Loading...
HomeMy WebLinkAboutX2019-0401 - Calcs��kcl 01-4 0 STRUCTURAL PLAN CHECK REPLY .pate: 2-6-19 Project Location: 219 Lugonia ESI/FME J.N.: H486 Item Response 3 Please see new calc sheet 10A for existing FJ Calc. 5 Now provided 6 line 4 has almost zero uplift per calcs. Hold down now provided for line 3 as required. 7 Actual location of line 6 is at the front of dining, where the corresponding shear / hold downs are shown on plans. _.....,cnARTMENT d iFSPI-Ci Of Id1�4'polal �.i.pGF SIGN El LS .- U i�if Obl Nl' .aGN J� _ SIGMA _ _- AiongG lfL Tol E S I / F M E INC. STRUCTURAL ENGINEERS Project: Structural calculations for YOKA ADDITION to be built at 219 LLIGONIA, NB, CA IBC 2015, CBC 2016 January 18, 2019 Client: MORGAN Client Job No. [Job No. H486 1800 E. 16th Street, Unit B, Santa Ana, CA 92701 Tel: (714) 835-2800 Fax: (714) 835-2819 Page: 2 ESI FME INC Date: 1-18-19 STRUCTURAL ENGINEERS Job NO: H486 Client: MORGAN Project Name: YOKA Plan No: Load Conditions Seismic Design Summary Analysis Used: Equivalent Lateral Force Procedure (12.9) Roof( sf) Floor(ps 0o Shake Rock Tile w/o LW Conc. 1.5 LW Conc. or i" _ Gyporete 5s -1.687 Sy = 0.625 Soil Site Class = D I =1.0 R = 6.5 F. =1.0 F, =1.5 Seismic Design Catergory _= D P =1.0 0 = 2.5 20.0 40.0 Live Wad Dead Load SMs = 1.687 SMs = 0.938 - Sos =1125 Sm = 0.625 jBaSe Shear =0.121W CO - 4.0 Sheathing 1.5 2.5 Wind Design Summary Rafter/Joists 1.5 2.0 - - Wind Velocity = 110 M.P.H. - WIndExposure= C Sprinklers 2.0 2.0 ellingJolsts 1.5 0.0 2'2.s1.01.0 CBC 2016 ASCE72010 NDS 2015 MSJC2023 14.014.0 ki "IBC2015 ACI318 2014 SDPWS 2015 34.0 54.0 Prosed info - Soils Report - Initials Date Address Engineer of Record: DF 1/18/2019 Street 219 LUGONIA By: CBC Job No: Project Engineer:: -BB 1/18/2019 City NB Date: Back Check: State, Zip CA Allowable Soil Bearing Pressurr1500 psf Roof Truss Review: For Additioni Information Refer to CBC Floor Truss Review: PT Foundation Review: Plan Check 1: Structural Observation/SpecialInspection Structural Observation Required Yea Special Inspection Required: Yes Plan Check 2: Revisions Table Of Contents Revision Revised Sheets Initials Date Description-: Pe• No• Notes 2-5 ., Reductions. R1- Beams 6-10 Lateral Analysis. 11-15 Shear wall design 16-19 FSI/FME, Inc.- Structural Engineer Beam overstrength 20 - guardrail design 21 (This Signature is to be a wet signature, not a copy grade beam 22.24 - foundation/pad - 25-26 F!~SSlgy 4 � C 30M37 � V11 F. C Date: ESI/FME INC STRUCTURAL ENGINEERS Project Name: YOKA CODES IBC 2015, CBC 2016, ASCE7-10 in all cases calculations will supersede this design criteria sheet nnuc Fir - larch#t I Doue Fir - Larch #2 Size Fb (psi) F� (psi) Fb (psi) F„ (PSI) E (psi) 24, 2x6, 2x8, 2x10, 242, 1000 180 900 180 1.60E+06 2x14 2600 Timberstrand (LSL) 1700Glulam 4x4, 4x6, 4x8, 4x10, 4x12, 1000 180900 2400 180 - 1.60E+06 4x14 6x6, 6x8, 8x8, 8x10 1200 170 750 170 - 1.60E+06 6x10, 6x12, 6x14, 8x12, 8x14 1350 170 875 1 170 1 1.60E+06 Doug Flr. Larch -M%M3X Moisture content. it Ia remommenaeu mac conium uc "cm... Page: 3 Date: 1-18-19 Job No: H486 Client: MORGAN Plan No: Grade Fb (psi) F., (psi) I E (psi) Parallam 2.0 (PSL) 2900 290 2.00E+06 Parallam 2.2 (PSL 2900A425I.30E+06 Microllam(LVL) 2600 Timberstrand (LSL) 1700Glulam (24F -V4) 2400 1 Drypack shall be composed of one part Portland Cement to not more than three parts sand. 2 All structural ;concrete f'e= 3000 psi Special Inspection Required All slab-ongrade, continous footings, pad footings f" = 2500 psi Special Inspection Not Required All concrete shall reach minimum compressive strength at tis as s. REINFORCING STEEL I All reinforcing shall be A.ST.M. A-616-40 for #4 bars and smaller, & A615-60 for #5 bars and larger. Welded wire fabric to be'A.S.T.M. A-185, lap 1-1/2 spaces, 9" min. 2 Development length of Tension Bars shall be calculated per AC1318-14 Section 12.2.2 Class 8 Splice=1.3x1d- Splice length for 2500 psi concrete Is: #4 Bars (40K) = 21", #5 Bars (60K) = 39", #6 Bars (60K) = 47" (30 dia, for compression) Masonry reinforcement shall have lapping of 48 dia. Or 2'-0". This is in all cases U.N.O. 3 All reinforcing bars shall be accurately and securely placed before pouring concrete, or grouting masonry. 4 Concrete protection for reinforcement shall be at least eaqual to the diameter of the bars. Cover for casi-in-place concrete shall be as follows, U.N.O. A. Concrete cast against & permenently exposed to. earth '.......... 3" B. Concrete exposed to earth or weather - <_ #5 Bars .... 11/2" z #6 Bars .... . -... 2" C. Concrete no exposed to weather or in contact with ground Slabs, Walls, Jolsts 5 #5 Bars ................... .... 3/4" nanmc R rnlumnc- Primary rninfnmerrment. Ties. Stim Ds. SDlrals . . 11/2" 1 Fabrication and erection of structural steel shall be in accordance with "Specification for the Design, Fabrication and Erection of Structural Steel Buildings", AISC, current edition. Steel to conform to ASTM A992. Round pipe columns shall conform to ASTM A53, Grade B. Square/Rectangular steel tubes ASTM A500,Grade B. - 2 All welding shall be performed by certified welders, using the Electric Shielded Arc Process at licensed shops or otherwise approved by the Building Department. Continuous inspection is required for all field.welding. 3 All Steel exposed to weather shall be hot -dip galvanized after fabrication, or other approved weatherproofing method. 4 Where finish is attached to structural steel. Provide 1/2" dia: bolt holes @ 4'-0" o.c. for attachment of nailer, U.N:O. See architectural drawings for finishes (Nelson studs 1/2" x 3" CPL may replace bolts) 1 Concrete block shall be of sizes shown on architectural drawings and/or called for in specifications and conform to ASTM C-90-09, Grade A normal weight units with max linear shrinkage of 0.06% -2 All vertical reinforcing in masonry walls not retaining earth shall be located in the center of the wall U.M.O. Retaining walls are to be as shown in details. 3 All cells with steel are to be solid grouted (except retaining walls where all cells are to be solid grouted) Page: 4 ESI/FME INC Date: 1-18-19 STRUCTURAL ENGINEERS Job No: H486 Client: MORGAN Project Name: YOKA Plan No: CONSTRUCTION ASCE7-10, IBC 2015, CBC 2016, NDS 2015, SDPWS 2015 A. All beams to be supported with full bearing unless noted otherwise. B. All isolated posts and beams to have Simpson PB's,. PC's and/or BC's minimum, U.N.O. C. All bearing walls on wood floors are to be supported with double joists or solid blocking, U.N.O. D. Provide 4x or 2-2x members under sole plate nailing less than 6" o/c. E. All Simpson HTT, HDU, HDQ and CB holdowns to be fastened to 4x4 post min. U.N.O. F.. All hardware is to be Simpson Strong -Tie or approved equal. Install per mfr.'s specifications. G. All shop drawings are to be reviewed by the contractor and the architect prior to submittal for engineers review. H. All exterior walls are to be secured with 1/2" diameter x 10" anchor bolts or. MASA anchors @ 72" o.c., U.N.O. (Please call structural engineer for a fix.) I. All interior walls to be secured with shot pins per manufacturer's recommendations, U.N.O. Calculations govern in all cases.. Recommend Simpson 0.145" dia.,3" long PDP Powder Actuated Anchors @ 24" o.c. (ICC-ESR#2138) or equal. J. All conventional framed portions of structure are to be constructed per section 2308 of the CBC 2015 or IBC 2015 U.N.O. K. All nailing is to be per table 2304.10.1 of the IBC or California Building Code, U.N.O. L. All nails to be "common", U.N.O. - SOLE PLATE NAILING SPN16: 16d Sole Plate Nailing @ 16" O.C. SCR10:'1/4" x 4 1/2" SDS Screws @ 10" O.C. SPN12: 16d Sole Plate Nailing @ 12" O.C. SCR8: 1/4" x 4 1/2" SDS Screws @ 8" O.C. SPN10: 16d Sole Plate Nailing @ 30" O.C. SCR6: 1/4" X14 1/2" SDS Screws @ 6" O.C. SPN8: 16d Sole Plate Nailing @ 8" O.C. SCR4: 1/4" X14 1/2" SDS Screws @ 4" O.C. . SPN6: 16d Sole Plate Nailing @ 6" O.C. SCR2: 1/4" x14 1/2" SDS Screws @ 2" O.C. SPN4: 16d Sole Plate Nailing @ 4" O.C. AB32: 1/2" Dia. X 10" Anchor Bolts @ 32" O.C. or MASA Anchors @ 32" O.C. SPN2: 16d Sole Plate Nailing @ 2" O.C. HDUS : (1) Simpson HDUS per post FOUNDATION HARDWARE LEGEND AB72: 1/2" Dia. X 10" Anchor Bolts @ 72" O.C. or MASA Anchors @ 72" O.C. 244 :; Provide a total of 244 at top 2-94 at bottom of footing, 3' past post AB64: 1/2" Dia. X 10" Anchor Bolts@ 64" O.C. or MASA Anchors @ 64" O.C. 344 : Provide a total of 344 at top 344 at bottom of footing, 3' past post AB56: 1/2" Dia. X 10" Anchor Bolts @ 56" O.C. or MASA Anchors @ 56" O.C. 4114 : Provide a total of 444 at top 444 at bottom of footing, 3' ast post AB48: 1/2" Dia.X 10" Anchor Bolts @ 48" O.C. or MASA Anchors @ 48" O.C. HTT4 : (1) Simpson HTT4 perpost AB40: 1/2" Dia. X 10" Anchor Bolts @ 40" O.C. or MASA,Anchors @ 40" O.C. HTTS : (1) Simpson HTTS per post HDU2: (1) Simpson HDU2 per post AB32: 1/2" Dia. X 10" Anchor Bolts @ 32" O.C. or MASA Anchors @ 32" O.C. HDU4: (1) Simpson HDU4 per post HDUS : (1) Simpson HDUS per post AB24: 1/2" Dia. )F 10" Anchor Bolts @ 24" O.C. or MASA Anchors @ 24" O.C. HDU8: (1) Simpson HDU8 per post HDQ8: (1) Simpson HDQ8 per post AB16: 1/2" Dia. X 10" Anchor Bolts @ 16" O.C. or MASA Anchors @ 16" O.C. HDU11 : (1) Simpson HD 11 per post HDU14 : (1) Simpson HD 14 per post AB8: 1/2" Dia. X 10" Anchor Bolts @ 8" O.C. or MASA Anchors @ 8" O.C. HD3B : (1) Simpson HD3B per post HD19 : (1) Simpson HD19 per post Note: When anchor holts are used, provide 3" sq. x.229 -'thick plate washer for all sill plate A.B.'s at shear walls only. Project Name: ESI/FME INC STRUCTURAL ENGINEERS Lateral Shear Notes (IBC 2015, CBC 2016, SDPWS 2015) Seismic Design Category D & E Table 4.3A, AFPA SDPWS 2015 Page: 5 Date: 1-18-19 Job No: H483 Client: MORGAN Plan No: 3 Vertical Framing Members: Douglas Fir -Larch @ 16" O.C. Wind Seismic 10 3/8" Wood Structural Panel w/ ad Common Nails @ 6" O.C. @. Edges & 12" O.C. @ Field 365 PLF 260 PLF 3/8" Wood Structural Panel w/ 8d Common Nails @ 4" O.C. @ Edges & 12" O.C. @ Field - 532 PLF 350 PLF $/8" Wood Structural Panel, w/ 8d Common Nails @3" O.C. @ Edges & 12" O.C. @ Field I 685 PLF 490 PLF 3/8" Wood Structural Panel w/ 8d Common Nails @ 2" O.C. @ Edges & 12" O.C. @ Field 895 PLF 640 PLF 1/2" (or 15/32") Wood Structural Panel w/ 10d Common Nails @ 2" O.C. @ Edges & 12" O.C. @ Field 1077 PLF 770 PLF 15 1/2" (or 15/32") Structural I Wood Panel w/ 1od Common Nails @ 2" O.C. @ Edges & 12" O.C. @ Field 1215 PLF 870 PLF Double Sided (3x Vertical Studs @ Abutting Panels and Nails Staggered On Each Side) 1370 PLF 980 PLF 11 3/8" Wood Structural Panel w/ 8d Common Nails @ 3" O.C. @ Edges. & 12" O.C. @ Field DBL Double Sided (3x Vertical Studs @ Abutting Panels and Nails Staggered On Each Side) 1790 PLF 1280 PLF DBL 3/8" Wood Structural Panel w/Ed Common Nails @ 2" O.C. @ Edges & 12" O.C. @ Field Notes a. Wood Structural Panel: Material approved by APA, PFS/TEC0 or Pittsburgh Testing laboratories. These values are for Doug -Fir Larch or Southern Pine, other lumber species may differ in shear capacities. b. Where plywood is applied on both faces of wall and nail spacing is less than 6" o.c., panel joints shall be offset to fall on different framing .members or framing shall be 3x or wider and nails staggered on each side. c. For allowable shear values greater than 350pif, provide a min. of a single 3x member at all framing members receiving edge nailing from abutting panels. d. Where anchor bolts are provided at shear walls a 3"x3"0.229". steel plate washers are required on each bolt. The washer shall be installed within 1/2" from the sheathed side of the plate. (SDPWS sect. 4.3.6.4.3) Horizontal Roof: Joist Spacing < 24" o.c.: 15/32" Wood Struct. Panel PH 24/0, with ad's @ 6" o.c. at edges & boundaries, 12" o.c. field. Floor: Joist Spacing < 16" o.c.: 19/32" Wood Struct. Panel T&G*, PI 32/16, w/Sod's @ 6" o.c. at edges & bound., 10" o.c. field. Joist Spacing < 20" o.c.: 19/32" Wood Struct. Panel T&G*, PI 40/20, w/10d's @ 6" o.c. at edges & bound., 10" o.c. field, Joist Spacing < 24" o.c.: 23/32" Wood Panel T&G* shtg., PI 48/24, w/10d's @ 6" o.c. at edges & boundaries, 10" o.c. field. Notes a. Panel edges shall have approved T&G joints or shall be supported with blocking. Not required when lightweight concrete is placed over subfloor. b. All roof and floor shearing to be Exposre,l or Exterior. - 2 \ ; � | | 0 Z $ �s IL zfl oa N m d N W Z F7 |� }Z, § .E x: )§\} / \<z . $ .! | \ ;2 (I.f § \§§\h\ q§\ . . ® gGS3G S Fol El � � �/ EA ESI/FME INC STRUCTURAL ENGINEERS Page: .In Date: 1/10/2019 Job No: H486 Client: MORGAN I Project Name: YOKA Plan No: I Simolv Suonorted Wood Beam (NDS 2015. CBC 2016. SDPWS 20151 ONEW RIDGE Member Span = 16.0 FT DL LL RLL P1=( + + P2 = ( + + P3=( + + P4=( + + Total (lb) X (ft) Comments: R,(Ib) 1120b) Design: Stress Ratio TotalWN WE' Sr, = M,ae„/Fb = 52.60 ina SProwdea = 114.33 in 46.0% OK DL 1355 1355 A,an=1.SV,aae/Fv= 16.11 int Nwrded = 49.00 int 32.9% OK LL 0 0 Aall = L/ 360 = 0.53 .in 8�i = 0.36 in 67.2% OK RLL 1760 -1760 ADL = 0.16 in GLB Camber = 1.5 x ADL = 0.23 in OMBR HDR P Member Span = 11.0 FT X DL 4i RLL Total (lb) X (ft) Source P, = ( 1355 + + 1760 ) = 3115 8.5 B1 - P3=( + + )_ P4=( + + ) _ Ri R2 DIL LL DL LL RLL Trib (ft) Total (pif) Design Factors: Roof = ( 14 + + 20 ) X( 11 + ) _ 374 Size Factor, CP = 0.98 If d>12, CP=121 28 a n=.111, P5L, Sawn, GluLem. Wall = ( 10 + + ) x ( 0 + 0 ) _'_ 0 Rep. Factor, C, = No = 1 F d J �.1s5,LVL Floor = ( 14 + 40 + ) x ( + ) _ 0 - Load Duration, Cd = 2-Occupance =1 n=.092,UL Deck = ( - 14 + 40 + ) x( + ) = 0 Fb = 2900 x CF x Cr x Cd = 2842 PSI Floor Live Load Reduction Factor .= 1.00 Self Weight = 15.3 F„ = 290 x Cd = 290 PSI Mn,e% =12458 ft -Ib b= 3.50" Roof Live Load Reduction Factor = 1.00 Total = '389 E = 2.00E+06 PSI Vmax = 3115 Ib d= 14.00" Comments: R,(Ib) 1120b) Design: Stress Ratio TotalWN WE' Sr, = M,ae„/Fb = 52.60 ina SProwdea = 114.33 in 46.0% OK DL 1355 1355 A,an=1.SV,aae/Fv= 16.11 int Nwrded = 49.00 int 32.9% OK LL 0 0 Aall = L/ 360 = 0.53 .in 8�i = 0.36 in 67.2% OK RLL 1760 -1760 ADL = 0.16 in GLB Camber = 1.5 x ADL = 0.23 in OMBR HDR P Member Span = 11.0 FT X DL 4i RLL Total (lb) X (ft) Source P, = ( 1355 + + 1760 ) = 3115 8.5 B1 - P3=( + + )_ P4=( + + ) _ Ri R2 DIL LL RLL Trib (ft) Total (plf) Design Factors: Roof = ( 14 + + 20 ) X ( + ) = 0 Size Factor, CF = 1.00 If d>12, CP= 12l'° n=311, PSL, Sewn, Glulam Wall = ( 14 + + ) X( 2 + 0 ) _ 28 Rep. Factor, C, = No =1 d J a=.im wL Floor = ( _ 14 + 40 + ) x ( + ) = 0 Load Duration, Cd = 2.0ccupance =1 n=.osx, UL 'Deck, _ ( 14 + 40 + ) x ( + ) _ - 0 Fb = 2900 x Cr x C, x Cd = 2900 PSI Floor Live Load Reduction Factor = 1.00 Self Weight = 10.4 F" = 290 x Cd = 290 PSI Mmax = 6408 ft -Ib b= 3.50" Roof Live Load Reduction Factor = 1.00 Total = 38 E = 2.00E+06 PSI Vmax = 2618 Ib d= 9.50" MEMBER SIZE = 1 ) 3.5 x 9.5 PSL 2.0 (Parallam) Comments: R,(Ib) R20b) Design: Stress Ratio Total ' - S,aq = Mma,/Fb = 26.51 ..Ina SP,wfdad = 52.65 in 50.4% OK DL 519 1258 A„e=S.SVmex/Fv= 13.54. Int APro„ided = 33.25int 40.7% OK LL 0 0 dan = L/ 360 = 0.37 In 6deaai = 0.22 in 59.49/ OK RLL 400 1360 ADL = 0.11 in GLB Camber = 1.5 x dbL = 0.16 in - - Page: ESI/FME INC Date: 11/10/2019 STRUCTURAL ENGINEERS Job No: H486 Client: MORGAN Project Name: YOKA Plan No: CBC OBM 0/ DIN Member Spann 16.5 FT DL LL RLL Total (lb) X (ft) Source P1 = ( 1355 + + 1760 ) = 3115 7 B1 P2 = ( 833 + + 833 ) = 1666 .9 34X7X7.=1666 LBS FROM EXIST RIDGE P3=( + + )_ P4=( + + )_ RL(Ib) DL LL RLL Trib (ft) Total (plf) Design Factors: Roof m( 14 + + 20 ) x ( 0 + ) _ 0 - Size Factor, CP = 1.00 If d>12, CF=12 [.d ] a n•.111, PS0awn,GluLaM Wall = ( 10 + + ) x ( 7 + A ) _ 70 Rep. Factor, Cr = No = 1 Au = L/ 360 = ,w.136, LVL Floor =.( 14 + 40 + ) x ( + ) _ 0 Load Duration, Cd = 2.Occupance -= 1 - ..092, LSL Deck = ( 14 + 40 + ) x ( + ) = 0 Fb = 2900 x CF x Cr x Cd = 2900 PSI Floor Live Load Reduction Factor = 1.00 - Self Weight = . 24.6 F„ = 290 x Cd = 290 PSI Mmax = 20997 ft -Ib b= 7.00" Roof Live Load Reduction Factor = 1.00 Total = 95 E = 2.00E+06 PSI Vmax = 3331 Ib d= 11.25' RL(Ib) R,,(Ib) Design: Stress Ratio Total Mw Sraa = Mm,JFb = 86.88.. in S,r Idad = 147.66 In 58.8% OK DL 1939 1810 A.,=1.SVn,a,/Fv= 17123 Int APromdad = 78.75 int 21.9%- OK LL 0 0 Au = L/ 360 = 0.55 in AarnLl = 0.55 in 99.8% OK RLL 1392 .1201 ADL = 0.30 in GLB Camber = 1.5 x ADL = 0.45 in r fin A" ESI/FME Inc. STRUCTURAL ENGINEERS Project Name: YOKA Page:_ PSF Date: 2/5/2019 Job #: H486 Client: MORGAN Plan #1 Dead Load 20 psf =_> PSF pif TRIBUTARY PLF ROOF=( 40 )x( 0.0 + 0.0 )= 0 WALL =( 14 )x( o.o + 0.0 )= 0 FLOOR=( 54 )x( 0.7 + 0.0 )= 37.8 DECK =( 65 )x( 0.0 + 0.0 )= 0 Fv= 290 psi E- 2.00 x106 psi SELF WEIGHT = 12.3 TOTAL LOAD = 50.1 PLF Dead Load 20 psf =_> 0 pif 14 psf =_> 0 pif 14 psf =_> 9.8 pif 25 psf =_> 0 plf 12.3 psf =_> 12.3 plf TOTAL D.L. = 22.1 PLF ALTERNATE BEAM = lbs Rzo.L = 849 lbs Max Uplift= -352 lbs (neglect if <0) RILL= 51 DESIGN: lbs nn 0.1111 PSL/VL/66AWN I= 415.316' Size Factor, Cf = 1.00 [if d> 12, C1= (12/d)lnl] Mmax/(Fb*Cd)= n- 0.136 LVL d= 11.25 In. Repetitive Member, Cr=> No = Or = 1 > In^2 Aprov.= 39:4 in^2 15.9% O.K. n= 0.092 LSL b= 3.5 in. Fb= 2900 x Cf x Cr= 2900 psi Fv= 290 psi E- 2.00 x106 psi Mmax = 5151.31 ft4b= 61.816 [n -K Vmax= Rmax-(w*d)=lbs 1210 Cd 2-Occupance = 1.00 RL D.L= 50 lbs Rzo.L = 849 lbs Max Uplift= -352 lbs (neglect if <0) RILL= 51 lbs R2L.L,= 1134 lbs USED CAPACITY Sreq.= Mmax/(Fb*Cd)= 21.3 in^3 Sprov.= 73.8 In^3 28.9% O.K. . Areq.= 1,5*vmax/(Fv*Cd)= 6.3 In^2 Aprov.= 39:4 in^2 15.9% O.K. Allow.Center Def.= Li/ 360 = 0.55 - In. Max.Def.@Center= 0.25 in. 0. K. All.Overhang Def.= 1-2/ 120 = 0.45 in. Max.Def.® Cant.= 0.25 in. 0. V- ESI/FME Inc. STRUCTURAL ENGINEERS Project Name: YOKA 5 BM 0/ LIV RIGHT Span Lin 10.00 ft; Span 1.2- 4.50 ft; PI- 2618 Ibs from B2 OX,= 1.0 R DL- 1258 Ibs Page: Date: 1/21/2019 Job #: H486 Client: MORGAN Plan *: P2= 3800 Ibs from FLOOR/B2 . . . . . . . . . . . . . . . . . . . . . 4.5 ft DL= 1000 . . . . . . . . . Its LI . . . . . . RI D.L= 1394 0 Max.Uplift= .3223 Ibs PSF R1 L.L= 443 TRIBUTARY PLF Dead Load ROOF 40 )x( 0.0 + 0.0 0 20 psf ==> 0 pif WALL 14 X 8,0 + 0.0 112 14 psi ==> 112 pIf FLOOR=( 54 )x( 3.0 + 0.0 162 14 psf ==> 42 pIf DECK =( 65 )x( 0.0 + 0.0 0 25 psf 0 pif SELF WEIGHT = 24.6 24.6 psf 24.6 pif TOTAL LOAD = 298.6 PLF TOTAL D.L. = 178.6 PLF MIR,,• I �. MON. - R ALTERNATE REAM DESIGN:n- 0.1111 PSLIVII61SAWN I= 830.6 lr4 V Size Factor, Cf 1.00 [If d>12, C, (12/d)(0] L LVL VL d- 11.25 in. Repetitive Mernber,.Qr=> No => Cr= I n- 0.092 LSL b= 7 in. Fb= 2900 xCf xCr= 2900 psi Fv= 290 psi , E= 2.00 x106 psi Mmax = 20123.4 ft -lb= 241.48 in -K , Vmax= Rmax-(w*d)=Ibs 4864 Cd= 2-Occupance = 1.00 RI D.L= 1394 Ibs R21).L.= 3453 Ibs Max.Uplift= .3223 Ibs (neglectif<o) R1 L.L= 443 Ibs R2LL= 5458 IIIS USEDCAPACITY Sreq.= Mmax/(Fb*Cd)= 83.3 !nA3 Sprov.= 147.7 InA3 56.4% O.K. Areq,= 1.5*VMax/(Fv*Cd)= 25.2 inA2 Aprov.= 78.8 inA2 31,9% O.K. Allow.CenterDef.= Ll/ 240 = 0.50 In. Max.Def.@Center= 0.19 .V- in. O.K. AII.Overhang AII.Overhang Def.= L2/ 120 = 0.45 In. Max.Def.@,Can1L= 0.40 In. O.K. I Project Name: ESI/FME INC STRUCTURAL ENGINEERS Beam OLIV RM HDR Member Span= 6.0 FT DL LL RLL Total (lb) X (ft) Source PL = ( 336 + 960 + ) = 1296 3.5 EXIST BM 54X3X8=1296 LBS P2 = ( 849 + 1134 + ) = 1983 3 BM 4 P3=( + + )_ P4=1 + + )_ Page: Date: 1/10/2019 Job No: H486 Client: MORGAN Plan No: R1 R2 DL LL RLL Trib (ft) Total (plf) Design Factors: Roof = ( 14 + + 20 ) X( 6 + 4 ) _ 340. Size Factor, Cr =1.00 If d>32, Cr= 12 n n=111, PSL, Sawn, GNLam [d] Wall =( 14 + + )x( 8 + 4 )= 168 Rep. Factor, C,= No =1 n=.136,LVL Floor = (. 14 + .410 + ) X( 8 + 4 ) _ .648 Load Duration, Cd = 2-Occupance = 1 n==o LSL Deck = ( 14 + 40 + ) X( + ) = 0 Fb = 2900 x CF x C, x Cd = 2900 PSI Floor Live Load Reduction Factor = 1.00 Self Weight = 10.4. Fv = 290 x Cd = 290 PSI Mmax = 9814 ft -Ib b= 3.50" Roof Live Load Reduction Factor = 1.00 Total = 1166 E = 2.00E+06 PSI Vmax = 5247 Ib - d= 9.50" MEMBER SIZE _ ( 1 ) 3.5 x 9.5 PSL 2.0 (Parallam) Comments: 1166 ADL = 0.03 in GLB Camber = 1.5 x R1(lb) 1120b) Design: Stress Ratio Total RSM JIM Smq = Mmax/Fti = 40.61 in SPmmdad = 52.65 Ina 77.1% OK DL 2024 2080 Amq =1.SVmax/Fv= 27.14 in APm lded = 33.25 in 81.6% OK LL 2407 2567 Aaii = L/ 360 = 0.20 in Aaow.i = 0.12 in 59.1% OK RLL 600 600 ADL = 0.05 in GLIB Camber = 1.5 x ADL = 0.07 in 7-I LIV HDR Member Span = 6.0 FT DL LL RLL P1=( 0 + + 0 P2=( + + P3 =I + + P4=( + + Total (lb) X (ft) )= 0 Source R1 R2 Design Factors: Size Factor, CP = 1.00 If d>12, CP= rI12 n=,111,PSL,Sawn,Gmbm Rep. Factor, C, = No = 1 L d J ..196, LVL - Load Duration, Cd = 2-Occupance =1 n=.092, UL Fb = 2900 x Cr x C, x Cd = 2900 PSI Fv = 290 x Cd =.290 PSI Mmax = 5249 ft -Ib b= 3.50" E = 2.00E+06 PSI Vmax = 3499 Ib d= 9.50" DL LL RLL Trib (ft) Total (plf) Roof =( 14 + + 20 ) X( 6 + 4 ) _ 340. Wall =( 14 + + ) X( 8 + 4 ) _ 168 Floor = ( 14 + 40 + ) x ( 8 +, 4 ) _.. 648 Deck = ( 14 + 40 + ) x ( + ) = 0 Floor Live Load Reduction Factor = 1.00 Self Weight = 10.4. Roof Live Load Reduction Factor = 1.00 Total = 1166 Source R1 R2 Design Factors: Size Factor, CP = 1.00 If d>12, CP= rI12 n=,111,PSL,Sawn,Gmbm Rep. Factor, C, = No = 1 L d J ..196, LVL - Load Duration, Cd = 2-Occupance =1 n=.092, UL Fb = 2900 x Cr x C, x Cd = 2900 PSI Fv = 290 x Cd =.290 PSI Mmax = 5249 ft -Ib b= 3.50" E = 2.00E+06 PSI Vmax = 3499 Ib d= 9.50" R1(lb) R2(Ib) Design: Stress Ratio Total ow EM Smq = Mmax/Fb = 21.72 in' S,mmdad = 52.65 In' 41.3% OK DL 1459 1459 -A,aq=1.5Vma,/Fv= 18.10 .int - APmmded= 33.25 in2 54.4% OK LL 1440 '1440 Aan = L/ 360 = 0.20 in Aanuai = 0.07 in 34.0% OK RLL 600 :600 ADL = 0.03 in GLB Camber = 1.5 x ADL = 0.04 in I ESI/FME Inc. STRUCTURAL ENGINEERS Project Name: YOKA 4DS 2016, ISC2016, OBC 2016 & SDPWS-16 (ASO) Page: Date: 2/5/2019 Job #: H486 Client: MORGAN Plan #: 11 u S FOR , : �xv10C . : ................... .... PSF TRIBUTARY PLF Dead Load ROOF 40 )X( 0.0 + 0.0 0 20 psf 0 plf WALL 14 )x( 0.0 + 0.0 0 14 psf 0 pif FLOOR=( 54 )x( 1.3 + 0.0 71.82 14 psf 18.62 pif DECK=( 65 )X( 0.0 + 0.0 0 25 psf==> 0 pif SELF WEIGHT = 3.8 3.75 psf 3.8 pff TOTAL LOAD = 75.6 PLF TOTAL D.L. = 22.4 PLF .:'aM$� ��'NP4�0 0�'� 'X . 01. '011 ffiX rob" 11 1 ALTERNATE BEAM n= 0.1111 PSL/VL/6x5AWN I= 178 Ino Size Factor, Of = 1.00 [If d>12, Cf= (12/d)(nl] n= 0.1361 d= 11.25 in. Repetitive Member, Cr-- >, yes => Cr= 1.2 n= 0.092 LSL b= 11.5 in. Fb= 900 x Cf x Cr= 1035 psi Fv= 180 psi E= 1.60 X10' psi Mmax = 2340.56 ft -lb= 28.087 in -K Vmax= Rmax-(W*d)=Ibs 665 Cd 2-Occupance 1.00 ................... .................... . ............... RID.L.= 112 lbs R20.t.= 602 lbs Max.Uplift= -100 lbs (neglect if <0) R1L.L.= 370 lbs R2L.L.= 900 lbs USEDCAPACITY Sreq.= Mmax/(Fb*Cd)= 27.1 lnA3 Sprov.= 31.6 lnA3 as.s% O.K. Areq.= I,S*Vmax/(Fv*Cd)= 5.5 InA2 Aprov.= 16.9 InA2 32.9% O.K. Allow.Center Def.= LI/ 240 = 0.83 in. Max.Def.DCenter= 0.56 In. O.K. .V- AII.Overhang AII.Overhang Def.= L2/ 120 = 0.40 in. Max.Def.@ Cant= 0.04 In. O.K. 219 Lugonia St, Newport Beach, CA 92663, USA Latitude, Longitude: 33,6283297,-117.9508717 ate 1/8/2019, 10:43:04 AM esign Code Document 1A Ref _ _ _ _. _ . _-_... isk CategoryII ite Class D Stiff Soil i Vie.jValue IDescriPtton ,. ;1.687 CER ground motion (for 0.2 sec . . ..... 10.625 'MCER ground motion (for 1.0s p( _. _.... _. .. ....__._,m._._ __---- it 687 'Site -modified spectralacceleratio 11.687 �5 --- �0 937 Site modified spectral acceleratio .__.. ____ ... _._ _ ____ ... 11.125 ,Numeric seismic design value at„1. )R 10.625 Numenc seismic design value at „ yge w. Value Description DC D Seismic design category 0.2 1 Site amplification factor at second 1.5 'Site amplification factor at 1,0 second„ rvy GAj0 688 !MCEG peak ground acceleration SGA1 -Site amplification factoratPGA GAm 10.688 5Site modified peak ground acceleration L �8 Long�eriod transition period in seconds sRT 11.687yrdbabihstic risk -targeted ground motion (Q.2 second) sUH ;1 86 ;Factored uniform -hazard (2% Probability of exceedance in 50 years) spectral accelerat sD . . 3 345actored _; ...._ . determuusUc acceleration value (0 2 second) IRT 0 625 10.677 Probabilistic risk -targeted ground motion. (1.0 second) 1UH Factored uniform hazard (2% probability of exceedance in 50 years) spectral accelerat 1D J.152 Factored deterministic acceleration value. (1.0 second) GAd 1 234 Factored deterministic acceleration value Peak Ground Acceleration .. _- _ . _� RS ,.._.___.. 9.907 _.a _._ :Mapped value of the risk coefficient at short periods . _._ R1 10.923 Mauued value of the risk coefficient at a period of 1 s Page: M ESI/FME INC Date: 1/10/2029 STRUCTURAL ENGINEERS Job No: H486 Client: -MORGAN Project Name: YOKA Plan No: Wind Pressures Location g H, 6.Oft 3.2 0% Zone C Site Information psf 100 % Zone D Zip = Longitude = H28.0ft 13.3 Zone Occupancy Category = II psf D, 1.0 ft H18.0ft 13.3 Zone psf ASCE 7-10 Equivalent Lateral Force Method - Ss = 1.687 S, = 0.625 Fa = 1.0 Fa = 1.5 Sms =. SsxFa = 1.687:. SM1 = SsxFa = 0.938 Soil = (2/3)xSMs =-1.125 Sol = (2/3)xSMs = 0.625 Cs I ; .551 = 0.048. 2nd Story Weight Trib. (ft) Roof = 14 psf x 17 Wixhl = 238 plf Floor c:-14 psf x 0 Roof Slope = 4 :12 = 18.4 Degrees = 0 pif Wind Velocity= 110 -mph --_.. Weight Trib. (ft) Qty. 8 1 -L Ext. Wall = 14 psf x 4 x 1 = 56 plf 1Int. Wall = 10 psf x 4 x 2 =80 pif )� Ext. Wall = 14 psf x 4 x 0 =0 pif Q Int. Wall = 10 psf x 4 x 0= 0 pif Total = 374 pif 1st Story Weight Trib.(ft) Roof - = 20 psf 0 i Floor = 14 psf 21 Weight Trib. (ft) Qty. -L Ext. Wall se 14 psf x ( 4 x 1 + -I- Int. Wall = 10 psf x ( 4 x 2 + (� Ext. Wall = 14 psf x ( 4 x 0 + )� Int. Wall = 10 psf x ( 4 x 0 + 2nd Story R =6.5 Soil Site Class = D I =1.0 Seismic Design Category = D p=1.0 hn=20.0ft T 0.189 for All Other Structural Systems Ire ° cc-IS—'= R/I Qs = CSW StillEh = .7pQs = 0.121W Cs = R/I = 0.173<l;overns SDI WI CSIn.4 _ = 0.508.... Wixhl TxR/I .StoryShearSeismic ASCE 7-10 Simplified Wind Desi¢n 374�plf Roof Slope = 4 :12 = 18.4 Degrees Kat =1.0 Wind Velocity= 110 -mph --_.. hn = 20.0 ft Exposure= C A = 1.29 8 1 o _ Cllr D_ _ =0 plf = 294 pif Trib. (ft) Qty - 4 x 1 )=112plf 4 x 2 )=160pif- 4 x 0 )=0plf 4 x 0 ) = 0 plf 1St Story Total. = 566 pif Level WI hl I Wixhl I F. .StoryShearSeismic Roof 374�plf 17 1 6358 1 66 pif 1 66 pif Iy 11-evelil 566 plf 1 8 1 4528 1 47 plf I 114 plf 15t Wind at Coiner Governing Load Level Bid. Width a Fa Level Story Shear Roof` 21 ft 3.0 ft . 127 plf Roof '"t Wind Level 1 17 ft 3.0 ft 60 pif Level l Wind Corner wind Is the additional pressure applied at cernershearwalls. Pressure 'F,' b to be Included for a distance's' away frem the Domer Wind Level E(P,xTrib) Fx I Story Shear .Wind Roof (6ftx3.2psf +4ftx13.3psf) 72 plf : 72 pif, Level 1 (SEt x 13.3psf + 4ft x 13.3psf) 120 plf 192 plf Hozitonal Pressures I Vertical Pressures Overhangs Zone A B C D E F G H EoH GoH PSaD 25.8 •7.3 17.2 4.11-23.11-15.71-16.01-12.01-32.3. -25.3 Ps ' 20.0 -5.7 13.3 -3.21-27.9142.21 -12:4 •9.3 -25.0 -19.6 _ Wind at Coiner Governing Load Level Bid. Width a Fa Level Story Shear Roof` 21 ft 3.0 ft . 127 plf Roof '"t Wind Level 1 17 ft 3.0 ft 60 pif Level l Wind Corner wind Is the additional pressure applied at cernershearwalls. Pressure 'F,' b to be Included for a distance's' away frem the Domer Project 1 H, 4.0 ft t Hz 8.0 ft I D, 1.0 ft H�ok We] K11 ESI/FME INC STRUCTURAL ENGINEERS Location TZ 13.1 IZone C psf ASCE 7.10 Equivalent Lateral Force Method Ss = 1.687. - S1. = 0.625 F. = 1.0 Ft, = 1.5 Sms = SsxFe. = 1.687 Sms = SsxFe = 0.938 Sos = (2/3)xSms= 1.125 Sol = (2/3)xsms = 0.625 5S1 Cslrem) = R/I = 0.048 _ CsW SDS -= 0.173 <-Governs E,= .7pQ.E=0.121W Cs = R/I Sol rslme„I _TXR/I_ 0.528 ASCE 7-10 Simplified Wind Design Roof Slope = 4 :12 = 18.4 Degrees Kg =1.0 Wind Velocity =110 mph hn =19.0 ft Exposure = C A = 1.27 n _&IV o Page: ( 3 Date: 1/10/2019 Job No: H486 Client: MORGAN Plan No: 2nd Story Weight Trib.(ft) Roof = 3.1 psf - 0%Zone C . Site information 100 % Zone D Zip = Lattitude = Level = 392 pif - 14 psf x Longitude = 65 If 13.1 Zone C - Occupancy Category = H Weight P sf Qty. 13.1 IZone C psf ASCE 7.10 Equivalent Lateral Force Method Ss = 1.687. - S1. = 0.625 F. = 1.0 Ft, = 1.5 Sms = SsxFe. = 1.687 Sms = SsxFe = 0.938 Sos = (2/3)xSms= 1.125 Sol = (2/3)xsms = 0.625 5S1 Cslrem) = R/I = 0.048 _ CsW SDS -= 0.173 <-Governs E,= .7pQ.E=0.121W Cs = R/I Sol rslme„I _TXR/I_ 0.528 ASCE 7-10 Simplified Wind Design Roof Slope = 4 :12 = 18.4 Degrees Kg =1.0 Wind Velocity =110 mph hn =19.0 ft Exposure = C A = 1.27 n _&IV o Page: ( 3 Date: 1/10/2019 Job No: H486 Client: MORGAN Plan No: 2nd Story Weight Trib.(ft) Roof = 14 psf x 28 Level = 392 pif Floor = 14 psf x 0 65 If = 0 plf Trib. (ft) Weight Trib. (ft) Qty. x ( 4 x -L Ext. Wall = 14 psf x 4 x A = 0 pif -L Int, Wall = 20psfx 4 z 2 =80 plf Ext. Wall = 14 psf x 4 x 0 = 0 plf Int. Wall = 10 psf x 4 x 0 = 0 plf 1 = 1.0 Seismic Design Category = D Total =472 pif SstStory Weight Trib. (ft) -Level WI 1 hl 1 WlxhI Y„ glory anal aessnnc Rpof '472 pif 17 8024 80 pif 80 pif lLeveill 552 plf 1 8 1 4416 1 44 pif 1 124 pif Roof = 20 psf 0 Level i(PsxTrib) F„ Floor = 14 psf 28 Qty. 65 If Weight Trib. (ft) Qty. 4 x �- Ext. Wall = 14 psf x ( 4 x 0 + 0 -L Int. Wall = 10 psf x ( 4 x 2 + ) = 0 plf 11 Ext. Wall = 14 psi x ( 4 x 0 + 25.8 -7.3 17.2 4.11-23.11-15.71-16.01-12.01-32.3 -25.3 11 Int. Wall = 30 psf x ( 4 x 0 + 2nd Story R = 6.5 Soil Site Class = D 1 = 1.0 Seismic Design Category = D p=1.0 ho=19.0 ft T = 0.182 for All Other Structural Systems Gaicmic -Level WI 1 hl 1 WlxhI Y„ glory anal aessnnc Rpof '472 pif 17 8024 80 pif 80 pif lLeveill 552 plf 1 8 1 4416 1 44 pif 1 124 pif Wind = 0 plf Level i(PsxTrib) F„ = 392 plf Trib. (ft) Qty. 65 If 4 x 0 )=0plf 4 x 2 ) =160 pif 4 x 0 =.O Of 4 x 0 ) = 0 plf 1st story Total = 552 pif -Level WI 1 hl 1 WlxhI Y„ glory anal aessnnc Rpof '472 pif 17 8024 80 pif 80 pif lLeveill 552 plf 1 8 1 4416 1 44 pif 1 124 pif Wind at Corner Level BId. Width a F„ 17 ft wrner shoe rells. Pressure 'F,' Is to be Included for a distance'.' aweyfromthe comer Governing Load Level I Story Shear Roof Seismic Levels "=i Wind Wind Level i(PsxTrib) F„ Story ShearWwind Roof (oft x 3:1psf+oft x 13.1psf) 65 pif 65 If Level 1 (Sft x 13.1psf + 41t x 13.1psf) 1 118 plf 183 plf Hozitonal Pressures I Vertical Pressures .Overhangs Zone A B C D E F G H EoH GoH Psso 25.8 -7.3 17.2 4.11-23.11-15.71-16.01-12.01-32.3 -25.3 - Ps 19.7 -5.6 13.1 -3.11-17.61-12.01 •12.2 -9.1 -24.6 •19.3 Wind at Corner Level BId. Width a F„ 17 ft wrner shoe rells. Pressure 'F,' Is to be Included for a distance'.' aweyfromthe comer Governing Load Level I Story Shear Roof Seismic Levels "=i Wind ESI/FME INC STRUCTURAL ENGINEERS Project Name: 7-1 Hr 6.0ft 3.2 0%Zone C - � psf 100 %Zone D Hz 8.0ft 13.3 ZoneC psf D1 1.0 ft H, 8.0 ft 13.3 Zone C psf ASCE 7-10 Eauivalent Lateral Force Method Ss = 1.687 - Ss = 0.625 Fa = 1.0 F„ = 1.5 Sm, = SSxFa = 1.687 Sins = SsxFa = 0.938 Sos = (2/3)xSMs = 1.125 Sos = (2/3)xSMs = 0.625 551 = 0 pif Cs I = = 0.048 Weight Location L1 Site Information Zip = Lattitude = Longitude = Occupancy Category = II Page: Of Date: 1/10/2019 Job No: H486 Client: MORGAN Plan No: 2nd Story Weight Trib. (ft) Roof = 14 psf x - 24 = 336 pif Floor = 14 psf x 0 1 Ext. Wall = 14 psf x( 4 x = 0 pif 11nt. Wall = 10 psf X( 4 x Weight Trib. (ft) Qty. II Int. Wall = 10 psf x( 4 x 1 Ext. Wall = 14 psf x 4 x 2 = 112 plf - Int.WeH = 10psf x 4- x 1 =40 pif II Ext. Wall = 14 psf x 4 x 0 = 0 plf II Int. Wall = 30 psf x 4 x 0 =0plf Total as 488 pif 1st Story Weight Trib. (ft) Roof = 20 psf 0 Floor - = 14 psf 21 = 294 pif Weight Trib. (ft) I Qty. 1 Ext. Wall = 14 psf x( 4 x 2+ 11nt. Wall = 10 psf X( 4 x 1 + II Ext. Wall = 14 psf x( 4 x 0 + II Int. Wall = 10 psf x( 4 x 0 + 2nd Story )=0plf R = 6.5 Soil Site Class = D 0 I = 1.0 Seismic Design Category = D 15tstory Q=1.0 hp=20.0IL T = 0.189 for All other Structural Systems ,an n) R/I QE = CsW Cs =—= 0.173 -Governs SDs Eh = .7pQE = 0.121W - Level 'Vu <- - ' R/I Raof 488 Sol - Level l 59$ Cslmaxl cT= O.SO$ xR/I ASCE 7-10 SimplifiedWindDesien Roof Slope = 4 :12 = 18.4 Degrees Kat =1.0 Wind Velocity=110 mph ho=20.0ft I" Exposure = C A = 1.29 8296 83 pif 4784 48 plf 13080 83 132 _ Wind Level Y(PaxTrlb) I Fa IStoryShear-Wind Roof- (6ft x 3.2psf + 4ft x 13.3psf) 1 72 plf 1 72 pif I KIMrevel 1 (SILx 13.3psf +4ftx 13.3psf) 120 plf 192 plf Hozitonal Pressures I Vertical Pressures Overhangs one A B C D E F G H EOH Goa P,,, 25.8 -7.3117,21-4.11-23.11-15.71-16.01-12.01-32.3 -25.3 PS 20.01-5.7113.31-.21-17.91-12.21-12.41-9.31-25.0 -19.6 Wlnd at Corner Governing Load Level Bid. Width a Fs .. Level I Story Shear. Ropf 17ft 3.Oft 127p1f Roof Seismic Levell 17ft 3.Oft 60plf Level l Wind Comerwlnd is the add Inone I pressure applled at corner shemwalls. Pressure 'F,' is to be Included for a distauce'a' away from the comer = 0 pif = 294 pif Trib. (ft) Qty. 4 x 2 ) = 224 plf 4 x 1 ) = 80 pif 4 x 0 )=0plf 4 x 0 )=0plf 15tstory Total = 598 pif 83 132 _ Wind Level Y(PaxTrlb) I Fa IStoryShear-Wind Roof- (6ft x 3.2psf + 4ft x 13.3psf) 1 72 plf 1 72 pif I KIMrevel 1 (SILx 13.3psf +4ftx 13.3psf) 120 plf 192 plf Hozitonal Pressures I Vertical Pressures Overhangs one A B C D E F G H EOH Goa P,,, 25.8 -7.3117,21-4.11-23.11-15.71-16.01-12.01-32.3 -25.3 PS 20.01-5.7113.31-.21-17.91-12.21-12.41-9.31-25.0 -19.6 Wlnd at Corner Governing Load Level Bid. Width a Fs .. Level I Story Shear. Ropf 17ft 3.Oft 127p1f Roof Seismic Levell 17ft 3.Oft 60plf Level l Wind Comerwlnd is the add Inone I pressure applled at corner shemwalls. Pressure 'F,' is to be Included for a distauce'a' away from the comer Page: i5 ESI/FME INC Date: 1/10/2019 STRUCTURAL ENGINEERS Job No: H486 Client: MORGAN Project Name: YOKA Plan No: 8.0 ft 13.1 psf ASCE 7-10 Equivalent Lateral Force Method Ss =1.687 Sl = 0.625 �Fa = 1.0 Fe as 1.5 SMs = SsXFa = 1.687 SM, as SsXFa as 0.938 Sas = (2/3)XSMs =1.125 Sol = (2/3)xSMs = 0.625 551 Cslmml =R/I = 0,048 QE _ CsW 2nd Story Weight Trib. (ft) Roof = Wind Pressures Location LZ Hr 4.0 ft7 3.1 0 % Zane C Site Information 0 psf 100%ZoneD Zip = I Lattitude_ Weight Trib. (ft) Qty- -L Ext. Wall = Longitude = H28.0 ft x 2 13.1 ZoneC Occupancy Category = II 30 psf x 4 psf as 40 plf D, 1.0 ft 14 psf x 4 8.0 ft 13.1 psf ASCE 7-10 Equivalent Lateral Force Method Ss =1.687 Sl = 0.625 �Fa = 1.0 Fe as 1.5 SMs = SsXFa = 1.687 SM, as SsXFa as 0.938 Sas = (2/3)XSMs =1.125 Sol = (2/3)xSMs = 0.625 551 Cslmml =R/I = 0,048 QE _ CsW 2nd Story Weight Trib. (ft) Roof = 14 psf x 26 = 364 plf Floor = 14 psf x 0 = 0 plf Weight Trib. (ft) Qty- -L Ext. Wall = 14 psf x 4 x 2 = 112 plf -� Int. Wall = 30 psf x 4 x 1 as 40 plf II Ext. Wall = 14 psf x 4 x 0 as 0 pif Q Int. Wall = 10 psf x 4 x 0 =0pif - ) = SO pif Ext. Wali = 14 psf x ( 4 x Total = 516 pif 1st Story Weight Trib. (ft) Roof = 20 psf 0 = 0 plf Floor = 14 psf 17 = 238 plf Weight Trib. (ft) Qty. Trib. (ft) Qty. 1 Ext. Wall = 14 psf x ( 4 x 2 + 4 x 2 ) as 224 Of �- Int. Wall = 10 psf x ( 4 x 1 + 4 x 1 ) = SO pif Ext. Wali = 14 psf x ( 4 x 0 + 4 x 0 ) = 0 pif II Int. Wall = 10 psf x ( 4 x 0 + 4 x 0 ).=0 pif 2nd Story 1St Story Total = 542 pif R = 6.5 Soil Site Class= 0 1 = 1.0 Seismic Design Category as D p=1.0 heas19.0ft T = 0.182: for All Other Structural Systems SDs Eh= .7pQs=0.121W Cs = R/I = 0.173 <-Governs r� Cslmael = SDI = 0.528 ~ TxR/I ASCE 7-10 Simplified Wind Design Roof Slope = 4 :12= 18.4 Degrees K:t as 1.0 Wind Velocity =110 mph he as 19.0 ft Exposure as C!, = 1.27 n _ av n xsasins Level WI hl Wixhl F. Story Shear Seismic Roof 516 pif 17 8772 86 pif 86 Of Level i 542 pif 8 4336 42 pif 128 pif Wind Level -. E(PexTrib) Fs Story Shear Wind Roof (4ft x 3.1psf +oft x 13.1psf) 65 plf 65 plf Level l (5ft x 13.lpaf+4ft x 13.1psf) 118 pif 183 plf ' Hozitonal Pressures I Vertical Pressuresi Overhangs Zone A- 8 a C D E F G H Eon Gon Psyo 25.8 -7.3 17.2 .4.11-23.11-15.71-16.01-12.01-32.3 -25.3 - Ps 19.7 -5.6 113.11 -3.11-17.61-12.01-12.21 -9.11-24.6 -19.3 Wind at Corner Governing Load Level -Bid. width a Fa Level Story Shear . .Roof 28 ft 3.0 ft 93 If Roof Seismic Leven 28 ft 3.0 ft 59 pif Level l' _ Wind Corner wind is the addltlonalpressur .PPUed at cornersheanealls. Pressure'Ff is to be included for a distance's' away from the corner Page: lb ESI/FME INC Date: 1-19-19 STRUCTURAL ENGINEERS Job No: H486 Client: MORGAN Project Name: YOKA Plan No: ^ Shearwall Design (IBC 2015, CBC 2016, SDPWS 2015) + / left of master Plate Height (H) = 8.0 ft Net Lateral Load Shearwall Design Length - Opening Length Source. wind (pif Seismic (plf) Tributary (ft) Wind Seismic Demand Capacity Ratio Wall 1 = 13.3 ft - 0.0 ft = 13.3 ft L2 72 83 (16/2 +0.0) = 576 lb 664 lb Wind 103 pif 365 pIf 0.28 Wall = - = 0.0 ft L2 65 86 (13/2 + = 423 lb 559 lb Seismic 92 plf 260 plf 0.35 Wall = - = 0.0 ft 664 ib + = Olb Olb Aspect Ratip Wall - - = 0.0 ft + = Olb Olb 10 h/b, = 0.6 s 20 Walls= - = 0.0 it 0.31 + = 01b Olb + = Total Legth=13.3ft Corner Wind 127 x 3.0 ft = 381 lb Total Load= 1380 lb 1223 lb Diaphragm + _ . Unit Shear (V) = Load/Legth = 103 pif 92 pif h/b, - 1.2 s L = 20 ft Provide A35/LTP4 @ 48" O C Walls = - = 0.0 It 16d Nails @ 14" O.L. SPN14 V= 69 pif V. = 168 Of Olb W/ No HD Vertical Load x 3.0 ft - 381 Ib Total Load = 957 lb 664 lb Load Trib (ft) Load Uplift Calculation Roof = 14 psf x 7.0 = 98 plf 115 pif Stacking HD wall= 10 psf x 8.0 = 80 pIf Mo = VLH L = 13 ft M,(ft-#) M,(ft-0) MR(ft-#) Uplift(lb) Capacny(lb) Floor = 14 psf x 0.0 = 0 pIf Wind. 11036 0 9489 316 0 Ok Total Load (W) = 178 pif MR(w) = 0.6WL2 2 Seismic 9784 0 6998. 209 0 Ok SDI =1.125 L=13.3ft Vertical Load we w M,(*= 0.44 2 E Load Trib(ft) Load E (.6-.14SDs) = RT OF 2ND E 0 U v Plate Height (H) =10.0 ft Net Lateral Load Shearwall Design Length Opening Length 'Source Wind Seismic Tributary(ft) Wind _ Seismic Demand Capacity Ratio Wall I= 8.3 ft - 0.0 ft = 8.3 it 1.1 72 83 (36/2 +0.0) = 5761b 664 ib Wind 115 pif 365 pif 0.31 Wall 2 = - = 0.0 ft +- = Olb O lb Seismic 80 pif 260 pif 0.31 Wall = - = 0.0 ft + = Olb Olb Aspect Rati o Wall 4 - - = 0.0 ft + _ . 0 lb 0 lb 10 h/b, - 1.2 s 2.0 Walls = - = 0.0 It + = Olb Olb Total Legth = 8.3 it . -Corner Wind 127 x 3.0 ft - 381 Ib Total Load = 957 lb 664 lb Diaphragm Unit Shear (V) = Load/Legth = 115 pif 80 pif L = 20 ft Provide A35/LTP4 @ 48" O.C. 16d Nails @ 12" O.C. SPN12 V= 48 plf V. = 168 pif - W/ 4X4 w/ ST6224 Vertical Load Load Trib(ft) Load Uplift Calculation Roof = 14 psf x 3.0 = 42 pif Stacking HD Wall = 14 psf x 10.0 = 140 plf Ma = VLH L.= 8.3 ft Me(ft-#) M=(ft-#) MR(ft-N) Uplift(lb) Capacltypb) Floor = 14 psf x 0.0 -= pif WL2 Wind 9570 - 0 3789 694 2540 Ok .0 MR(W)= 0.6 Total Load (W) = 182 pif 2 Seismic. 6640 D 2794 462 2540 Ok S. 1.125 L=8.3ft DS = WL' Malsl = 0.44 >c E 2 E (.6-.14SD5) = 0.44 E E Page: ESI/FME INC Date: 1-19-19 STRUCTURAL ENGINEERS Job No: H486 Client: MORGAN Project Name: YOKA Plan No: Shearwall Design (IBC 2015, CBC 2016, SDPWS 2015) OREAR OF MAS aA Plate Height (H) =8.0 ft Net Lateral Load Shearwall Design, Length Opening Length Source wind half Selsmic halo Tributary(ft) Wind Seismic Demand Capacity Ratio Wall 1= 7.5 ft - .O.Oft = 7.5 ft TI 0 66 (23/2 +0.0) = Olb 759 lb Wind 0 P 365 pif 0 Wall 2 = = 0.0 If 0 0 (0/2 + = 0 Ib Olb Seismic 101 pif 260 plf 0.39 Wall - - = 0.0 ft + = Olb Olb Asoect Ratio Wall = - = 0.0 ft + Olb O lb 10 h/b, = 1.1 s 2.0 walls- - = 0.0 ft - + = Olb Bib Total Legth = 7.5 ft Corner Wind 0 x 0.0 ft = 01b Total Load = 0 l 759 lb Diaphragm Unit Shear (V) = Load/Legth = 0 pif 101 pif L = 20 ft Provide A35/LTP4 @ 48" O.C. 16d Nails @ 24" O.C, SPN14 V = 38 plf V. = 168 pif w/ 4x4 w/ MST48 Vertical Load Load Trib (ft) Load - Uplift Calculation Roof = 14 psf x 7.0 = 98 pli Stacking HD Wall = 14 psf x 8.0 = 112 pif Ma = VLH L = 8 ft M"(ft-#) Mo(ft-#) MR(ft-#) Uplift(lb) Capacity0b) Floor= 14 psf x 0.0 - 0 plf WL' Wind 0 0 3544 -473 3695 Ok Malwl=0.6- Total Load .(W)= 210 plf 2Seismic-6072 0 2614 461 3695 Ok S, = 1.125 L = 7.5 ft we UPLIFT RESISTED BY RETURN WALL/ HDR .Ld MR(s) = 0.44 2 E MST48 PROVIDED AT END WITH NO RETURN WALL E E E (.6-.14Sos) = 0.44 u uo OFROF MBR Plate Height (H) 8.0 It Net Lateral Load Shearwall Design Length Opening Length Source Wind Seismic Tributary(ft) Wind Seismic Demand Capacity Ratio WallI- 9.7 ft - 0.0 ft = 9.7 It Ti 0 66 (23/2 +0.0) = 0 l 759 lb Wind Oplf 365 pif 0 Wall 2 = - = 0.0 ft + = Olb Olb Seismic 78 pif 260 plf 0.3 Wall .3= - = 0.0 ft + = Olb 01b Asaect Ratio Wall = - = 0.0 ft + = Olb O lb 10 h/b, - 0.8 s 2.0 Wall = - = 0.0 It + = Olb 0 l Total Legth=9.7ft CornerWind 0 xO.Oft= Olb Total Load= Olb 759 ib Diaphragm Unit Shear (V) = Load/Legth = 0 pif 78 pif L = 20 ft Provide A35/LTP4 @ 48" O.C. '16d Nails @ 16" O.C. SPN16 V= 38 pif V. = 168 pif w/ 4x4 w/ ST6224 Vertical Load - Load Trib(ft) Load 'Uplift Calculation Roof = 14 psf x 6.0 = 84 pif Stacking HD Wall = 14 psf x 8.0 = 112 plf -M" = VLH L = 9.7 ft M,(ft-#) M,(ft-#) MR(ft-#) Uplift(lb) Capacity(lb). Floor = 14 psf x 0.0 = 0 plf We Wind 0 0 5498 -569 2540 Ok MRIWI = 0.6 Total Load (W) = 196 pif 2 Seismic 6072 0 4055 209 2540 Ok SRs = 1.125 L = 9.7 ftWLr UPLIFT RESISTED BY RETURN WALL/ HDR 4 Malsl ' 0.44 2 E E E E (.6-.14Sos) = 0.44 u° 8 Project Name: YOKA .OS RT OF LIV Plate Height (H) = 8.0 ft Length Opening Wall = 9.8 It O.Oft Wall = Wall = ESI/FME INC STRUCTURAL ENGINEERS Page: I `® Date: 1-19-19 Job No: H486 Client: MORGAN Plan No: Shearwall Design (IBC 2015, CBC 2016, SDPWS 2015) Net Lateral Load + = 0 l Shearwall Design Length Source Wind (plf. Seismic (Pill Tributary(ft) Wind Seismic Demand -, Capacity Ratio = 9.8ft L3 192 132 (19/2 +2.0) - 22081b 1518 lb Wind. 245 pif 365 pif 0.67 = 0.0 ft 0 0 (0/2 + = O lb Gib Seismic 156 plf 260 plf 0.6 = 0.0 ft + = Olb OlbQ Aspeet Ratio 0 114. (23/2 +0.0) = Olb 1312 lb h/b = 08 s 2:0 Wall 4= - = 0.0 ft + = Olb Gib 10 s Walls= - = 0.0 ft + = 01b Gib Total Legth = 9.8 ft Corner Wind 60 x 3.0 ft = 1801b Total Load = 23881b 15181b Diaphragm Unit Shear (V) = Load/Legth = 245 plf 156 plf 1/2 A.B. @ 48" O.C. A648 L = 20 ft Provide A35/LTP4 @ 48" O.C. V = 119 pif V, = 168 plf w/ 4x4 w/ HDU2 Vertical Load Load Trib(ft) Load Uplift Calculation Roof = 14 psf x 0.0 = 0 pif Stacking HD Wall= 14 psf x 8.0 = 112 pif M, = VLH L = 10 It M,(ft-#) M,(ft-fl) MR(ft-A) Uplift(lb) Capacity(lb) Floor= 14 psf x 8.0 - 112 pif Malwl-06 WL' Wind 19104 0 6388 1304 3075 Ok Total Load (W) - 224 plf 2 Seismic 12144 0 4711 762 3075 Ok SDs=1.125 L=9.8ft M 0.44 WLt w aisl = 2 E E E E (.6-.14SDs) = 0.44 a a L o Mir uv + = 0 l Olb Aspect Ratio Factor Total Legth = 6.9 ft Plate .Height (H)=8.0ft Net Lateral Load 1.25-.125h/b,= 0.96 Diaphragm Shearwall Design Length Opening Length Source Wind Seismic Tributary(ft) Wind Seismic Demand Capacity Ratio Wall 1= 3.4 ft - 0.0 It = 3.4 It T1 0 114. (23/2 +0.0) = Olb 1312 lb Wind 0plf 658 pif 0 Wall = 3.5 ft - = 3.5 k T2 124 ( 23/2 + = Olb 1426 lb Seismic 397 pif 470 pif 0.84 wall 3= = 0.0 ft + = Olb Gib As"d Ratio Wa114 = - = 0.0 ft + = Gib Gib 12 h/b, - 2A4 2.0 Wa115 = - = O.Oft + = 0 l Olb Aspect Ratio Factor Total Legth = 6.9 ft Corner Wind 0 x 0.0 ft = 0 l Total Load .= O lb 2737 Ib 1.25-.125h/b,= 0.96 Diaphragm Unit Shear (V) = Load/Legth = 0 pif 397 pif 1/2 "A.B. @ 24" O.C,, AB24 L = 30ft Provide A35/LTP4 @ 48" O.C. V = 91 pif V. = 168 pif - w/ 4x4 w/ HDU2 Vertical Load Load Trib (ft) Load Uplift Calculation Roof = 14 psf x 6.0 = 84 pif Stacking HD Wall = 14 psf x 8.0 = 112 pif M, = VLH L = 3.4 ft - M,(ft-#) M,(ft-#) Ma(ft-#) Uplift(lb) Capacity(lb) Floor= 14 psf x .10.0 = 140 pif WL2 Wind 0 0 1165 -343 3075 Ok MR(W) = 0.6 Total Load (W) = 336 pif 2 Seismic 10789 0 859 2921 3075 OR Sps=1.125 L=3.4ft WL? p Malsl - 0.44 2 E E E E (.6-.14Sps) = 0.44 uo a Page: ESI/FME INC Date: 1-18-19 STRUCTURAL ENGINEERS Job No: H486 Client: MORGAN Project Name: YOKA Plan No: O7 ENTRY Plate Hi Panel 1 Panel 2 Panel Panel 4 Panel 5 !ight(H)=8.0fit Relat. Stiffness Wind (lb) - Seismic (lb) - Lateral Load Hardy Panel Demand Capacity Demand Capacity Wind Roof = 14 psf x 0.0 = 0 pIf - HFX•18x811/8"HS 1.00 3102 3740 2022 - 3740 Source (plf) Seismic (pit) Tributary(ft) Wind Seismic V (lb) M,(ft-#) M.(ft-#) Ma(ft-#) Uplift(lb) Capecity(lb) Floor= 14 psf x 0.01 = 0 pIf LI 192 132 (19/2 + 0.0) = 1824 Ib 1254 lb 3102 24816 0 0 16544 39500 - LZ 183 128 (12/2 + 0.0) = 1098 Ib 768 Ib - Total Load (W) = 0 pIf + = Olb Olb 2022 16176 0 0 10784 39500 $aa=1.125 L=1.5ft WL, + = 0 l - 011b + = 0 l Olb Diaphragm Corner Wind 60 x 3.0 ft = 180 lb Total Load = 3102 lb 20221b L = 22 ft - Provide A35/LTP4 @ 48" O.C. V = 141 plf V. = 168 pIf - Vertical Load Load Trib (ft) Load Uplift Calculation for Panel 1 Roof = 14 psf x 0.0 = 0 pIf - Stacking Uplift Wall= 10 psf x 0.0 = 0 pIf M, = VH L = 2 ft V (lb) M,(ft-#) M.(ft-#) Ma(ft-#) Uplift(lb) Capecity(lb) Floor= 14 psf x 0.01 = 0 pIf WL2 Wind 3102 24816 0 0 16544 39500 MRIW)= 0.6— Total Load (W) = 0 pIf 2 Seismic 2022 16176 0 0 10784 39500 $aa=1.125 L=1.5ft WL, M 0.44 MR(S) v 2 E E 01 Page: ESI/FME INC Date: 1-19-19 STRUCTURAL ENGINEERS Job No: H486 Client: MORGAN Project Name: YOKA Plan No: Shearwall Design (IBC 2015, CBC 2016, SDPWS 2015) O8 WALL AT LIV Plate Height (H) =8.0ft Net Lateral Load Diaphragm Unit Shear (V) = Load/Legth = 0 pif I Shearwall Design� Length, Opening Length Source Wind 1plf. Seismic(plf) Tributary(ft) Wind Seismic Demand - Capacity- Ratio Wall 1= 6.0 ft - 0.0 ft = 6.0 ft Ti 0 114 (23/2 +0.0) - Olb 1311 lb Wind 0plf 365 p1f 0 Wall 2 = - = 0.0 ft 0 0 (0/2 + = 0 Ib Olb Seismic 219 plf 260 pif 0.84 Wall 3= - = OA ft Ma = VLH L = 6 ft Mp(ft-#) Mo(ft-#) Ma(ft-#). Uplift(b) + = 01b 01b Aspect Ratio Wall - - = 0.0 ft 2 Seismic 10488 0 1115 1562 + = Olb 0 l 10 h/b, - 1.3 5 2.0 Wall = - = 0.0 ft ,' + = Olb 0 l Total Le th= 6.0 ft Corner Wind 0 x 0.0 ft = Olb Total Load= Olb 1311 Ib Diaphragm Unit Shear (V) = Load/Legth = 0 pif 219 plf 1/2 "A.B. @ 56" O.C. A856 L = 10 ft Provide A35/LTP4 -@ 48" O.C. V=131 pif V,=168 pif w/ 4x4 w/HDL12 Vertical Load Load Trib(ft) Load Uplift Calculation Roof = 14 psf x 0.0 = 0 pif Stacking HD Wall = 14 psf x 8.0 = 112 pif Ma = VLH L = 6 ft Mp(ft-#) Mo(ft-#) Ma(ft-#). Uplift(b) Capacity(lb) Floor= 14 psf x 2.0 = 28 pif WLZ Wind 0 0 1512 -252 Malw1= 0.6— 3075 Ok Total Load (W) - 140 pif 2 Seismic 10488 0 1115 1562 3075 Ok SDS = 1.125 L = 6.0 ft W LsLz ,' M 0.44 ori MR(s) = a 2 E E E E (.6-.14SDs) = 0.44 u°- uo O Stacking M,(ft-#) 0 0 HD Capaclty(lb) Page: 20 ESI/FME INC Date: 1-18-19 STRUCTURAL ENGINEERS Job No: H486 Client: MORGAN Project Name: YOKA Plan No: Simply Supported Wood Beam w/ Overstrength (NDS 2015, CBC 2016, SDPWS 2015) 5—/ / BM T RT OF LIV v Member Span = 16.5 FT Point Loads DL LL RLL P1 = ( 1258 + + 1360 ) _ P2=1 + + )_ P3=( + + )_ P4=( + + )_ Total (lb) X (ft) 2618 4.5 B2 Point Loads From Supported Shearwalls Ma(ft-#) + L(ft) (Ib) x(ft) QE1= 6640 + 8.3 = 800 in compression @ 4.5 from W2 QE2= + 0 = @ 0 from QE3= + = @ from QEd= @ from QES= + = @ from QE6= + = @ from Distributed Load Source Source Mo F L .I Design Factors: Size Factor, CF =1.00 If d>12, C,=F12]" 1211" A=•111, PSL, Sawn, GINUM Rep. Factor, C, = No = 1 L d J ..L96,LVL Load Duration, Cd= 5-Seismic/Wind =1.6 -.092, UL % = 2900 x Cr x Cr x Cd x 1.2 = 5568 PSI sps =1.143 F, = 290 x Cd x 1.2 = 557 PSI f16 = 2.5 E = 2.00E+06 PSI - Load Combination DL LL RLL Moment Trib (ft) Total (plf) Roof = ( 20 + + 20 ) x ( + ) = 0 Wall =( 14 +, + )x( 8 + 0 )_ 112 Floor = ( 14 + 40 + ) x ( 3 + 0 ) _ 162 Deck =( 14 + 40 + ) x( + ) _ o Floor Live toad Reduction Factor. = 1.00 Self Weight = 24.6 Roof Live Load Reduction Factor =- 1.00 Total = 299 Source Source Mo F L .I Design Factors: Size Factor, CF =1.00 If d>12, C,=F12]" 1211" A=•111, PSL, Sawn, GINUM Rep. Factor, C, = No = 1 L d J ..L96,LVL Load Duration, Cd= 5-Seismic/Wind =1.6 -.092, UL % = 2900 x Cr x Cr x Cd x 1.2 = 5568 PSI sps =1.143 F, = 290 x Cd x 1.2 = 557 PSI f16 = 2.5 E = 2.00E+06 PSI - Load Combination Shear Moment R1(lb) R2(lb) (1.0+.14Sos)D+.70,QE 4225 lb 17024 ft -lb 4225/2189 2653/1889 (1.0+.105Sos)D+.75LL+.75RLL+.5250,Q6 5250 lb 20837 ft -Ib 5250/3723 3464/2892 (.6-.14S,)D+.7f1,QE 25051b 10526ft-Ib 2505/469 1345/581 Vmas = 5250 lb Mmas = 20837 ft -Ib MEMBER SIZE = 1 ) 7 x 11.25 PSL (Parallam) b= 7.00" Comments: d= 11.25' R1(Ib) R2(lb) Design: Stress Ratio Total ' S,aq = Mma,/Fb = 44.91. Ina Spmvldad = 147.66 in 30.4% OK DL 2388 1817 A,aq=1.5V,.JFv= 14.14 int Apmvlded = 78.75 int 18.0% OK LL 990 - 990 RLL 989 371 E - 582 218 ESI/FMED @nc. STRUCTURAL ; ENGINEERS HANDRAIL POST / CONNECTION H=42'R P = 200 LBS M = 200 X 3.5 =700 FT LBS Fb = 700 X 12/7.15=1175 PSI 4X4 POST OK T=C=700X 12/7.25=1160 LBS USE SIMPSON DTT2 TOP AND BOTTOM SMPSM Dt�R - , S ME 54 1 CONNECTION DETAIL Sheet Date JN. (eH Y 3) S%93 Project Title: 00 Engineer: Proact ID: Prof act Descr: Printed: 18 JAN 2019, Description : PAD FOR HFX Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used: ASCE 7-10 Material Properties. Analysis/Design Settings fc : Concrete 28 day strength 2.50 ksi Calculate footing weight as dead load ? Yes Yield 60 ksl Calculate Pedestal weight as dead load? Yes 2Rebar c: Concrete Elastic Modulus 3122 ksi Mln Steel % Bending Reinf (based on'd') As Req'd Concrete Density 145 pcf Min Allow %Temp Relnf (based on thick) 0.0018' Phi Values Flexure: 0.9 Min. Overturning Safety Factor 1:1 Shear: 0.75 Min. Sliding Safety Factor 1:1 '"�rlilnfor i 5 2,790 Allowable Soil Bearing 2 ksf Soil Bearing Increase Footing base depth below soil surface It Increase Bearing By Footing Weight No Increases based on footing Depth .... Soll Passive Sliding Resistance 250 pcf Allowable pressure Increase per foot ksf (Uses entry for"Footingbase depth below soilsuneca"Por Porte) when base of footing is below it Coefficient of Soil/Concrete Friction 0.3 Increases based on footing Width ... Allowablepressureincrease parfoot when maximum length or width is greater than ksf it . Top Bars Maximum Allowed Bearing Pressure 10 ksf 2.790 2.592 1nA2 (A value ofzem implies no limit) Bars Right of Cal #2 Adjusted Allowable Soil Bearin (Allowablefight and eppth & width 2.0 ksf ccreases as speciffed byfu er) �WNJQ I all 1 & er f �q {` Distance Left of Colum W#1 = 2.50ft pedestal dimensions... Bare lett of Col 91 Count Size As Provided As Req'd Between Columns .- = Distance Right of Column #2 = 1.50ft 2.50 ft- Col #1 Col #2 Bottom Bars 9.0 5 2.790 2.592 InA2 Sq. Dim. 12 12 in Top Bars 9.0 5 2,790 2.592 inA2 Total Fooling Length. = 6.50 ft _ Height - g in Bars Btwn Cols Footing Width = 5.0 It Bottom Bars 9.0 5 2.790 2.592 1nA2 - Footing Thickness = 24.0 In Top Bars 9,0 5 2.790 2.592 1nA2 Bars Right of Cal #2 Rebar Center to Concrete Edge @ Top = 3 in Bottom Bare 9.0 5 2.790 2.592 1nA2 Rebar Center to Concrete Edge @ Bottom = 3 in Top Bars 9.0 5 2.790 2.592 1nA2 R-- ArTnY�L��t; 'rr' Applied @ Left Column D Lr L S W E H Axial Load Downward = 23.0 k Moment (+CW) = k -ft Shear (+X) = k Applied @ Right Column Axial Load Downward _ -23.0 k Moment(+CW) = k -ft Shear (+X) = k Overburden = 0.430 Project Title: Engineer: `✓L Project ID: Project Descr. QHS/G��ls�'� t �* �, '„ ��� Eccentricity Factor of Safety Item Applied Capacity Governing Load Combination PASS 1.704 Overturning 55.20 k -ft 94,073 k -ft +0.60D+0.60W PASS No Sliding Sliding 0.0 k 4.749 k No Sliding PASS 2.328 Uplift 13.80 k 32.130 k +0.60D+0.60W Utilization Ratio Item Applied Capacity Governing Load Combination PASS 0.9551 Soil Bearing 1.910 ksf 2A ksf +0.60D+0.60W PASS 0.1680 1 -way Shear - Col #1 12.60 psi 75.0 psi +0.90D -W PASS 0.1680 I-way Shear- Col #2 12.60 psi 75.0 psi +0.90D+W PASS 0.06278 2 -way Punching - Col #1 9.416 psi 16U psi +0.90D+W PASS 0.06967 2 -way Punching - Col 92 10.451 psi 150.0 psi +1.20D+W PASS 0.02543 Flexure - Left of Col #1- Top -6.496 k -ft 255.413 k -ft +1.20D -W PASS 0.04517 Flexure - Left of Col #1- Bottom 11.538 k -ft 255.413 k -ft +0.90D+W PASS 0.009650 Flexure - Between Cols - Top -2.465 k -ft 255.413 k -ft +1.20D -0.50W PASS 0.03387 Flexure - Between Cols - Bottom 8.652 k -ft 255.413 k -ft +0.90D -W PASS 0.02543 Flexure - Right of Col #2 - Top -6.496 k -ft 255.413 k -ft +1.20D+W PASS 0.04517 Flexure - Right of Col #2 - Bottom 11.536 k -ft 255.413 k -ft +0.90D -W Moments about Left Edge k -ft Moments about Right Edge k -ft Eccentricity Actual Soil Bearing Stress Overturning Actual I Allow Load Combination... Total Bearing from Fig CL @ Left Edge @ Right Edge Allowable Ratio D Onlv 16.97 k 0.0001t 0.52 ksf 0.52 ksf 2.00 ksf 0.261 +D+0.60W 16.97 k -1.220 It 1.11 ksf 0.00 ksf 2.00 ksf 0.556 +D40.450W 16.97 k -0.915 ft 0,96 ksf 0.08 ksf 2.00 ksf 0.481 +0.60D+0.60W 7.61 k -2.722 ft 1.91 ksf 0.00 ksf 2,00 ksf 0.955 +0.60D 7.61 k 0.000 ft 0.23 ksf 0.23 kaf 2.00 ksf 0.117 Moments about Left Edge k -ft Moments about Right Edge k -ft Load Combination Overturning Reels ng Ratio Overturning Resisting Ratio D Oniv 0.00 0.00 999.000 0.00 0.00 999.000 +D+0.60W 55.20 133.79 2.424 34.50 154.49 4.478 +M.450W 41.40 125.16 3.023 25.88 140.69 5.437 +0.600+0.60W 55.20 94.07 1.704 34.50 114.77 3.327 ++0..601)P 0.00 0.00 999.000 0.00 0.00 999.000 a a�ll�o� kj Load Combination... Sliding Force Resisting Force Sliding SafetyRatlo D Onlv 0.00 k 4.75 k 999 +D+0.60W 0.00 k 4.75 k 999 +D+0.450W 0.00 k 4.75 k 999 +0.60D+0.60W 0.00 k 2.85 k 999 +p t 0D +a 140 k Xy" 2.85 k 999 2 A�tl�7s tg FiaX}1Fg ` 1�1� r u 4 r L C� I tib Distance Tension Governed Load Combination... Mu from left Side As Req'd by Actual As Phi"Mn Mu I PhiMn (ft -k) (ft) (InA2) (inA2) (ft -k) +0.60D 0.000 0.000 0 0.000 0 0.000 0.000 0.000 +0.60D 0.000 0.016 0 0.000 0 0.000 0.000 0.000 +0.601 0.000 0.033 10 0.000 0 0.000 0.000 0.000 +1.20D -W -0.016 0.049 Too 2.592 Min Temp % 2.790 255.413 0.000 +1.20D -W -0.023 0.065 Top 2,592 Min Temp % 2.790 255.413 0.000 +1.20D -W -0.030 0.081 Top 2.592 Mln Temp % 2.790 255.413 0.000 +1.20D -W -0,039 0.098 Top 2.592 Min Temp % 2.790 255.413 0.000 +1.20D -W -0.048 0.114 Too 2.592 Min Temp % 2.790 255.413 0.000 +120D -W -0.058 0.130 Top 2.592 Min Temp % 2.790 255.413 0.000 +1.200-W -0.069 0.146 Top 2.592 Min Temo % 2.790 255.413 0.000 +0.90D+W 0.081 0.163 Bottom 2.592 Min Temo % 2.790 255.413 0.000 +0.90D+W 0.101 0.179 Bottom 2.592 Min Temp % 2.790 ' 255.413 0.000 Project Title: Engineer: 61I Protect ID: Project Descr: �1Naip9��itmdl�e forts -., hJha14*# Distance Tension Governed Load Combination... Mu from left Side As Req'd by Actual As Phi*Mn Mu 1 PhiMn (ft -k) (ft) (102) (in*2) (ft -k) +0.90D -W 0.081 6.337 Bottom 2,592 Min Temp % 2.790 255.413 0.000 +1.20D+W -0,069 6.354 Top 2,592 Min Temp % 2,790 255.413 0.000 +120D+W -0.058 6.370 Top 2.592 Min Temo % 2,790 255.413 0.000 +1.20D+W -0.048 6.386 Top 2.592 Min Temp % 2.790 255.413 0.000 +120D+W -0.039 6.402 Top 2.592 Min Temp % 2,790 255.413 0.000 +1.20D+W -0.030 6.419 Top 2.592 Min Temp % 2.790 255,413 0.000 +1.20D+W -0.023 6.435 Top 2.592 Min Temo % 2.790 255.413 0.000 +1.20D+W -0.016 6.451 Too 2.592 Min Temp % 2.790 255,413 0.000 +120D+W 0.000 6.467 0 0,000 0 0,000 0,000 0.000 +1.20D+W 0.000 6.484 0 0.000 0 0.000 0.000 0.000 + 0 z0.ry „l_ OsOQ, ROa ,m��4 Vg �(+<:h,.. 5 Load Combination... Phi Vn vu @ Col #1 vu @ Col #2 Phi Vn vu @ Col #1 vu @ Col #2 +1.40D 75.00 psi 0.23 psi 0,23 psi 150.00 psi 1.35psl 1.35 psi +1201) 75.00 psi 0.20 psi 0.20 psi 150.00 psi 1.16psi 1.16 psl +120D+0.50W 75.00 psi 5.77 psi 6.17 psi 150.00 psi 5.00psi 5.62 psi +1.20D -0.50W 75.00 psi 6.17 psi 5.77 psi 150.00 psi 2,68psi 3.30 psi +1.20D+W 75.00 psi 11.43 psi 11.83 psi 150.00 psi 9,00 psi 10.45 psi +1.20D -W 75.00 psi 11.83 psi 11,43 psi 150.00 psi 6.14 psi 7.60 psi +0.90D+W 75.00 psi 12.30 psi 12.60 psi 150.00 psi 9A2ps1 10.39 psi 40.90D -W 75.00 psi 12.60 psi 12.30 psi 150.00 psi 620psi 7.18 psi +0.90D 75.00 psi 0.15 psi 0.15 psi 150.00 psi 0.87psl 0.87 psi ESI/FME Inc. STRUCTURAL ENGINEERS Client: M Project Name: YOKA Plan #: _ SOILS REPORT BY: 2016 CBC JOB NO: DATE: ALLOWABLE SOIL BEARING PRESSURE = 1500 psf SOIL SITE CLASSIFICATION = D CONTINUOUS fOOTING DESIGN: Page: Date: 1/10/2019 Job #: H486 Wt. L Roof : ( 36 ) ( 2) = 72 plf Wall : ( 14 ) ( 17) = 238 pif Floor: ( 54 ) ( 7) = 378 pif Deck : ( 64 ) ( 0) = 0 pif TOTAL LOAD = 688 pif Required .Min. Foundation Width = ( 688 ) / ( 1500 - 50) = 0.47 ft. EXTERIOR FOOTINGS: 1 -STORY FOOTING: USE 12 in. wide x 12 in. deep with 1-#4 bar T/B cont. 2 -STORY FOOTING: USE 12 in. wide x 12 in. deep with 1-#4 bar T/B cont. INTERIOR FOOTINGS• 1 -STORY FOOTING: USE 12 in. wide x 12 in. deep with 1-#4 bar T/B cont. 2 -STORY FOOTING: USE 12 in. wide x 12 in. deep with 144 bar T/B cont. POINT LOAD CHECK: EXTERIOR: P max = Allowable x S x W/ 144 Pmax ( 1 -Story ) = 5500 Ibs. Pmax ( 2 -Story ) = 5500 lbs. INTERIOR: P max = Allowable x S x W/ 144 Pmax (1 -Story) = 5500 lbs. Pmax ( 2 -Story ) = 5500 lbs. I P lbs _ POST 4x min. 8"t S=(D+I* 8„)x2+4 2017 Page: ESI/FME INC Date: 2/5/2019 STRUCTURAL ENGINEERS Job No: H486 Client: MORGAN Project Name: YOKA Plan No: SOILS REPORT BY: 2016 CBC JOB NO: DATE: DESIGN CRITERIA SBP =1500 PSF (Allowable Sail Bearing Pressure) OVB = 0 PSF (overburden Weight) Soil Site Class = D (Design) D =24 IN (Depth of Footing) SBP = 1500 - 0 =1500 PSF AD NO 1 - Areg =_ P 8530 LB = _5.69 S'Q. Ff. Use Load Source SBP 1500 PSF 30" Sq. x 24 " Pad w/ P= 8530 LB B6, 67, Size = (Areq)*12=28.62 IN. SQ. N 4 Bars @. 12" O.C. E/W @ Bottom AD NO 2 Areq _ P __ 8911 LB = 5.94 S'Q. FT. Use Load Source SBP 1500- PSF P= 8911 LB B5 Size = (A. "12=29.25IN. SQ. E/W @Bottom AD NO3 Use Load Source P = 1 4 12" rPD NO oad4 Source AD NO Use Loa5 d - Source P— 11 AD NO 6 Use Load Source P= _ .� 4 12., AD NO 7 Usa Load _Source