Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
X2012-0204 - Calcs
pool engineering inc. 1201 N. Tustin Avenue Anaheim, CA 92807 Fax: (714) 630-6114 Phone: (714) 630-6100 ATTACHED LATTICE PATIO COVER STRUCTURAL CALCULATIONS • ATTACHED LATTICE PATIO COVER DESIGN BASED ON CBC 2007 EDITION AND IBC 2006 EDITION LUMBER: DF-L #2 (OR AS NOTED) CONCRETE: Yc: 2,500 PSI MASONRY: f'm: 1,500 PSI REINFORCING Fy: 40,000 PSI (GRADE 40) (OR AS NOTED) ALLOWABLE SOIL BEARING: 1,500 PSF (1/3 INCREASE FOR LATERAL) 02/08/2012 02:44:56 PM Page 1 of 11 MProjects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012 POOL ENGINEERING INC. Attached Lattice By: D. Bosse. Standard Detail 51 1 0-F Patio Cover Detail 5-1: Attached Lattice Patio Cover This plan has been desmged in accordance with the 2010 CDC and the 2000 IBC. Patio Cover Properties: Lcover 22.5ft column to column length of patio cover Loh = 211, length of overhang q := 1500psf soil bearing capacity -gyp := 100pcf passive sod pressure µ = 0.25 soil friction coefficient G = 0.50 specific gravity of DF-L Patio Cover Loading: Dead load: Lattice = 4.7•psf Rafters = 1.4•psf Misc := l.lpsf - DL := Rafters + Lattice + Misc Live Load: LL := 10psf Max. weight lattice Max. weight of rafters (CBC/IBC Appendix 1) We,,, := 17.5ft ledger to column width of patio cover hp;l := 8ft height of column plat 4 dlat 6 Splat 12in lattice dimensions are for uplift calc's only 7oouo := 150pef unit weight of reinforced concrete ry,,,,,,:= 135pef unit weight of grouted cmu DL = 7.1psf Roof Dead Load r 02/08/2012 02:44:57 PM Page 2 of 11 W:\Projects12012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012 POOL ENGINEERING INC. Attached Lattice By: D. Bosse Standard Detail S 1 10-F Patio Cover Structure Period: hmax= 9.5ft max, height of structure (used for period calculations only) hmin = 8 ft min. height of structure (used for period calculations only) Ct := 0.02 period coefficient per ASCE 7-05 Table 1 2.5-2 r h10.75 T,,,rx:= s Ct ftnXJ T,,,ax = 0.108 s approximate fundamental period, max. value Period = "Short period structure per ASCE 7 Section 12.8.1.3" 0.75 hmin T,nn, .— s Ct ft Tmin = 0.095 s approximate fundamental period, min. value Rigid = "Not a rigid structure per ASCE 7 Section 15.4.2" SEISMIC FACTOR: cBci1BC 5eicmic Ground Motion Values Non -Building Structure (ASCE 7-05 Section 15.4) Site —Class := D Site Cla55 (ASCE 7-05, Section 1 1 .4.2) 1,,is 1.0 Occupancy Importance Factor Ss:= 1.640 Short -period Spectral Response Acceleration R:= 2 Ke5lpo1150 Modification Factor St := 0.586 1-5ec Period Spectral Response Acceleration P := 1.0 Redundancy Factor Ca := 1.0 Deflection Amplification Factor Site Coefficients Fn = 1 ASCE 7-05 TABLE 1 1 .4-1 Fv = 1.5 ASCE 7-05 TABLE 1 1.4-2 SDS := 3 T,� Ss SDS = 1.093 Short Period Design Spectral Acceleration Parameter (ASCE 7-05 Eq. 1 1 .4-3) SDl := 3 F St SDt = 0.586 1-Sec Period Design Spectral Acceleration Parameter (ASCE 7-05 Eq. I 1 .4-4) Seismic Response Coefficient (ASCE 7-05 Section 12.6. 1 . 1 ) C SDOscis C 0.547 Seismic Res on5e Coefficient (ASCE 7-05 E 1 2.6-2) R = p q Cs3 := 0.03 Minimum Non -Budding Seismic P,e5pon5e Coefficient (ASCE 7-05 Eq. 1 5,4- 1 ) 0.8. Sl' lseis CA := R CA= 0.234 Minimum Non -Building Seismic Response Coefficient (ASCE 7-05 Eq. 15.4-2) C, = 0.547 Governing SeSmic Response Coefficient CBCABC ALTERNATE BASIC LOAD COMBINATIONS USING ALLOWABLE STRESS DESIGN , (Section I G05.3.2, Eq. I G-20 S I G-2 1) , Sf:= PPC�s Sf= 0.39 horizontal 5eemic load factor (ASCE 7-05 Eq. 1 2.4-3) 1.4 0.2 SDs Sfv := Sf„ = 0.156 vertical 5e5mic load factor (ASCE 7-05 Eq. 1 2.4-4) 1.4 02/08/2012 02:44:57 PM Page 3 of 11 W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012 POOL ENGINEERING INC. Attached Lattice By: D. Bosse Standard Detail S 1 I O-F Patio Cover LATTICE: Self Weight * Uniformly -Distributed Live Load PROPFRTIFS: bn = 4 width do = 6 depth trill w = 12 in Grade = 2 Llat = 11.25. [1 bla(=3.5-in dlat=5.5.in A=19.25•in2 S = 17.646 in3 1= 48.526•in4 E = 1600000•psi CD = 1.00 Cr = 1.00 dnotch = 1.5- in CALCULATIONS: wsol'F = bleCdlat-Uood w's if = 4.7-plf w := trib_w.(LL) + wself w = 14.7 plf w. Llzt Vmax :=. Vmax = 83lb 2 2 w.Llat Mmax = Mmax = 23216•11 8 V 3 max d lat < f _ fv = 12•pst g'v = 180-psi 2 A — Anotch dlat — dnotch f Mmax b�= f 158 si 6= p < F' h= 1170 psi where C 1.3 F 900• si P F= b= p S 4 5 wLlat < Llat b:= b= 0.068•in = 0.563-in 384•E•I 240 5•trib w•LL.Llat4 Ll t bLL:= 6LL = 0.046-in < = 0.375 in 384•E-I 360 USE _ "4x6 DF-L #2 LATTICE @ 12in O.CMITH 1.5in MAX. NOTCH TO BEAMS" n 02/08/2012 02:44:57 PM Page 4 of 11 W:\Projects\2012\0093-12 Patio Cover- Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012 POOL ENGINEERING INC. Attached Lattice By: D. Bosse Standard Detail 51 10-P Patio Cover RAFTER. Uniformly Distributed Load RAFTER PROPERTIES: be = 6 width do = 12 depth trib_w = 135•in Lraf = 17.5 ft Grade = 1 braf = 5.5.in draf = 11.5-in A= 63.25-in 2 S = 121.229 in3 I = 697.068 in4 E = 1600000•psi CD = 1.00 Cr = 1.00 dootch = 0•in RAFTER CALCULATION5 w:= trib_w.(DL+ LL) w= 192.9•plf W.I'raf Vmax := Vmax = 1688lb 2 2 �.L,.f Mmax := Morax = 73841b- ft 8fV 3 Vma 2 A Mmax fb fb = 731 -psi S 5 w-Lraf4 S := 8 = 0.365•in 384•E•I 5 • trib_w• LL• Lraf4 bLL := SLL = 0.213 - in 384 E•I USE _ "6x12 DF-L #1 RAFTERS @ 11.25ft F µ . Lraf Rraf 2 G F'v = 170-psi Rraf = 1687.7lb G F'b = 1350•psi where CF = 1 Fb = 1.350-psi < Lraf = 0.875 in 240 Lraf = 0.583•in 360 CHECK REACTION AT LEDGER: HANGER = "SIMPSON'HU' HANGER" Zscrow 3501b Lateral load capacity of 5/8" dia. lag screws Rraf No —Screws:— Ceil —,1 No —Screws = 5 Check = "OK" Zscrcw USE = "USE 3x12 DF-L #2 LEDGER WITH (5) 5/8" DIA. LAG SCREWS" R 02/08/2012 02:44:57 PM Page 5 of 11 W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012 POOL ENGINEERING INC. Attached Lattice By: D. Bosse Standard Detail S 1 1 O-F Patio Cover BEAM: Uniformly Distributed Load � Point Load at Any Location BEAM PROPERTIES: b„ = 6 width d = 12 depth trib—w = 0 Lbm = 22.5 ft Grade = 1 a=11.25ft b=11.25ft bbm = 5.5 in dbm = 11.5-in A = 63.25 in2 S = 121.229•in3 I = 697.068•in4 E = 1600000•psi w,,If = 15.373.plf W.isc = 0•plf d❑otch = 0•in BEAM CALCULATIONS P := Vm. P = 1688lb w := trib_w•(DL + LL) + wselr + wmiso w = 15.4.plf w-] bm P max(a,b) V — + max •— V — 101716 , nx — 2 Lb. 2 w Lb,,, P—a Ml = + M1 = 10466lb•ft moment at center 8 2 w•a•b P•a b Mz :_ — + — MZ = 104661b•ft moment at point 'a' 2 Lb. Mmax := max(M1, M2) Mmax = 10466lb- ft V 3 my fV :_ —•— fv = 24 psi < F'v = 170 psi 2 A fb := Ms axax fb = 1036•psi C F'b = 1350•psi where CF = 1 Fb = 1350•psi 5•w•L 4 61 — bm + Pa 3 Lbn2 — a2 81 = 0.7-in deflection at center 384•EI 12E1 4 2 2 52 = w a .(Lb,n3 — 2•Lb..a2 + a3) + Re .b 62 = 0.7•in deflection at point 'a' 24-E I 3•E•I.Lbm 5:= max(61,8z) 6= 0.7•in < Lbm = 1.125-in 240 Lb. 6LL• 5 DL+LLL 6LL=0.408-in G 360 =0.75-in BEAM = "6x12 DF-L #1 BEAM" A 02/08/2012 02:44:57 PM Page 6 of 11 W:\Projects\2012\0093-12 Patio Cover -Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012 POOL ENGINEERING INC. Attached Lattice By: D. Bosse Standard Detail 51 10-P Patio Cover WIND DE51GN: CBC/IBC f := mint 1 1 f = 9.24 Hz approximate fundamental frequency of structure Tmin Tmax/ Structure = "Is a rigid structure in accordance with ASCE 7-05 Section 6.2" Omen Building (ASCE 7-05 Section G.S. 1 3) Exp:= C Exposure Category (ASCE 7-05 G.5.G.3) Iwind:= 1.0 Importance Factor (ASCE 7-05 G.5.5) V := 85mph Basic wind speed (ASCE 7-05 Figure G-1) Kd := 0.85 directionality factor (ASCE 7-05 G.5.4.4) Gw= 0.85 Gust effect factor (ASCE 7-05 G.5.5) K�= 0.85 exposure coefficient (ASCE 7-05 G.5.G.G) CN:= 1.2 Pressure Coefficient (Figure G-15) Kzf:= 1.0 topographic factor (ASCE 7-05 G.5.7.2) qh:= 0.00256•Kz-Kye'Kd'V .1wind qh= 13.4•psf Velocity Pressure (ASCE 7-05 G.5. 10) p := gh•Gw CN p = 13.6 psf design wind pressure (ASCE 7-05 Eq. G-25) Vwind PI (hmax — hmin)'Lcover Vwind = 460 lb total wind base shear Vseismic = Sf'Lcover'Wcover'DL Vseismio= 1099lb total seismic base shear Controlling = "Seismic loading controls lateral design" brat= 3.5•in dtat= 5.5•in SPIat= 12-in C,,ptift = 0.458AdIjustment for open lattice puplift:= L3,Cuplift'(p) Poplin = 8.1.psf net uplift force on structure (ignore dead load) Wind Uplift Desio�n Post Uplift: Lcover Wcover 2 txib_A :_ � + Loi, � +Loh trib_A = 142.4 ft Poplift:= trib_A•puplitt Puplift= 1157lb USE _ "SEMPSON'CBSQOR'CCQM' COLUMN CAP" Rafter Uplift: trib_Araf SPrat-\Lraf. + Loh) trib_Araf = 219.375 It Puplift raf := trib_Araf'pup6n Puplift of = 1782lb USE _ "SIMPSON'HU' HANGER W/ MAX. NAILING" 02/08/2012 02:44:57 PM Page 7 of 11 W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012 '001 ENGINEERING INC. Attached Lattice By: D. Bosse 5tandard Detail 5 1 1 0-f Patio Cover I G" MASONRY PILASTER DESIGN - Allowable Stress Design fn, := 1500 psi compressive strength of masonry Er, 900•f E,,, = 1350000-psi wpil = 16in width of pilaster PDL := trib—A•DL + P,elf PDL = 2937.763lb P := PDL + Sf PDL + PLL P = 4.82 kip V Sf'PDL E, :— 29000000 psi w 1-2 T:= An:= w 2 1 Fb := 3 fn BarSize = 4 V = 1147lb E,,, = 1350000 psi 2 Pself Wpil 'hpil'701nu PLL:= trib_A-LL Pelf = 19201b pilaster self weight PLL = 1424.375 lb total axial load on pilaster M := Sf-PBeh hpit + Sf-(trib—A-DL)-bpil 2 M = 6178 lb- ft r= 4.511•in Radius of Gyration bpil = 21,283 Slenderness Ratio < 99 r An = 244•in2 Cross Sectional Area of concrete column Es Fb = 500•psi n := n = 21.481 cover := 2 in cover on reinforcing bars E,n Nob,, = 2 Number of bars per face ;= BarSize in = 0.5•in Diameter of 8 Reinforcmg Bars F, = 20000 psi Allowable stress in reinforcmg steel (Gr 40 for #4 bars � smaller, Gr 60 for #5 bars 4 larger) Q2 As:= 1r4 -Nob,,) As = 0.393•in2 Area of steel r I Pal:= [�0.25•f)•Ae+ 0.65•As•j 1 — h14•Pitr 0- Pal = 94 k ip P 1�0.25 f )•A + 0.65•A •F�•(70 /2 P 1046 ki "z = ,n „ J "z = p llpil d:=w— cover —± d=13.375-in 2 P = As P = 0.00188 k = 2 pm + (p•ri2 — pm w•d Ms := F,-A,•j •d Ms = 8034-1b ft Yedding of steel Fb•k•w•d2 M,n := Mm = 14361-lb. ft Failure of Concrete 2 P" := if hpil < 99, P 1, P�J Pa = 94•kip r Compression = "OK" k=0.247 j:=1-1{ 3 M" := 3 •min(m,, Ma,) Flexure = "OK" P M — + — = 0.628 < 1 .0 Interaction = "OK" P" M" USE _ "16in SQUARE PILASTER WITH (4) #4 VERTICAL BARS & #3 TIES @ 8in O.C." j = 0.918 M"= 10712•lb ft a 02/08/2012 02:44:57 PM Page 8 of 11 W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf OPool Engineering, Inc. 2012 POOL ENGINEERING INC. Attached Lattice By: D. Bosse Standard Detail S I I 0-F Patio Cover SPREAD FOOTING ANALYSIS: I G" Pilaster df:= 18in depth of footing bf= 46•in width of square footng V = 1147lb seismic base shear 2 Wfooting:= b£ .df ycouc W := PDL + Wfooting MOT := M + V• df R f := W Rf = 6244 lb bf kern:— — kern= 7.667-in 6 VERTICAL BEARING: Rf + PLL µ = 0.25 friction of sod 1'eo❑c = 150•pef unit weight of reinforced concrete q = 1500-psf soil bearing capacity Wfooting = 3306lb weight of footing W = 6244lb total dead load load MOT= 7899lb. ft overturnmg moment for footing resultant force from triangular sod pressure distribution MOT ef:=— ef=15.18-in Rf gma = 2 gmax = 522 psf < q = 1500 psf bf Vert Bearing = "OK" TRIANGULAR SOIL PRESSURE DISTRIBUTION: a := 3 bf _ of a = 23.459•in 2 2-Rf if e > kern: q2:— a b f condition = "e > kem" Therefore, q = 1500•psf gall°w := 4 3 g bf MR := W-- MR = 11968•lb ft 2 F := Wµ F = 1561 lb V = 1147lb V = 11.471b 0.9-F = 1405lb > V = 1.1471b 0.9'MR = 10771 lb ft > MOT = 7899lb. ft bf2 C b+ef� if e < kern: q2 :_ — 1 — q2 = 1666-psf Max Sod Pressure gepov,, = 2000 psf Allowable Soil Pressure Soil Pressure = "OK" Resisting Moment Friction force resisting sliding Total Base Shear Sliding = "OK" Overturning = "OK" W N p2 02/08/2012 02:44:57 PM Page 9 of 11 W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012 POOL ENGINEERING INC. Attached Lattice By: D. Bosse Standard Detail 51 1 0-F Patio Cover STRUCTURAL DE51GN OF FOOTING: ULTIMATE STRENGTH DE51GN Design Loadmg: M,,:= 1.4Mpp Mu= 11058•lb•ft Ultimate Moment on footing 1:= bf w 1= 15.187-in 2 P,,:= 1.2.PDL+ 1.4-PLL Footino Fronertie5: f, := 2500•psi Bar:= 5 Bar Size d := df —cover — ilia- 2 iT.dia2 As := •Noban 4 As' fY a :_ 0.85-f bf M,, := As fy (d a l 2 P,;12 2 Ma- M°° + 2bf bf Pa = 5519-1b Ultimate Axial Load on footing fy := 40000•psi 31 :— 0.85 (� := 0.90 Spacing:= 12in ilia := Bar —•m ilia= 0.625•in cover:= Sin clear cover 8 rbf— 2•cover— dia d = 14.688•in Nobs := ceil Nobas = 4 total # of bars in footing Spacing A, = 1.227•in2 Area of Steel Provided a = 0.502•in Depth of equivilent rectangular stress block M„ = 59054lb•ft NOminal Moment strength Design Moment in Footing ep M„ = 5314811bft > Check Minimum/Maximum Steel Percentage: 3t f ( 87000 1 Pbnl •— 0.85 C I\ Pba1= 0.031 fY 87000 + fY • b) Pmax:= 0.75-Pba1 pmnx= 0.0232 3 b fe 2001 Pmin =max C Pmin = 0.005 f Yt f b) Y 0-Mu= 53148lb-ft > 1.333• Mile = 11271lb ft Mae = 84551b, $ Balanced renforong Ratio Maximum reinforong Ratio Minimum Reinforcmg Ratio Footing = "OK" Minimum Flexural steel 15 not required if provided tensile reinforcment 15 at least 1/3 greater than what 15 required (ACI 3 18-05 10.5.3) p :_ As p = 0.0018 Ratio of Tension Reinforcement bf d Pmax = 0.0232 > p = 0.0018 Ratio = "OK" SIZE _ "46in SQUARE x 18in DEEP SPREAD FOOTING" REINFORCING = "#5 BARS @ 12in O.C. EACH WAY, Sin CLR. FROM BOTTOM" I 02/08/2012 02:44:57 PM Page 10 of 11 W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012 POOL ENGINEERING INC. Attached Lattice By: D. Bosse Standard Detail S 1 1 C-F Patio Cover POLE FOOTING DESIGN: I G" Pilaster Foci := "Square" Square or Round footing Pmm:= PDL+ PLL Pm,,x = 4362lb maximum axial loading from above gallow = q gallow = 1500•psf allowable boil bearing capacity w = 24-in W = "square width of footing" d = 59-in D = "depth of footing" q = 1500 psf Soil bearing capacity 'yp = 100•pef pa55we earth pressure Pmax Arequired:= area of footing required for boil bearing gallow Arequired = 2.908 ft2 < Aprovided = 4 ft2 Vertical_Bearing = "OK" NON CONSTRAINED AT GROUND LEVEL (SEE CDC/IBC 1505.7.2. 1) V = 11471b M = 6178lb•ft Service level base shear and moment b = 33.941-in diagonal dimension of footing h := M h = 5.386 ft effective height of lateral loading V Sl :_ �2.7p.d)• 3 St = 437.037•psf allowable lateral soil -bearing pressure Per CBC/IBC Table 1804,2) 2.34• V A:= A= 26.058•in St b 11 drequired 2 ' 1 + 4.36 A + 1J depth required to resist lateral loading droquired = 57.811 -in < d = 59-in Depth = "OK" USE _ "24in SQUARE x 59in DEEP POLE FOOTING with (1) #4 VERTICAL BAR EACH CORNER" TIES = "(3) #3 TIES @ TOP & BOTTOM 5in and 43 TIES @ 12in O.C. THROUGHOUT" 02/08/2012 02:44:57 PM Page 11 of 11 W:\Projects\2012\0093-12 Patio Cover - Attached - Lattice\FINAL REPORT.pdf ©Pool Engineering, Inc. 2012