Loading...
HomeMy WebLinkAboutX2018-1762 - Calcs17&Z 1 U Go.�yo�n iG-l�Vdob,� fir, tj Poo' /20/ N. Tu5t1nAuenue Ron Lacher, R.C.E engineering Anaheim, CA 92607 inc. Fax: (7/4) 630-6/ /4 Phone: (7/ 4) 630-6100 STRUCTURAL CALCULATION5 FOR Ca/55on Supported Swimming Pool AT The Downey Residence / O Canyon Fairway Dr. Newport Beach, CA 92660-59 / 6 DESIGN BASED ON CBC 2016 EDITION AND GLOBAL GEO-ENGINEERING, INC. GEOTECHNICAL EVALUATION AND RECOMMENDATIONS (PROJECT: 6389-81), DATED 5/20/15 & CAISSON RECOMMENDATIONS DATED 9/3/15 REINFORCING: Fv = 40,000 PSI (Grade 40) Fv = 60,000 PSI (Grade 60) CONCRETE: f'c = 4,500 PSI EQUIVALENT FLUID PRESSURE: 100 PCF HYDROSTATIC PRESSURE: 62.4 PCF PASSIVE PRESSURE: 150 PCF SKIN FRICTION: 250 PSF CREEP: 1,000 PLF (upper 5ft) \\pe-fle\Pool\Projects12015\0386-15 Surge Chamber- Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM 0 Pool Engineering, Inc. 2018, Page 1 of 19 \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 2 of 19 Pool Engmeenng, Inc. Ca155on Supported Designer: C.J.B. 5wimming Pool CONCRETE PROPERTIES: 12in pool wall thickne55 5,:= 150pcf unit weight of reinforced concrete f,:= 4500 -psi compre551ve strength of concrete (�f:= 0.90 flexural reduction factor 0s := 0.75 shear t torsion reduction factor e,,:= 0.003 cru5hmg Strain of concrete 01 = 0.825 a= 0.7 elre:= 3in reinforcing cast a6jam5t earth clrw:= tin remforang exposed to weather E,, = 3823.676 ksi modulus of elasticity b := 12in design 5tnp width X:= I modification factor - lightweight concrete (ACI 318 Table 1 9.2.4.2) POOL PROPERTIES: Dp:= 6ft max. pool depth Ds := 441 max. shallow depth Dspa - 3.5ft max. spa depth tpw := 12in pool wall thickne55 tpf:= 18in floor slab thickness %:= 62.4pcf unit weight of water dia,:= 24in diameter of cai55on 5O1L PROPERTIES: Geotechnical information provided by Global Geo-Engmeenng ^ya:= 100pcf equivalent fluid pressure war:= 1000plf ryp:= 150pef pa55we earth pressure der:= 5ft SF := 250psf 5km friction d,nm - IOft Q:= 22ft creep load depth of creep load minimum embedment below pool floor minimum slope setback \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.i.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 3 of 19 'ool Engineermg, Inc. Caisson Supported Designer: C.J.13 Swimmmg Pool LATERAL LOAD FROM FOOTING SURCHARGE QL:= 1500pIf line load from footing surcharge 6:= 12in wf := 2ft max. width of footing d = lft dx := 3.511 distance from pool face to footing edge e Oin x = 4.5 ft distance from line load to pool face H := Do — d H = 5 ft height of wall surcharged by footing 1.28-m2•n•QL 0.20-11QL ifm>0.4: a= if in 50.4: Q= (0.16 (m2 + n2)2 -H + n2)2 -H Msur:= Idi F 0.01in Msur= 1180.142f -lb usur :_ M <- Oft lb z< - d; i<-1 while DP >_ z r di � 1 2 z<-z+d; i< -i+1 kvd <- O.Olin F Olb +- d; <- I chile Dp >- z V <- o.r -di-b + V z<-z+d; i< -i+1 V51 = 530.426 Ib design stnp width depth to bottom of footing footing eccentricity X m:=- m=0.9 H z where n = - H Service level flexure from soil surcharge service level shear from soil surcharge \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.t.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 4 of 19 Pool Engmeenncg,Inc. Cai55on Supported Designer: C.J.B. Swimming Pool Pool Wall - Double Curtain - Concrete Flexural Dc5icln - U.S.D. Method tcµ, := tpw taw = 12. in wall thickness Loadmg: 2 D 6 Vs := �a p Vs= 180016 soil lateral load 2 Vai := 1.6.(Vs+ Vsur) Vui = 3728.716 factored shear - soil side ll Man := 1.6 Vs' 3Dp + MsarJ Mat = 7648.227ft-lb factored moment - soil side 2 Dp b Vw:= 7w Vw= 1123.216 water lateral load 2 Vu2 := 1.4 Vw Va2 = 1572.51b factored shear - water side D Mae := Va.-a Mat = 3144.96 ftdb factored moment - soil side 3 Reinforcing Properties: Vertical Steel - Soil Side: Vertical Steel - Water Side: Bariv :=4 s¢e SPt,,:=bin - spacing Bar2v :=4 size SP2v:=12in spacmg OR,, = 40 grade fyiv = 40.ksi yield strength GR2v = 40 grade fy2v = 40.ksi yield strength dbly = 0.5 -in dia. Asiv = 0.393 int steel area db2v = 0.5 -in dia. As2v = 0.196 int steel area Asv := Asiv + As2v Asv = 0.589-in2 total vertical steel area horizontal Steel - Soil Side: Horizontal Steel - Water 51de: Bari,,:=4 size SPlh:= 12in spacing Bar2h:=4 s¢e SP2h:= 12in spacmg GRii, = 40 grade fyii, = 40-ksi yield strength GR2h = 40 grade fy2h = 40.ksi yield strength dbih = 0.5 -in dia. A,1h = 0.196. int steel area db2h = 0.5 -in dia. A52h = 0.196-in2 steel area Ash:= Asm+As2h Ash= 0.393 -int total horizontal steel area \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 5 of 19 'ool Engineenng, Inc. Caisson 5upported Designer: C.J.B. 5wmi Fool Strength Check - Soil Side: at := Asly fyly al = 0.342 -in egmvilent rectangular stress block 0.85 f b dbly dl := t,, , - clre- - dl = 8.75 in effective depth of reinforcing 2 OVct :_ $s'2'f� I, b -dl QtVrl = 10565.41b > Vut = 3728.682 lb Check - OK" vt - at d1 -c c := c = 0.415 -in distance to neutral axis Et : ea Et = 0.06 net tensile strain 31 0.9 adjusted strength reduction factor check= "tension -controlled member" �Mnl _ OAF' Aslv'fylv'I r dl - a Z 0Mn1 = 10106.8 f lb > Mul = 7648.227ft 1b CheckMl = "OK" Amax] _ 0.85-(31. fu . E. 1'b'dt fyly Eu+ 0.004/I Amax] = 3.55 -in > A,,, = 0.393 -int Check..., = "OK" Strength Check - Water Side: A:2v-fy2v a2 := a2 = 0.171 -in egmwlent rectangular stress block 0.85 f,. b /l d22y d2 := tuw - clrv, - I + d1i4hJ d2 = 9.25 -in effective depth of reinforcing 0c2 := ([1s@ f� C.b d2 OV"2 = 11169.2 lb > Vu2 = 1572.48 lb Checkvz - - OK" C := a2 c = 0.207 -in distance to neutral axis 2-c et = 0.131 net tensile Et := E� 1 strain Pt c (�'f = 0.9 adjusted strength reduction factor check = "tension -controlled member" a �M„2:= �'fAa2vfy2,; d2 - OM,= 5398.3 ft lb > M„2 = 3144.96 ft[Ch eckM2 = "OK" Amax2 0.85-01. f Eu b'd2 Amaxz = 3.753-in2 > A,2v = 0.196-in2 ( fy2y Eu + 0.004 Checknax2 = "OK" Check Minimum Steel Area: pl = 0.0015 min. vertical steel ratio (ACI Table I I G. I ) Amin_v pl'tcw b Amin-, = 0.216 int < A,,= 0.589-in2 Checkmin v = "OK" pt= 0.0025 min. horizontal steel ratio (ACI Table I I .G.I ) Amin h = pt,tew'b Amin h = 0.36-in2 Ash = 0.393-in2 Final Results: CONCRETE _ "12in. THICK WALL w/ REINFORCING 3in. CLR. SOIL SIDE & 2in. WATER SIDE"71 VERT_REINF = "#4 @ 6in. O.C. (SOIL SIDE) & #4 @ 12in. O.C. (WATER SIDE)" HORIZ_REINF = "#4 @ 12in. O.C. (SOIL SIDE) & #4 @ 12in. O.C. (WATER SIDE)" \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM @ Pool Engineering, Inc. 2018, Page 6 of 19 'ool Engmeenng, Inc. Caisson Supported Designer: C.J.B 5wtmming Pool Floor Slab - Concrete Flexural Deslcln - U.S.D. Method 12emforang Properties: clr:= "earth" clearance type to steel x:= 2 # of curtains of steel Transverse Steel; Longitudinal Steel: Bar, := 5 size SPI := 6in spacing Bare := 5 size SP2:= 6in spacing GRI = 60 grade fy, = 60.ksi yield strength GR2 = 60 grade fy2 = 60.ksi yield strength dbl = 0.625 -in ilia. As, = 0.614-in2 steel area db2 = 0.625 -in ilia. Ase = 0.614. in steel area Concrete Properties: As, fyt tcs:= tpf tcs= 18 -in thickness a:= a= 0.802 in equwilent rectangular stress block 0.85.> b cover = 3.625 -in cont coverage to reinforcing c := a c = 0.972 -in distance to neutral axis 31 dbl d := tcs —cover — d = 14.063. in effective depth of reinforcing 2 d — c EI = E,-- E, = 0.04 net tensile 5tra in check = "tension -controlled member" c (b'f= 0.9 adjusted strength reduction factor weights W, :_-y,.Dp+ 5c'tpf W2 :_ -jw Dspa + 6c'tpf // W3 (6c — 7w)'(Dspa — 18in) + bc'\Da — Dspa) W, := be `Dp + tpf)"Pw Spans; Inl := 17ft max. longitudinal floor span 1ii2 12.5ft max. transverse floor span 1n3 := max(l,,,, lag) lag = 17 ft max. floor span W, = 599.4-psf distributed weight of pool water d floor slab W2 = 443.4-psf distributed weight of spa water * floor slab W3 = 250.2-psf distributed weight of thickened floor * bench w, = 1125-plf linear weight of pool wall lcl := 5.25ft longitudmal cantilever length Ice := 3.5ft transverse cantilever length 1c3 = max(lc 1, 1c2) lc3 = 5.25 ft max. cantilever length \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM 0 Pool Engineering, Inc. 2018, Page 7 of 19 °ool Engmeermj, Ina Cai55on Supported Designer: C.J.B. 5wimmmg Pool Loadme: WI -b -10V 1 := 1.4 V 1 = 7132.8616 2 V2 := 1.4[(W2 + W3) -(1c3 — t,,) + wt] b V2 = 5701.92 Ib lnl V3 := 1.4[(W2 + W3)' (1c2 — tPw + 0.51„2) + wll' I + 0.5 l„p 2 V3 = 8780.369 lb 2 V4 := 1.41(W2 + W3) - ('o — tPw + 0.51„ l) + wtl' Int + O.S lat 12.2 V4 = 6343.5271b V,,:= max(V) V„= 8780.369 lb max. factored shear Wt'b 1„32 M 1 := 1.4 M I = 30314.655 ft. Ib 8 \2 3 M2 := 1. (W2 + W3 2 2 �. �1c3 — tpwJ + W1. (16 — t 2 �": 6 DP .6 M2 = 19395.915 ft -lb 1n12 M3 := 1.4��Wz + W3�'�1c2 — t, + 0.51„ 2) + wt]' l,2 + 0.5 11 8 M3 = 37316.569 ft -lb 1 2 M4 := 1.4[(W2 + W3)'(Ict — tpw + 0.51„1) + WIT lot + O.S�lat 8 M4 = 19823.523 ft -lb M,:= max(M) M„ = 37316.569 ft- lb max. factored moment \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM 0 Pool Engineering, Inc. 2018, Page 8 of 19 'ool Engineering, Inc. Ca155on Supported Designer: C.J.B. 5wimming Fool Strenath Check (�V" := �)s 2- f- l. -b -d - (�V, = 16980.1 lb V. = 8780.41b < OVA = 16980.1 lb CheckV = "OK" d)Mn:=4)'f rr Asrfyr d-2) OMa=37721.5 ft lb \\ J Me = 37316.6 f .Ib < OMo = 37721.5 ftdb Checkm = "OK" Check Mimmum/Maximum Steel Area pl := 0.0020 if fyt <60000psi max(108 , 0.0014) otherwise fyl t P2 := 0.0020 if fyl < 60000psi r 108 1 maxi\—,0.0014 otherwise fyt t P, = 0.0018 min, longitudinal steel ratio (ACI Table 7.6. I . 1) P2 = 0.0018 min. transverse steel ratio (ACI Table 24.4.3.2) As mint pi tcs,b A,_mint = 0.389 int < Asl = 0.614 int Checkminl = „OK° p2'tcs'h As—min, As_min2 = 0.194.in2 < As2 = 0.614-in2 Checkminl = °OK° X As_max 0.85-(31, f` ' En b -d As max = 3.804-in2 Asl = 0.614-in2 Checkmax = "OK° fyl En + 0.004) Final Results: CONCRETE _ "18in. THICK SLAB w/ REINFORCING 3in. CLR. FROM BOTTOM & 2in. CLR. FROM TOP" REINFORCING = "#5 TRANSVERSE BARS @ 6in. O.C. & #5 LONGITUDINAL BARS @ 6in. O.C., (2) CURTAINS" \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 9 of 19 'ool Engmeermg, Inc. Casson Supported Designer: C.J.6 5wimming Pool Caisson De5lcln �(0.5diac)4 q diae = 24 -in diameter of caisson I := I = 16286.016 -in moment of inertia 4 Ag:= 0.25-1r diac2 Ab = 3.142 ft2 pile area cross-section Ppile 6c -Ag -d, Ppile = 2356.19416 weight of pile in creep zone Vertical Load Analysis: 599.4 443.4 250.2 1125 2356 6 Caisson Trib. Pool Area (112) Trib. Spa Area (ft) Floor/ Water Load (lb) Wall Load (Ib) Bench/ Steps Load (Ib) Misc. Load (Ib) Pile Load (lb) Total Axial Load (Ib) Al 25 36 25952 18750 6554 0 2356 53613 A2 67 0 26773 12375 0 0 2356 41504 A3 82 0 40959 14766 0 0 2356 58081 A4 64 1 0 38362 17719 0 0 1 2356 58437 A5 66 0 39560 18563 1 0 0 2356 60479 A6 49 0 29371 19406 0 0 2356 51133 B1 22 26 20320 16313 4972 0 2356 43960 B2 67 0 26773 12375 0 0 2356 41504 B4 64 0 38362 17719 0 0 2356 58437 B5 66 0 39560 18563 0 0 2356 60479 B6 49 0 29371 19406 0 0 2356 51133 C3 1 88 1 0 143956 19453 7884 1 0 1 2356 1 73649 (WI W2 W3 W1 Ppile Do) d,:= P + dc, required embed. to resist axial loadmg SF -1r diac Caisson Embedment per Vertical Loadmg Analysis: AI A2 A3 A4 A5 A6 d,1 = 39.1 ft d, = 31.4 ft d, = 41.975 ft d„ = 42.202 ft d, = 43.502 ft d„ = 37.6 ft 2 3 4 5 6 BI 52 E34 E35 156 d, = 33 ft d,g = 31.423 ft d„9 = 42.202 ft d, = 43.502 ft d" = 37.6 ft 7 10 II C3 J, = 51.9 ft 12 \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber- VaultTinal Report REV.1.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 10 of 19 'ool Engmeermg, Inc. Ca155on 5upported Designer: C.J.5 5wimmin6j Pool Lateral Load AnalV515: Noe = 12 total number of cae5on5 beneath pool LI := 59ft length of pool - transtion and deep end L2 := 32ft+ tin length of pool - shallow end and spa L,:= Lt + L2 Lr = 91.167 ft total max. length of pool hretl = Dp + tpf hrett = 7.5 ft max. retained height - tran5ition and deep end hret2 := DS + tpf hret2 = 5.5 ft max. retained height - shallow end and spa 2 'Ya' hret] 'L1 2 + h�t2 L2 1 Vs .— Vs = 17882.465 Ib Soil load from pool shell to ca155on 2 Noe Vcr w.r,dcr Ver= 5000 lb creep load to pile Vt:= Vs+ Ver Vs= 17882.465 lb total5oil load to pile Mt:= Vs,dcr+ Vcr'a2r Mt= 101912.326 ftlb flexure from total Soil loading \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 11 of 19 'ool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Flacanole Footinci, Non -constrained at Ground Level for Isolated PM5 - Per IBC/CBC Section 1 805.7.2 h:= Mt— h = 4.454 ft effective height to resultant Vt dt = 25.27 ft trial depth for iteration dt PP:= -yP PP = 150-pcf nominal passive pressure St = PP 3 St = 1263.292-psf 2.34-V, A:= t dr:= A. 1 + 1 + f7 -7 -1-6h .h dr= 25.26 ft required depth for iteration St dia, 2 A dt Ccil(dr, Ift) + der dl = 31 ft min. embedment depth to resist lateral loading Final Min. Caisson Embedment Re5ult5: AI A2 A3 A4 dl=40ft d2=32ft d3=42ft d4=44ft BI 82 d7=40ft d8=32ft C3 d12=52ft B4 d9 = 44ft A5 d5=44ft 55 d10=44ft AG d6 = 38 ft B6 d11=38ft \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM 0 Pool Engineering, Inc. 2018, Page 12 of 19 'ool Engineermg, Inc. Caisson 5upported Designer: C.J.B. 5wimmmg Pool 5tructural Design of Pile: Pu := 1.2max(P) Pu = 88.379 -kip max. ultimate factored vertical Vu:= L6 Vt V„ = 36.612 -kip max. ultimate factored shear Mu 1.6 Mt M„ = 163.06 kip ft max. ultimate factored moment Set Lateral Force equal to Passive Resistance and solve for depth to max. moment in subgrade 1.6PP diad df2 Z V„ Vu = 2 Lateral Force Equilibrium 5olmng for depth, we get df 1.6P dia df= 12.351 ft p c df = 12.351 ft depth to point of max. moment in competent subgrade To obtain Max Bend ,3 Moment on caisson we sum moments about the above calculated point: PP dia, df3 Wu :=Mu+V,; df—L6 6 M'u = 464.525-kip.ft Factored Ultimate Moment M'u d = 163.06-kip.ft Factored Ultimate Moment at Dowels P„_d := Pu — 1.2-Ppite Pu_d = 85.552 -kip Factored Ultimate Vertical Load at Dowels See C51 Column Calculation Sheets (following) for Concrete Design of Caissons Reinforcing Properties: Bary := 10 size of vert bars GRv := 60 vert bar steel grade Nobatx := 12 number of vertical bars db, = 1.25 -in dia. of vert bars fy = 60 ksi yield strength of vert bars A, = 14.726-in2 area of vert steel Bard:= 5 size of vert dowels GRd:= 60 dowel bar steel grade dbd = 0.625 in dia. of vert dowels fy d = 60.ksi yield strength of vert dowels Barh = 4 size of honz ties GRh:= 40 horiz tie steel grade dbh = 0.5 -in dia. of horiz ties fyt = 40.ksi yield strength of honz ties s := 6in spacing of transverse reinforcement type:= "SPIRAL" (SPIRAL or CIRCULAR) Ax = 3.142 ft2 gross area of concrete section SC = D site class xh = 0.5 site class multiplier Check = "Pass" CONCRETE _ "24in. DIA CAISSON, f = 4500psi (DESIGN STRENGTH)" VERT BARS = "(12) #10 VERTICAL BARS ENTIRE LENGTH OF CAISSON w/ #5 DOWELS TO FLOOR SLAB" HORIZ_TIES = "USE #4 SPIRAL TIES @ 6in. O.C. THROUGHOUT CAISSON" \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber- Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 13 of 19 Project Information Project Job No Company Designer Remarks Software File Name Working Units Design Code Column:Caisson Downey 15-0386 CJB flexural caisson design CSICOL (Version: 8.0 (Rev. O)) W:\Projects\2015\0386-15 Surge Chamber- Vault \flexural caisson design - REV US (in, kip; k -fl, ksi) ACI -318-14 Basic Design Parameters Caption = Caisson Default Concrete Strength, Fc = 4.50 ksi Default Concrete Modulus, Ec = 3823.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 ksi Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 3.500 in Maximum Steel Strain = Infinity Transverse Rebar Type = Spiral Total Shapes in Section = 1 Consider Slenderness = No \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.i.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 14 of 19 Section Diagram 24 66 _ 12.06 12.000 Cross-section Shapes Shape Width Height Conc Fc SIS Curve Q in ksi I 24.000 i x. _ Rectangular 12410 Rebar Properties Sr.No Designation Area Cord -X Cord -Y Fy 4 x y 3. in^2 in } ksi 1 #10 1.27 20.500 12.000 60.00 Elasto-Plastic 2 #10 1.27 19.361 16.250 60.00 Elasto-Plastic 3 #10 1.27 16.250 19.361 60.00 Elasto-Plastic 4 #10 I 12.000 20.500 i Elasto-Plastic 5 #10 Section Diagram Cross-section Shapes Shape Width Height Conc Fc SIS Curve Rebars in in ksi Circle 24.000 24.000 4.500 ACI -Whitney Rectangular 12410 Rebar Properties Sr.No Designation Area Cord -X Cord -Y Fy SIS Curve in^2 in in ksi 1 #10 1.27 20.500 12.000 60.00 Elasto-Plastic 2 #10 1.27 19.361 16.250 60.00 Elasto-Plastic 3 #10 1.27 16.250 19.361 60.00 Elasto-Plastic 4 #10 1.27 12.000 20.500 60.00 Elasto-Plastic 5 #10 1.27 7.750 19.361 60.00 Elasto-Plastic 6 #10 1.27 4.639 16.250 60.00 Elasto-Plastic 7 #10 1.27 3.500 12.000 60.00 Elasto-Plastic 8 #10 1.27 4.639 7.750 60.00 Elasto-Plastic 9 #10 1.27 7.750 4.639 60.00 Elasto-Plastic 10 #10 1.27 12.000 3.500 60.00 Elasto-Plastic 11 #10 1.27 16.250 4.639 60.00 Elasto-Plastic 12 #10 1.27 19.361 7.750 60.00 Elasto-Plastic 12-#10 Total Area = 15.23 in^2 Steel Ratio = 3.37 Basic Section Properties: \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber- Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM O Pool Engineering, Inc. 2018, Page 15 of 19 Total Width = 24.00 in Total Height = 24.00 in Center, Xo = 0.00 in Center, Yo = 0.00 in X -bar (Right) = 12.00 in X-bar(Left) = 12.00 in Y -bar (Top) = 12.00 in Y-bar(Bot) = 12.00 in Area, A = 452.39 inA2 Inertia, Ixx = 1.63E+04 inA4 Inertia, lyy = 1.63E+04 inA4 Inertia,lxy = 0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6.00 in Simple Loads Final Design Loads Sr.No Combination Pu Mux -Bot Muy-Bot kip k -ft k -ft 1 Combination'! 88.379 464.525 0.00 2 Combination2 88.379 0.00 464.525 Result Summary Sr.No Combination Pu (kip) Cap. Ratio -Bot Cap. Ratio - Top 1 Combinationl 88.379 0.936 0.057 2 Combination2 88.379 0.936 0.057 Mux -Top Muy-Top k -ft k -ft 0.00 0.00 0.00 0.00 Remarks Capacity OK Capacity OK \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM © Pool Engineering, Inc. 2018, Page 16 of 19 Column:Dowel Check Basic Design Parameters Caption = Dowel Check Default Concrete Strength, Fc = 4.50 ksi Default Concrete Modulus, Ec = 3823.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 ksi Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 3.000 in Maximum Steel Strain = Infinity Transverse Rebar Type = Spiral Total Shapes in Section = 1 Consider Slenderness = No Section Diagram Cross-section Shapes Shape Width Height in in Circle 24.000 24.000 Conc Fc SIS Curve Rebars ksi 4.500 ACI -Whitney Rectangular 1245 \\pe-file\Pool\Projects12015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM 9 Pool Engineering, Inc. 2018, Page 17 of 19 Rebar Properties Sr.No Designation Area S/S Curve in in -2 1 #5 0.31 2 #5 0.31 3 #5 0.31 4 #5 0.31 5 #5 0.31 6 #5 0.31 7 #5 0.31 8 #5 0.31 9 #5 0.31 10 #5 0.31 11 #5 ..0.31 12 #5 0.31 60.00 12-#5 12.000 3.000 Total Area = 3.70 16.500. Steel Ratio = 0.82 Basic Section Properties: Cord -X Cord -Y Fy S/S Curve in in ksi = 0.00 21.000 12.000 60.00 Elasto-Plastic 19.794 16.500 60.00 Elasto-Plastic 16.500 19.794 60.00 Elasto-Plastic 12.000 21.000 60.00 Elasto-Plastic 7.500 19.794 60.00 Elasto-Plastic 4.206 16.500 60.00 Elasto-Plastic 3.000 12.000 60.00 Elasto-Plastic 4.206 7.500 60.00 Elasto-Plastic 7.500 4.206 60.00 Elasto-Plastic 12.000 3.000 60.00 Elasto-Plastic 16.500. 4.206 60.00.._ Elasto-Plastic 19.794 7.500 60.00 Elasto-Plastic in A2 Total Width = 24.00 in Total Height = 24.00 in Center, Xo = 0.00 in Center, Yo = 0.00 in X -bar (Right) = 12.00 in X-bar(Left) = 12.00 in Y-bar(Top) = 12.00 in Y-bar(Bot) = 12.00 in Area, A = 452.39 in A2 Inertia, Ixx = 1.63E+04 inA4 Inertia, lyy = 1.63E+04 inA4 Inertia, Ixy =0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6.00 in Simple Loads Final Design Loads Sr.No Combination Pu Mux -Bot Muy-Bot kip k -ft k -ft 1 Combination'! 85.552 0.00 0.00 2 Combinationt 85.552 0.00 0.00 Result Summary Sr.No Combination Pu (kip) Cap. Ratio -Bot Cap. Ratio - Top 1 Combination'! 85.552 0.074 0.783 2 Combinationt 85.552 0.074 0.783 Mux -Top Muy-Top k -ft k -ft 163.06 0.00 0.00 163.06 Remarks Capacity OK Capacity OK \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber- Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM 9 Pool Engineering, Inc. 2018, Page 18 of 19 'ool Engmeenng, Inc. Cai550n Supported Designer: C.J.B. 5wimmm6j Pool Check 2 -Way Shear In Concrete 51ab: ACI318-14 5ectlon 22.6.4 dia,= 24 -in ca155on diameter le:= 0.89-dia, le= 21.36 -in equivalent square Section length f� = 4500 -psi compr0551ve strength of concrete 0.75 shear reduction factor (ACI Table 2 1.2. 1 ) clr = 3 -in concrete cover to reinforcing (3 := I.0 ratio of long Side to Short 5de of concentrated load or reaction area Vc1 = 44-X7U-bo-d Vc2=12+ ±).X - fet-bod `\ d Vc3=(2+ X. f Lbad bo \ ON, = �-itlin(Vc1, Vc2, V6) (ACI Eq. 22.6.5.2a) (ACI Eq. 22.6.5.2b) (ACI Eq. 22.6.5.2c) Pile Factored Shear (Ib) 0 Slab Effective Min. Distance Location Thick Depth to Slab Edge (in) (in) (in) Location Constant Perimeter of Failure Plane (in) rp*Vc (Ib) Ratio Check Al 7.75058 18 14.69 16 comer 20 57.408 169685 0.442 PASS 2 u?89¢>0 ',1' t19 > �r46 4 d9gtt yy3fi 208u 6cya flx A3 81313 18 14.69 16 edge 30 57.408 169685 0.479 PASS %4 69 u' u t6 e)19 't, 'b) F4482 PASS: A5 84671 18 14.69 16 edge 30 57.408 169685 0.499 PASSm-Z4 t 3 i. � - %. "Y�YiR;^ffii 1✓i,,,:. \X4,.69, t,. ¢..: corner ,-�t20 f, �(u"'qq t -'i rr©8 0 2 P SS ....f.r7W9, B1 61545 ., 18 14.69 16 comer 20 .,i , 57.408 ,;896$5 169685 0.363 PASS B4 81811 18 14.69 16 edge 30 57.408 169685 0.482 PASS h�ST'��tt�346�1,s � "44 9 } •ti � a 6 r ^� ���g L �pS >3f ��0� � �� .9685' !7_�9'� P��' B6 71586 agr, 18 14.69 16 edge f 30 57.408 169685 0.422 PASS rG 1Q3x09 1¢�d69 iF Ir6968.0¢48eR4>$ h ?t¢ :` car[rer r.,t,�Q:a?OS,, t \\pe-file\Pool\Projects\2015\0386-15 Surge Chamber - Vault\Final Report REV.1.pdf 06/05/2018 01:36:28 PM 0 Pool Engineering, Inc. 2018, Page 19 of 19