Loading...
HomeMy WebLinkAboutPV2021-119 - CalcsI�'631 rvi rnep Av? Project: Douglas Stevens fl►2D21-tl� Project Number: By: PE Date : 02-11-2021 02 November 2021 UNIRAC 1411 Broadway Blvd, NE Albuquerque, NM 87102 RE: Solar Array Installation at 1753 Irvine Ave, Newport Beach, CA 92660 USA To Whom it May Concern, BUILDING IDIVISION NOV 2 $ 2021 MON Per your request, we have reviewed the existing structure at the above referenced site. The purpose of our review was to determine the adequacy of the existing structure to support the proposed installation of solar panels on the roof per layout plan CODE REFERENCES: BUILDING CODE: 2019 CALIFORNIA BUILDING CODE 2018 INTERNATIONAL BUILDING CODE ASCE 7-16 SCOPE OF WORK: Roof structural framing plan has been reviewed for additional loading due to installation of the roof mounted solar PV addition. The structural reviewthat follows, including plans and calculations, only apply to the section of the roof that is directly supporting the solar PV system and its supporting elements. DESIGN PARAMETERS RISK CATEGORY: II DESIGN WIND SPEED: 95 mph WIND EXPOSURE: B GROUND SNOW LOAD: 0 psf SEISMIC DESIGN CATEGORY: *null EXISTING ROOF STRUCTURE ROOF: 2x4 Rafters c@i 24" O.C. ROOF MATERIAL: Comp Shingles CONNECTION TO ROOF STRUCTURE MOUNTING CONNECTION : (I) 5/16" SS LAG BOLT w/ hnN. 2.S' ENBEDNIENT INTO (E) 2. �FRANUNG MIU BER @ MAX. 48" o.c. ALONG RAILS - (2) RAILS PER ROW OF PANELS, EVENLY SPACED, PANEL LENGTH PERPENDICULAR TO RAIL NOT TO EXCEED 68.5' OBSERVED CONDITIONS: The observed roof framing is described below. If field conditions differ, the contractor shall notify the engineer prior to starting construction. The roof framing is supported by 2x4 Rafters @ 24" O.0 are spanning between load bearing walls. The maximum allowed span of rafter is 9.5ft, to be verified in field by the contractor. CONCLUSIONS: Based upon our review, we conclude that the existing structure is adequate to support the proposed solar panel installation. In the area of the solar array, other live loads will not be present or will be greatly reduced (2019 CBC, Section 1607.13.5). The glass surface of the solar panels allows for a lower slope factor per ASCE 7, resulting in reduced design snow load on the panels. The gravity loads and; thus, the stresses of the structural elements, in the area of the solar array are either decreased or increased by no more than 5%. Therefore, the requirements of Section 503.3 of the 2019 CEBC are met and the structure is permitted to remain unaltered. The solar array will be flush -mounted (no more than 6" above the roof surface) and parallel to the roof surface. Thus, we conclude that any additional wind loading on the structure related to the addition of the proposed solar array is negligible. The attached calculations verify the capacity of the connections of the solar array to the existing roof against wind (uplift), the governing load case. Regarding seismic loads, we conclude that any additional forces will be small. Conservatively neglecting the weight of existing wall materials, the installation of the solar panels represents an increase in the total weight (and resulting seismic load) of 4.9%. Because the increase in lateral forces is less than 10%, this addition meets the requirements of the exception in Section 503.4 of the 2019 CEBC. Thus the existing lateral force resisting system is permitted to remain unaltered. LIMITATIONS: Installation of the solar panels must be performed in accordance with manufacturer recommendations. All work performed must be in accordance with accepted industrywidemethods and applicable safety standards. The contractor must notify Erusu Consultants US Inc. should any damage, deterioration or discrepancies between the as -built condition of the structure and the condition described in this letter be found. Connections to existing roof framing must be staggered, except at array ends, so as not to overload any existing structural member. The use of solar panel support span tables provided by others are allowed only where the building type, site conditions, site-specific design parameters, and solar panel configuration match the description of the span tables. The design of the solar panel racking (mounts, rads, etc.) and electrical engineering is the responsibility of others. Waterproofing around the roof penetrations is the responsibility of others. Emsu Consultants US Inc. assumes no responsibility for improper installation of the solar array. vV Praneet R Erusu, P.E. Principal Engineer Erusu Consultants US Inc. 02 - NOV - 2021 EXP .30 -SEPT -2023 Project: Douglas Stevens Project Number: By: PE Date : 02-11-2021 Address: 1753 Irvine Ave, Newport Beach, CA 92660 USA Site Plan: Aar 3 p — PROJECT SITE CDSTA MESA Upper ' �N=w'pon Bd � )I 1 M1 r'ilie. S � � 01'! �1153WI..A,e Neepml YeoeM1 CM1 J? 4 �b d � iI1p I51Pbi 1 ®Mil]I'cr �Pl2c ASF I f F ®PacidlneMs � A� Project: Douglas Stevens Project Number: By: PE Date : 02-11-2021 Roof Dead Load Roof Slope = 4.3 12 Angle = 20 Material Material Weight (psf) Increase due to Roof Slope Plan Projected Materal Weight (psf) Comp Shingles 4 1.06 4.25 1/2" Plywood 1.1 1.06 1.17 Framing 3 1.06 3.19 Insulation 0.5 1.06 0.53 1/2" Gypsum Ceiling 2.2 1.06 2.34 MEP & Misc. 1.5 1.50 DL= 12.97 PV Array 3 1.06 3.19 Roof Dead Load Roof Live Load = 20 psf (Refer ASCE 7-16, Table 4.3-1) Roof Live Load with PV Array = 0 psf 2019 CBC, Section 1607.13.5 (Ceiling load and NMI? is assumed to be not supported by rafter) Summary of Gravity Loads Dead Load, D = Roof Live Load, Lr = Project: Douglas Stevens Project Number: By: PE Date : 02-11-2021 Existing With PV Array 12.97 16.16 WOO 0.00 psf psf Gravity Load Comparision Existing With PV Array (D + Lr)/Cd =J 30.41 1 17.95 psf (Cd = 0.9 for D, 1.15 for S, 1.25 for Lr) Max Loading to Current Loading Ratio 1 30.41 1 17.95 1 59% 105% O.K. Gravity Loading with PV Array is not stressing the current framing system by more that 5% of the sinal configuration. Per Section 503.3 of 2019 California Existing Budding Code the sturcure is allowed to remain unaltered for Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block' selection. Wood Beam DESCRIPTION: 2x4 Rafter @ 24" o.c. (Wind Condition) (Strength Check) CODE REFERENCES Project Title: Engineer: Project ID: Project Descr: Printed: 2 NOV 2021. 12:34PN INC. Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set: ASCE 7-16 Material Properties D 0.0 D 0-034 W 0.183 Maximum Shear Stress Ratio = 0.299 : 1 Analysis Method : Allowable Stress Design Fb + 900.0 psi E: Modulus of Elasticity Load Combination ASCE 7-16 Fb - 900.0 psi Ebend- xx 1,600.01ksi fv: Actual = Fc - Prll 1,350.0 psi Eminbend - xx 580.Oksi Wood Species : Douglas Fir - Larch Fc - Perp 625.0 psi Load Combination Wood Grade : No.2 Fv 180.0 psi +D+0.60W+H Location of maximum on span = Ft 575.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsional buckling Span # where maximum occurs = Span #2 Repetitive Member Stress Increase D(0.0162) Lr 0.04 W 0.03 .034 W 0-183 D 0.0 D 0-034 W 0.183 Maximum Shear Stress Ratio = 0.299 : 1 Section used for this span 2x4 2x4 Span = 2.0 It 2x4 Span = 9.50 it 2x4 fb: Actual = Applied Loads Service loads entered. Load Factors will be applied for calculations Load for Span Number 1 Uniform Load : D = 0.00810, Lr = 0.020, W = 0.0160 ksf, Tributary Width = 2.0 ft, (Existing Roof Load) Load for Span Number 2 Uniform Load : D = 0.00810 ksf, Tributary Width = 2A ft, (Existing Roof Dead Load) Point Load : D = 0.0340, W = 0.1830 k 9 0.750 ft, (Solar Panel Load) Paint Load: D = 0.0340, W = 0.1830 k C& 4.50 9, (Solar Panel Load) Point Load : D = 0.0340, W = 0.1830 k @ 8.60 it, (Solar Panel Load) Maximum Bending Stress Ratio = 0.951: 1 Maximum Shear Stress Ratio = 0.299 : 1 Section used for this span 2x4 Section used for this span 2x4 fb: Actual = 2,362.87psi fv: Actual = 86.25 psi Fb: Allowable = 2,484.00psi Fv: Allowable = 288.00 psi Load Combination +D+0.60W+H Load Combination +D+0.60W+H Location of maximum on span = 4.511 it M Location of maximum on span = 2,000ft Span # where maximum occurs = Span #2 Cr Span # where maximum occurs = Span # 1 Maximum Deflection M fb Pb V Max Downward Transient Deflection 0.931 in Ratio= 122 >=80 Max Upward Transient Deflection -0.587 in Ratio = 80>=80 Max Downward Total Deflection 1.057 in Ratio= 107>=71 Max Upward Total Deflection -0.664 in Ratio = 72>=71 Length = 2.0 IF Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C FN C i Cr C m C t C L M fb Pb V fv FV +D+H 0.00 0.00 0.00 0.00 Length = 2.0 IF 1 0.091 0.227 0.90 1.500 1.00 1.15 1.00 1.00 1.00 0.03 126.96 139725 0.13 36.71 162.00 Length = 9.50 It 2 0.767 0.227 0.90 1.500 1.00 1.15 1.00 1,00 1.00 0.27 1,071.86 1397.25 0.13 36.71 162.00 +D+L+H 1.500 1.00 1.15 1.00 1,00 1.00 0.00 0.00 0.00 0.00 Length = 2.0 It 1 0.082 0.204 1.00 1.500 1.00 1.15 1.00 1.00 1.00 0.03 126.96 1552.50 0.13 36.71 180.00 Length = 9.50 It 2 0.690 0.204 1.00 1.500 1.00 1.15 1.00 1.00 1.00 0.27 1,071.86 1552.50 0.13 36.71 180.00 +D+Lr+H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Title Block Line 1 Project Title: You can change this area Engineer: using the "Settings" menu item Project ID: and then using the "Printing & Project Descr. Title Block" selection. +D+H Title Block Line 6 Printed: 2 NOV 2021, 12:34PN Wood Beam 2x4 Joist 024 O.C.ec6 Shear Values Software Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.2, DESCRIPTION: 2x4 Rafter 9 24" o.c. (Wind Condition) (Strength Check) Load Combination Support 1 Support 2 Max Stress Ratios 0.390 0.279 Overall MINimum 0.353 0.260 +D+H 0.165 Moment Values +D+L+H 0.165 Shear Values Segment Length Span N M V Cd C FN C i Cr C m C I C L M lb P'b V fv FV Length = 2.0 it 1 0.227 0.174 1.25 1.500 1.00 1.15 1.00 1.00 1.00 0.11 440.42 1940.63 0.14 39.12 225.00 Length = 9.50 it 2 0.468 0.174 1.25 1.500 1.00 1.15 1.00 1.00 1.00 0.23 907.25 1940.63 0.14 39.12 225.00 +D+S+H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 2.0 it 1 0.071 0.177 1.15 1.500 1.00 1.15 1.00 1.00 1.00 0.03 126.96 1785.38 0.13 36.71 207.00 Length =9.50 ft 2 0.600 0.177 1.15 1.500 1.00 1.15 1.00 1.00 1.00 0.27 1,071.86 1785.38 0.13 36.71 207.00 +D+0750Lr+0.750L+H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 2.0 8 1 0.187 0.171 1.25 1.500 1.00 1.15 1.00 1.00 1.00 0.09 362.06 1940.63 0.13 38.52 225.00 Length = 9.50 it 2 0.489 0.171 1.25 1.500 1.00 1.15 1.00 1.00 1.00 0.24 948.40 1940.63 0.13 38.52 225.00 +D+0.750L+0.7505+H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 2.0 it 1 0.071 0.177 1.15 1.500 1.00 1.15 1.00 1.00 1.00 0.03 126.96 1785.38 0.13 36.71 207.00 Length = 9.50 it 2 0.600 0.177 1.15 1.500 1.00 1.15 1.00 1.00 1.00 0.27 1,071.86 1785.38 0.13 36.71 207.00 +D+0.60W+H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 2.0 it 1 0.112 0.299 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.07 277.42 2484.00 0.30 86.25 288.00 Length = 9.50 it 2 0.951 0.299 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.60 2,362.87 2484,00 0.30 86.25 288.00 +D+0.750Lr+0.750L+0.450W+H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 2.0 it 1 0.191 0.263 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.12 474.91 2484.00 0.26 75.67 288.00 Length =9.50 it 2 0.772 0.263 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.49 1,916.66 2484.00 0.26 75.67 288.00 +D+0.750L+0.7505+0.450W+H 1.500 1.00 1.15 1.00 1.00 1,00 0.00 0.00 0.00 0.00 Length =2.0 it 1 0.097 0.256 1.60 1.500 1.00 1.15 1.00 1,00 1,00 0.06 239.80 2484.00 0.26 73.86 288.00 Length = 9.50 it 2 0.821 0.256 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.52 2,040.12 2484.00 0.26 73.86 288.00 +0.60D+0.60W+0.60H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 2.0 it 1 0.091 0.248 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.06 226.64 2484.00 0.25 71.56 288.00 Length =9.50 ft 2 0.779 0.248 1.60 1.500 1.00 1.15 1.00 100 1.00 0.49. 1,934.13 2484.00 0.25 71.56 288.00 +D+0.70E+0.60H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.0 It 1 0.051 0.127 1.60 1.500 1.00 1.15 1.00 100 1.00 0.03 126.96 2484.00 0.13 36.71 288.00 Length = 9.50 it 2 0.432 0.127 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.27 1,071.86 2484,00 0.13 36.71 288.00 +D+0.750L+0.7505+0.5250E+H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 2.0 ft 1 0.051 0.127 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.03 126.96 2484.00 0.13 36.71 288.00 Length =9.50 it 2 0.432 0.127 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.27 1,071.86 2484.00 0.13 36.71 288.00 +0.60D+0.70E+H 1.500 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 2.0 it 1 0.031 0.076 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.02 76.17 2484.00 0.08 22.03 288.00 Length = 9.50 it 2 0.259 0.076 1.60 1.500 1.00 1.15 1.00 1.00 1.00 0.16 643.12 2484.00 0.08 22.03 288.00 Overall Maximum Deflections Load Combination Span Max. "" Dell Location in Span Load Combination Max. "+" Dell Location in Span 1 0.0000 0.000 +D+0.60W+H -0.6640 0.000 +D+0.60W+H 2 1.0573 4.777 0.0000 0.000 Vertical Reactions Support notation: Far left is N1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 0.390 0.279 Overall MINimum 0.353 0.260 +D+H 0.165 0.123 +D+L+H 0.165 0.123 +D+Lr+H 0.254 0.115 +D+S+H 0.165 0.123 +D+0.750Lr+0.750L+H 0.232 0.117 +D+0.750L+0.7505+H 0.165 0.123 +D+0.60W+H 0.377 0.279 +D+0.750Lr+0.750L+0.450W+H 0.390 0.234 +D+0.750L+0.7505+0.450W+H 0.324 0.240 +0.60+0.60W+0.60111 0.311 0.230 +D+O.70E+0.60H 0.165 0.123 +D+0.750L+0.7505+0.5250E+H 0.165 0.123 +0.60D+070E+H 0.099 0.074 D Only 0.165 0.123 Lr Only 0.088 -0.008 W Only 0.353 0.260 H Only Project: Douglas Stevens Project Number: By: PE Date : 02-11-2021 Wind Load Calculation Wind Loads - ASCE 7-16 Chapter 26 & 29 Width of the Building, B = 64.28 it (Approximate) V= 95 mph - risk category II Exposure = B Average height of building, z = 25 ft - avg (Approximate) Gust factor ,G = 0.85 zrin= 30 ft u= 7 Kh & K: = 2.01(2/Zg)^(2/a) = 0.7006 Int = 1 Kd = 0.85 Ke = 0.9 qh ='.00256 ICK KdI< VW = 12.38 Building Classification = Enclosed (Refer ASCE 7-16, Table 26.10-1) Zg = 1200 ft (Refer ASCE 7-16, Table 26.11-1) (Refer ASCE 7-16, Equation 26.8-1) (Refer ASCE 7-16, Table 26.6.1) (Refer ASCE 7-16, Table 26.9-1) psf (Refer ASCE 7-16, Section 26.10-1) Solar Panel Components and Cladding p C&C = gh(GCP)(YQ)(Ya) ASCE 7-16 Chaper 29.4.4 Module Length = 685 in Module Width = 41 in Area of Module = 195 ft2 Roof Pitch = 4.3 12 Slope = 20 degrees Gable Roof = 70 < 0 < 200 Ye 1.5 Ya 0.8 (Refer ASCE 7-16, Figure 29.4-8) Project: Douglas Stevens - Project Number: By: PE Date: 02-11-2021 Zone 1 Uplift External Wind pressure coefficient GCp = -2 External Wind pressure, gGCP = -25.261 psf Zone 2 Uplift External Wind pressure coefficient GCp = -2.6 External Wind pressure, gGCP = -32.839 psf All Zone Downward External Wind pressure coefficient GCp = 0.5 External Wind pressure, gGCP = 6.3 psf Maximum Uplift Wind Pressure, p = -32.839 psf Minimum Downward Wind Pressure ,p = 16.0 psf Lag Bolt Connection Check (ASD) Tributary Width = 48 in Nfax Spacing of fastners along Rails) Tributary Length = 34.25 in (Half Panel Length) Tributary Area = 11.4 fit Lag Bolt Size = 5/16 Tributary Area (it 2) Cd = 1.6 (Refer NDS Table 2.3.2) Embedment = 2.5 in Neasured from top of the framing member to tapered tip of lag screw, 173.0 760 embeddmem in sheathing and tapered rip of screw is not included ) Grade of Wood = DF #2 (or better) G = 0.5 0.30 Capacity = 266 lb/in (Refer NDS Table 12.22A) Number of Bolts in Tension = 1 Prying Coefficient = 1.4 Capacity of Fasteners = 760 16 Demand Zone Pressure ASD (0.6W)(psf) Tributary Area (it 2) Uplift (lb) Capacity (lb) DCR Zone 1 -15.2 11.4 173.0 760 0.23 Zone 2 -19.7 11.4 224.9 760 0.30 Project: Douglas Stevens Project Number: By: PE Date : 02-t 1-2021 Seismic Ground Motion Values 702021 IQTC Hazards by Location Search Information Address: 1753 Irvine Ave, Newport Beach, CA 92660 Name USA Coordinates: 33.63957,-117.6979636 Elevation: 96 R Tfinestamp: 2021-07.09T11:14:01.914Z Hazard Type: Seismic Reference ASCE7-16 Document: • null Risk Category: IT She Class: D -default ATC Namru s by baton Malibu Riverside Santa Monica o � 1 ! 96 ftft Orae Temeecula Catalina Island Essentid Fish Habitat.- Cls Goo it Mmin g Map dota02021Gomile,INEGI Basic Parameters Value Name Value Description SS 1.346 MCER ground motion (perlod=0.2s) SI 0.46 MCER ground motion(pedod=l.0s) S,y1g 1.615 Site -modified spectral acceleration value SM1 • null Site -modified spectral acceleration Value SDS 1.077 Numeric seismic design value at 0.2s SA SDI •null Numeric seismic design value at 1,09 SA See Section 11.4.8 PGAI,1 -Additional Information Name Value Description SDC 'null Seismic design category Fa 1.2 Site amplification factor at 02s Fv -null Site amplification faclorat l,Os CRS 0.914 Coefficient ofdsk(0.2s) CR1 0.923 Coefficient ofrisk (1.0s) PGA 0.584 MCEG peak ground acceleration FPGA 1.2 Site amplification faclorat PGA PGAI,1 0.7 Site modified peak ground acceleration hllps:rlM1azaMsmcountllggHlraeiamlc91e1=33.6395)6Ing=11].a9]99366atltlraes=l)531rvine Ave%2C Newport Beach%2C CA9266D USA V2 Project: Douglas Stevens Project Number: By: PE Date: 02-11-2021 Seismic Design Force Seismic Loads - ASCE 7-16 Chapter 13 Seismic Force Seismic Coefficients for Mechanical 12 Other mechanical or electrical components. and Electrical components = Component Amplification Factor, a,— 1.00 (Refer ASCE 7-16, Table 13.6 -1) Component Response Modification 1.50 (Refer ASCE 7-16, Table 13.6 -l; Factor, RP Overstrength Factor, Q. = 1.50 (Refer ASCE 7-16, Table 13.6 -1) Component Importance Factor, IP 1.00 SDs = 1.08 Height in structure at point of 25 ft attachement, z = Average roof height of structure,h = 25 ft z/h = 1 z/h should not exceed 1 Frame Weight W, = 3.19 psf Seismic Design Force on Solar framing structure Fp = ((0.4 x ap.sns x W,)/ (Rp / 1P)) x 2.75 psf ((1+2(z/h)) _ Max Fp=1.6xSDsxI,XW,= 5.49 psf Min Fp =0.3 x SDs x Ip X WF = 1.03 psf Seismic Design Load Fp = 2.75 psf Vertical Seismic Design Load Fp = 0.22 psf Project: Douglas Stevens Project Number: By: PE Date: 02-11-2021 Check for Increase in overall seismic loads Array Area = 19.5 It Number of Arrays = 36 Array Area = 702.13 It Array Load = 3.00 psf Number of Existing Arrays = 0 Exisimg Area 0.00 ftz Total Array Wt. = 2106.4 lb Total Roof Area= 3306.1 ft' DL of Roof = 12.97 psf Total Wt of Roof = 42888 lb Increase in Seismic Wt = 4.9% < 10% Conservativelsy the Wt. of the Walls tributary to the roof is not included. Seismic weight increase is less tbaan 10% and no seismic retrofit or evaluation of existing lateral system is required per Section 503.4 of 2019 CEBC.