)
V — +
max •—
V — 101716
, nx —
2 Lb.
2
w Lb,,, P—a
Ml = +
M1 = 10466lb•ft moment at center
8 2
w•a•b P•a b
Mz :_ — + —
MZ = 104661b•ft moment at point 'a'
2 Lb.
Mmax := max(M1, M2)
Mmax = 10466lb- ft
V
3 my
fV :_ —•— fv = 24 psi < F'v = 170 psi
2 A
fb := Ms axax fb = 1036•psi C F'b = 1350•psi where CF = 1 Fb = 1350•psi
5•w•L 4
61 — bm + Pa 3 Lbn2 — a2 81 = 0.7-in deflection at center
384•EI 12E1 4
2 2
52 = w a .(Lb,n3 — 2•Lb..a2 + a3) + Re .b 62 = 0.7•in deflection at point 'a'
24-E I 3•E•I.Lbm
5:= max(61,8z) 6= 0.7•in < Lbm = 1.125-in
240
Lb.
6LL• 5 DL+LLL 6LL=0.408-in G 360 =0.75-in
BEAM = "6x12 DF-L #1 BEAM"
A
02/08/2012 02:44:57 PM Page 6 of 11
W:\Projects\2012\0093-12 Patio Cover -Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012
POOL ENGINEERING INC. Attached Lattice By: D. Bosse
Standard Detail 51 10-P Patio Cover
WIND DE51GN: CBC/IBC
f := mint 1 1 f = 9.24 Hz approximate fundamental frequency of structure
Tmin Tmax/
Structure = "Is a rigid structure in accordance with ASCE 7-05 Section 6.2"
Omen Building (ASCE 7-05 Section G.S. 1 3)
Exp:= C Exposure Category (ASCE 7-05 G.5.G.3) Iwind:= 1.0 Importance Factor (ASCE 7-05 G.5.5)
V := 85mph Basic wind speed (ASCE 7-05 Figure G-1) Kd := 0.85 directionality factor (ASCE 7-05 G.5.4.4)
Gw= 0.85 Gust effect factor (ASCE 7-05 G.5.5) K�= 0.85 exposure coefficient (ASCE 7-05 G.5.G.G)
CN:= 1.2 Pressure Coefficient (Figure G-15) Kzf:= 1.0 topographic factor (ASCE 7-05 G.5.7.2)
qh:= 0.00256•Kz-Kye'Kd'V .1wind qh= 13.4•psf Velocity Pressure (ASCE 7-05 G.5. 10)
p := gh•Gw CN p = 13.6 psf design wind pressure (ASCE 7-05 Eq. G-25)
Vwind PI (hmax — hmin)'Lcover Vwind = 460 lb total wind base shear
Vseismic = Sf'Lcover'Wcover'DL Vseismio= 1099lb total seismic base shear
Controlling = "Seismic loading controls lateral design"
brat= 3.5•in dtat= 5.5•in SPIat= 12-in
C,,ptift = 0.458AdIjustment for open lattice
puplift:= L3,Cuplift'(p)
Poplin = 8.1.psf net uplift force on structure (ignore dead load)
Wind Uplift Desio�n
Post Uplift:
Lcover Wcover 2
txib_A :_ � + Loi, � +Loh trib_A = 142.4 ft
Poplift:= trib_A•puplitt Puplift= 1157lb
USE _ "SEMPSON'CBSQOR'CCQM' COLUMN CAP"
Rafter Uplift:
trib_Araf SPrat-\Lraf. + Loh) trib_Araf = 219.375 It
Puplift raf := trib_Araf'pup6n Puplift of = 1782lb
USE _ "SIMPSON'HU' HANGER W/ MAX. NAILING"
02/08/2012 02:44:57 PM Page 7 of 11
W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012
'001 ENGINEERING INC. Attached Lattice By: D. Bosse
5tandard Detail 5 1 1 0-f Patio Cover
I G" MASONRY PILASTER DESIGN - Allowable Stress Design
fn, := 1500 psi compressive strength of masonry
Er, 900•f E,,, = 1350000-psi
wpil = 16in width of pilaster
PDL := trib—A•DL + P,elf PDL = 2937.763lb
P := PDL + Sf PDL + PLL P = 4.82 kip
V Sf'PDL
E, :— 29000000 psi
w
1-2
T:=
An:= w 2
1
Fb := 3 fn
BarSize = 4
V = 1147lb
E,,, = 1350000 psi
2
Pself Wpil 'hpil'701nu
PLL:= trib_A-LL
Pelf = 19201b pilaster self weight
PLL = 1424.375 lb
total axial load on pilaster
M := Sf-PBeh hpit + Sf-(trib—A-DL)-bpil
2
M = 6178 lb- ft
r= 4.511•in Radius of Gyration bpil = 21,283 Slenderness Ratio < 99
r
An = 244•in2 Cross Sectional Area of concrete column
Es
Fb = 500•psi n := n = 21.481 cover := 2 in cover on reinforcing bars
E,n
Nob,, = 2 Number of bars per face ;= BarSize in = 0.5•in Diameter of
8 Reinforcmg Bars
F, = 20000 psi Allowable stress in reinforcmg steel (Gr 40 for #4 bars � smaller, Gr 60 for #5 bars 4 larger)
Q2
As:= 1r4 -Nob,,) As = 0.393•in2 Area of steel
r I
Pal:= [�0.25•f)•Ae+ 0.65•As•j 1 — h14•Pitr 0- Pal = 94 k ip
P 1�0.25 f )•A + 0.65•A •F�•(70 /2 P 1046 ki
"z = ,n „ J "z = p
llpil
d:=w— cover —± d=13.375-in
2
P = As P = 0.00188 k = 2 pm + (p•ri2 — pm
w•d
Ms := F,-A,•j •d Ms = 8034-1b ft Yedding of steel
Fb•k•w•d2
M,n := Mm = 14361-lb. ft Failure of Concrete
2
P" := if hpil < 99, P 1, P�J Pa = 94•kip
r
Compression = "OK"
k=0.247 j:=1-1{
3
M" := 3 •min(m,, Ma,)
Flexure = "OK"
P M
— + — = 0.628 < 1 .0 Interaction = "OK"
P" M"
USE _ "16in SQUARE PILASTER WITH (4) #4 VERTICAL BARS & #3 TIES @ 8in O.C."
j = 0.918
M"= 10712•lb ft
a
02/08/2012 02:44:57 PM Page 8 of 11
W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf OPool Engineering, Inc. 2012
POOL ENGINEERING INC. Attached Lattice By: D. Bosse
Standard Detail S I I 0-F Patio Cover
SPREAD FOOTING ANALYSIS: I G" Pilaster
df:= 18in
depth of footing
bf= 46•in
width of square footng
V = 1147lb
seismic base shear
2
Wfooting:= b£ .df ycouc
W := PDL + Wfooting
MOT := M + V• df
R f := W
Rf = 6244 lb
bf
kern:— —
kern= 7.667-in
6
VERTICAL BEARING:
Rf + PLL
µ = 0.25
friction of sod
1'eo❑c = 150•pef
unit weight of reinforced concrete
q = 1500-psf
soil bearing capacity
Wfooting = 3306lb
weight of footing
W = 6244lb
total dead load load
MOT= 7899lb. ft
overturnmg moment for footing
resultant force from triangular sod pressure distribution
MOT
ef:=—
ef=15.18-in
Rf
gma = 2 gmax = 522 psf < q = 1500 psf
bf
Vert Bearing = "OK"
TRIANGULAR SOIL PRESSURE DISTRIBUTION:
a := 3 bf
_ of a = 23.459•in
2
2-Rf
if e > kern: q2:— a b
f
condition = "e > kem" Therefore,
q = 1500•psf gall°w := 4 3 g
bf
MR := W-- MR = 11968•lb ft
2
F := Wµ F = 1561 lb
V = 1147lb V = 11.471b
0.9-F = 1405lb > V = 1.1471b
0.9'MR = 10771 lb ft > MOT = 7899lb. ft
bf2 C b+ef�
if e < kern: q2 :_ — 1 —
q2 = 1666-psf Max Sod Pressure
gepov,, = 2000 psf Allowable Soil Pressure
Soil Pressure = "OK"
Resisting Moment
Friction force resisting sliding
Total Base Shear
Sliding = "OK"
Overturning = "OK"
W
N
p2
02/08/2012 02:44:57 PM Page 9 of 11
W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012
POOL ENGINEERING INC. Attached Lattice By: D. Bosse
Standard Detail 51 1 0-F Patio Cover
STRUCTURAL DE51GN OF FOOTING: ULTIMATE STRENGTH DE51GN
Design Loadmg:
M,,:= 1.4Mpp Mu= 11058•lb•ft Ultimate Moment on footing 1:= bf w 1= 15.187-in
2
P,,:= 1.2.PDL+ 1.4-PLL
Footino Fronertie5:
f, := 2500•psi
Bar:= 5 Bar Size
d := df —cover — ilia-
2
iT.dia2
As :=
•Noban
4
As' fY
a :_
0.85-f bf
M,, :=
As fy (d a l
2
P,;12 2 Ma-
M°°
+
2bf bf
Pa = 5519-1b Ultimate Axial Load on footing
fy := 40000•psi 31 :— 0.85 (� := 0.90
Spacing:= 12in ilia := Bar —•m ilia= 0.625•in cover:= Sin clear cover
8
rbf— 2•cover— dia
d = 14.688•in Nobs := ceil Nobas = 4 total # of bars in footing
Spacing
A, = 1.227•in2 Area of Steel Provided
a = 0.502•in Depth of equivilent rectangular stress block
M„ = 59054lb•ft NOminal Moment strength
Design Moment in Footing
ep M„
= 5314811bft >
Check Minimum/Maximum Steel Percentage:
3t f (
87000 1
Pbnl •— 0.85
C
I\
Pba1=
0.031
fY
87000 + fY • b)
Pmax:= 0.75-Pba1
pmnx=
0.0232
3 b fe
2001
Pmin =max
C
Pmin =
0.005
f
Yt
f b)
Y
0-Mu= 53148lb-ft
>
1.333•
Mile = 11271lb ft
Mae = 84551b, $
Balanced renforong Ratio
Maximum reinforong Ratio
Minimum Reinforcmg Ratio
Footing = "OK"
Minimum Flexural steel 15 not required if provided
tensile reinforcment 15 at least 1/3 greater than
what 15 required (ACI 3 18-05 10.5.3)
p :_ As p = 0.0018 Ratio of Tension Reinforcement
bf d
Pmax = 0.0232 > p = 0.0018 Ratio = "OK"
SIZE _ "46in SQUARE x 18in DEEP SPREAD FOOTING"
REINFORCING = "#5 BARS @ 12in O.C. EACH WAY, Sin CLR. FROM BOTTOM"
I
02/08/2012 02:44:57 PM Page 10 of 11
W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012
POOL ENGINEERING INC. Attached Lattice By: D. Bosse
Standard Detail S 1 1 C-F Patio Cover
POLE FOOTING DESIGN: I G" Pilaster
Foci := "Square" Square or Round footing
Pmm:= PDL+ PLL Pm,,x = 4362lb maximum axial loading from above
gallow = q gallow = 1500•psf allowable boil bearing capacity
w = 24-in W = "square width of footing"
d = 59-in D = "depth of footing"
q = 1500 psf Soil bearing capacity
'yp = 100•pef pa55we earth pressure
Pmax
Arequired:= area of footing required for boil bearing
gallow
Arequired = 2.908 ft2 < Aprovided = 4 ft2 Vertical_Bearing = "OK"
NON CONSTRAINED AT GROUND LEVEL (SEE CDC/IBC 1505.7.2. 1)
V = 11471b M = 6178lb•ft Service level base shear and moment
b = 33.941-in diagonal dimension of footing
h := M h = 5.386 ft effective height of lateral loading
V
Sl :_ �2.7p.d)• 3 St = 437.037•psf allowable lateral soil -bearing pressure
Per CBC/IBC Table 1804,2)
2.34• V
A:= A= 26.058•in
St b 11
drequired 2 ' 1 + 4.36 A + 1J depth required to resist lateral loading
droquired = 57.811 -in < d = 59-in Depth = "OK"
USE _ "24in SQUARE x 59in DEEP POLE FOOTING with (1) #4 VERTICAL BAR EACH CORNER"
TIES = "(3) #3 TIES @ TOP & BOTTOM 5in and 43 TIES @ 12in O.C. THROUGHOUT"
02/08/2012 02:44:57 PM Page 11 of 11
W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012