Loading...
HomeMy WebLinkAboutPV2022-008 - CalcsApril 18, 2022 SolarTec Systems 27071 Cabot Road Suite 111 Laguna Hills, CA 92653 TEL: (949) 248-9728 FAX: Attn.: SolarTec Systems, Re: Job # 2022-02608;Houpt dc._6'tf4 \F structural EN W h (W Sit � V �� The following calculations are for the White Sails Way, Corona Del Mar, CA Design of the Photovoltaic Panels located at 1033 If you have any questions on the above, please feel free to call BUILDING DIVISION Prepared By: PZSE, Inc. - Structural Engineers Roseville, CA APP 2 1 2022 BY. Md6 No. 53878 1478 Stone Point Drive, Suite 190, Roseville, CA 95661 T 916.961.3960 E 916.961.3965 W www.pzse.com Experience I Integrity I Empowerment Page 1 of 19 AMProject: Houpt -- Job #: 2022-02608 Date: 4/18/2022 Engineer: AL A jobsite observation and measurement of the existing building was performed by an audit team from SolarTec Systems. All attached structural ballast calculations are based on these observations and the design criteria listed below. TABLE OF CONTENTS Dimensions and Inputs Anchor Calculation SEAOC PV1 Seismic Loading Unirac RM10 Wind Loading Sample Calculation Summary of Ballast Calculations Roof 1 Arr 1 Roof 2 Arr 1 DESIGN CRITERIA BUILDING CODE: OCCUPANCY CATEGORY = IMPORTANCE FACTOR= WIND SPEED = EXPOSURE CATEGORY= SEISMIC DESIGN CATEGORY = 2019 CBC (ASCE 7-16) See individual calculations 110 B D PAGE 3 4 5 6 7 8 9 11 Page 2 of 19 Project: Houpt -- Job #: 2022-02608 Date: 4/18/2022 Engineer: AL SYSTEM CHARACTERISTICS & BUILDING DIMENSIONS Governing code: ASCE 7-16 Building Characteristics: ... . OccupancyCategory Description Variable Value Unit Code Reference ............................................. ... -.1 .................. ....... .......... .. .. ........... System Chara�cteristics-. ,PV PV Module N -S Length ............. .. . L ­.. ( .. o . r ... I ............. .... 3.95 , .. - ft ....... ­ Note: "North " . I PV Module E -W Width W 5.39 ft refers to panel north, PV Module Weight (Each) WPV 46.0 lbs which is the raised Space Between Adjacent Rows (N -S) 1.51 it edge of the panel. Space Between Adjacent Modules (E -W) WE -W 56 ft Ground Snow Load PV Module Height above Roof at Low Edge 0.04 it P9 Tilt Angle of Module h, 0.52 ft Oft Friction Factor W 9.5 degrees Allowable Load Sharing (# of modules N -S) = 11 0.4 SEACC PV1-2012 Allowable Load Sharing (# of modules E -W) = 5 modules Allowable Load Sharing Area of System = 5 modules Ballast Configuration: 4 panels share I bay Bay Weight: 25 modules 2.7 lbs Ballast Stone "A" 4x8x16 (Nominal) CMU Cap Block Weight: 32.5 lbs Ballast Stone "B" not used Weight: 0.0 lbs --l". . .............. . -I— ......... ...... ........... Building Characteristics: ... . OccupancyCategory ............ ............... .................... ........................ .degrees.......................... . ..... _ .. .. .. .. ... .. ... .. .. Roof Pitch (Table 1-1) 0 Average Roof Height of Structure above Ground h Array Attachment Height above Ground 11 ft Average Parapet Height z hpt 11 ft 0 ft North-South Width of Building WN -S 62 ft East-West Width of Building WE -W 56 ft Ground Snow Load Site Elevation P9 0 psf e Oft .............I.,...... ..........Positive Attachment Requirements: ... .... . .... . ........... "Irl"I" .......... ... .. ... .. .. ..... .. Are anchors required to reduce ballast weight? . ... ..... .. ... No .... .. .. .. .. . .... ...... Are anchors required limit maximum number of blocks per bay? No Are anchors required to resist Seismic displacement? Yes Remove blocks at anchored bays? Yes Allowable PV Dead Load = N/A psf Maximum Number of blocks per bay = 6 Blocks Attachment Capacity (uplift) = 500 lbs See attached calc for Attachment Capacity (lateral) = 500 lbs anchor capacity Note: Residual forces shown on Attachment calculations are ASD -level forces with load combinations applied. Pressures shown do not include load combinations. Page 3 of 19 iProject: Houpt --Job #: 2022-02608 3IT— Date: 4/18/2022 Engineer: AL ANCHOR PLATE CAPACITY CALCULATION Note: The anchors are proportioned by first determing the ASD capacity of the anchor. To determine the number of anchors required for each array, the anchorage demand is divided by the anchor capacity to determine the minimum number of anchors for that array. Description Value Unit (ASCE 7-16) ... .... sic In afo Anchor type. ..,.. . , U nirac FRA Design Uplift Capacity 500 lbs Design Lateral Capacity 500 lbs Roof Deck Material 1/2" Plywood deck Fasteners #12 Wood Screws .. MetalAnchor Capacity ( ) 5167.2 AncheTestValu11 e 11 s ..........,..�...".. Anchor Plate tension load Ult. lbs Anchor Plate shear load (Ult.) 4156.8 lbs Factor of Safety = 2.4 Anchor Plate ASD tension capacity 2153 Anchor Plate ASD shear capacity L1732 Rod Connection Capacity ..............I...... Screw Test Values: Wood screw number: #12 Diameter ofScrew = 0.22 inch Minimum Embedment = 0.50 inch Withdrawal tension capacity = 315 lbs (APA E830) Shear Capacity= 590 lbs (APA E830) Duration factor (wind) = 1.6 (NDS Table 2.3.2) Factor of Safety = 3 Screws per conn. point = 4 Tension Check Connection Capacity = No. screws per conn. x screw capacity x Duration factor Connection Tension Capacity = 672 lbs Shear Check Connection Capacity = No. screws per conn. x screw capacity x Duration factor Connection Shear Capacity = 1259 lbs Page 4 of 19 rProject: Houpt -- Job #: 2022-02608 7,1! Deck Check (ASO) Date: 4/18/2022 Engineer: EMG Loading per Anchor Point Uplik7 5001bs Shear 5DD lbs Nail Type 10d common Length 31nch (Table Al,SDPWS Diameter 0,148 Inch 2015) Head Ola. 0.312 Inch Depth of board 0.469 inch Embedment 2.53 Inch, min EN 6 inch FN 12 inch Nail Capacity 14s/In of thread penetration ZO (Table 12.2C, NDS rc.al.6 lbs (Douglas -Fir) 2018) 2 k (Wind Factor) 2 R93 DeslHn Total (Lowest Governs) Withdrawal 58314s =Withdrawal'# Nails*C°*Embedment Shear 755165 =Shear*p Nails -C° Check(capapity>A piled Forces) Nall Upurc 583 lbs Nall Shear 755 lbs Plywood e 5 ply Span Rating 32/16 Panel Sheathlne Strength Axis 1 Perptrdiclert acb�R/ II Strengthrallel148 IbJk perR MM=Ad'.sted 2 k 2 R93 lbs =Adjusted Wy*Length*Trib.Width (Area distribution based on CBC 4.4 Roof DL Area M41b Co Fattoretl OL=Weight*Area*C° Tptal Ben'----� ding8erepglA Stress Direct. Parallel TotalSken h 632 =Capaci VtFactored DL Shear Stren h Stress Direct Parallel Atljustetl W, 306 sf Length 1.8]5 k =1s/12 Trib. Width 2 ft CapacRy 1147 lbs =Adjusted Ws Length*Trlb.Wldth Check (Capa-Ity> Applied Farces) Plywootl Uplift 632 Ibs Plywood Shear 1147lbs Page 5 of 19 Project: Houpt -- Job #: 2022-02608 Date: 4/18/2022 Engineer: AL SEISMIC DESIGN LOAD CALCULATIONS Risk Category variable Value Unit ASCE 7- Building Importance Factor 11 Table 1.5-1 PV System Importance Factor IQ 1.0 Section 11.5.1, Table 1.5-2 Component Amplification Factor Ip 1,0 Section 1.3 Component Response Factor as 1 Table 13.6-.6-1 Array Attachment Height above Ground R " 1.5 Table 13.6-1 Mapped Short -Period Acceleration Parameter Z 11.0 ft 13.3.1 Mapped Long -Period Acceleration Parameter Ss 1.345 g 11.4.1 and USGS maps Mapped Long -Period Transition Parameter Si 0.477 g 11.4.1 and USGS maps Site Classification TL 8 s Site Coefficient Default Conservatively enveloped (11.4.3) Site Coefficient F, 1.200 11.4.4 (Table 11.4.4-1) Adjusted Max Spectral Response F� 2 .735 11.4.4 (Table 11.4.4-2) Adjusted Max Spectral Response Sms 1.614 g 11.4.4 Design Spectral Acceleration Parameter S 1.304 g 11.4.4 Design Spectral Acceleration Parameter S" os 1.076 g 11.4.5 Period parameter Ct Sol 0.870 g 11.4.5 Period parameter x Ct 0.02 Flexible diaphragm with vertical LFRS> 40' apart? x 0.75 Fundamental Period of Structure Yes Constant Velocity Transition Period T. 0.121 Short Period Seismic Design Category, 0.2 sec Ts 0.808 Long Period Seismic Design Category, 1.0 sec D Seismic Design Category, 5, > 0.75 D Controlling Seismic Design Category N/A D ................ P ..... components: Fp 0.4 ap(S°s)Wp[1+2(z/h)j/ (R/Il) 0.8 --Seismic errand on nonstructural c 6 *W E Fp max = 1.6 Sos(Ip)Wp p quation 13 3-1 Fp min =0.3 S°s(Ip)Wp 1.72 *Wp Equation 13.3-2 0.32 *W Equation 13,3-3 Seismic demand on array: 0.86 *W (0.9-0.2Sos)(0.7p)*Wpr To Seismic 1-ontnoution to Seismic Resistance per SEAO 11 0.4 0.19 *WP Net Seismic demand on array: 0.67 *W 6MPv 27 7-16 7-16 _______ ____ _________________'__ 1.14 tt Between a solar array and a fixed object on the roof, �--"""-""--"-"-"'------4 (Amry * Ip) or solar array of different construction j 2.28 ft (Annvv * la) Between a solar array and a roof edge with a qualifying __.--'"--- ._ _____________________________________g___-_--_ 5--_ .g parapet_- 2.28 ft Between a solar array and a roof edge without a qualify!n _i -----f (AMry 1e) ------------ _--------------------------------- _------- __ g parapet 1 4.57 ft* ) ____________________________________ i (AMPv �e Notes: 1) A parapet is considered "qualifying" if the top of the parapet is not less than 6 inches above the center of mass of the solar array, and 2) The minimum allowable friction factor required for use of the prescriptive displacement method is p = 0.4, which should be measured under wet conditions per ASTM G115. If positive attachments are provided for lateral resistance of seismic forces, then the minimum Page 6 of 19 WIND DESIGN LOAD CALCULATIONS Risk Category Importance factor (ASCE 7-05 only) Exposure Category Mapped Wind Velocity Adjustment Factor for Height and Exposure Category Topographic Factor (assumed to be 1 for level ground) Directionality Factor Elevation Factor Velocity Pressure Tilt Angle of Module Friction Factor Roof Perimeter Zone Width Project: Houpt -- Job #: 2022-02608 Date: 4/18/2022 Engineer: AL Table 7a-1: Recommended Pressure Coefficients: Without Deflectors, Row Spacing 3 -No Parapet = Up to Half Array Height (Y.Harray) II Table 1.5-1 2by2 1.00 1 3by3 5by5 B Drag V 110 mph Iby1 K, 0.70 ASCE 7-16 (Table 26.1 K,r 1.0 ASCE 7-16 26.8-1 Kd 0.85 ASCE 7-16 (Table 26.6 Ke 1.00 ASCE 7-16 26.9 qh 18.45 psf ASCE 7-16 (Eqn 26.10 W 9.5 degrees -12.54 % 0.4 SEAOC PVI -2012 Minimum of: 0.6*H or 0.1*W 6.2 ft 15.49 Table 7a-1: Recommended Pressure Coefficients: Without Deflectors, Row Spacing 3 -No Parapet = Up to Half Array Height (Y.Harray) Design Pressure, P (psf) = qh * GCp I by 1 2by1 2by2 Uplift 1 3by3 5by5 Downwardl Drag I by 1 2by1 2by2 3by2 1 3 y3 SbyS 1by1 Iby1 North Corner -0.84 -0.78 -0.84 -0.78 -0.84 -0.78 -0.68 -0.60 -0.68 -0.60 -0.68 -0.60 -0.62 -0.52 -0.62 -0.52 -0.62 -0.52 -0.50 -0.40 -0.50 -0.40 -0.50 -0.44 -0.50 -0.40 -0.50 -0.40 -0.50 -0.40 -0.30 -0.24 -0.30 -0.24 -0.30 -0.24 -0.94 -0.86 -0.68 -0.72 -0.68 -0.72 0.94 0.86 0.84 0.78 0.84 0.78 North Leading Edge East & West Edges Field South Corner South Leading Edge Design Pressure, P (psf) = qh * GCp Wind Equation & Governing Load Combinations Design Wind Force: W= gh(GCe) * A Eq.: 2.4.1-5: D+0.6W (Downward) Eq.: 2.4.1-7: 0.6D+0,6W (Uplift and Drag) Loading Zone Key: I by 1 2by1 2by2 Uplift 3by2 1 3by3 5by5 Downward 1by1 Drag 1by1 North Corner -15.49 -12.54 -11.44 -9.22 -9.22 -5.53 -17.34 17.34 North Leading Edge -14.39 -11.07 -9.59 -7.38 -7.38 -4.43 -15.86 15.86 East & West Edges -15.49 -12.54 -11.44 -9.22 -9.22 -5.53 -12.54 15.49 Field -14.39 -11.07 -9.59 -7.38 -7.38 -4.43 -13.28 14.39 South Corner -15.49 -12.54 -11.44 -9.22 -9.22 -5.53 -12.54 15.49 South Leading Edge -14.39 -11.07 -9.59 -8.12 -7.38 -4.43 1 -13.28 14.39 Wind Equation & Governing Load Combinations Design Wind Force: W= gh(GCe) * A Eq.: 2.4.1-5: D+0.6W (Downward) Eq.: 2.4.1-7: 0.6D+0,6W (Uplift and Drag) Loading Zone Key: AZ 1 North Corner AZ 2 North Leading Edge AZ 3 East & West Edges AZ4 Field AZ 5 South Corner AZ 6 South Leading Edge Note 1: N/A Note 2: GCp values shown are derived per the wind tunnel report by RWDI (Report #1600097, dated July 24, 2018). Page 7 of 19 � PVProject: Houpt -- Job #: 2022-02608 L Date:4/18/2022 Engineer: AL Sample Ballast Calculation: (Note: Red values are intended to be user inputs. Blue values are imputs completed bythe_automated algorithm,),_.,_-,___-. Roof Zone, F v = qh*GCp*A*cos w Self -weight is accounted for in ---- — - See Key F_h = qh*GCp*A*sin w the calculation of ballast. Ste 1: Ballast' Determine GCp values 67 lb based on roof zone and sharing area. Calculate Module Ballast. Array Edge 67 lb Factor n --w Step 2: ! Bloc Output#of Blocks 3 represents 1 PV panel represents 1 Blocks 3 . step 3: ',; Blocks If Allowable weight is exceeded,reduce I ballast. Attachments represented by black bays with white text and the word "Anchor".Blocks 2 f 1.00: GCp*_drag 0.30 I GCp_down -0.94 ni _ GCp*_up -0.30 caring: 1 by 1 IM Uplift Reduction Factor 0.35 Drag Reduction Factor 0.35 Downforce Reduction Factor 1.00 North Corner Iby1 North Corner 1by1 Res. Up = 231 Ib Res. Drag = 121 Ib Note that drag ballast is calculated using the 1x1 loads shown on the previous page, not the uplift coefficient shown Ballast 67 lb IRWDIpg. 7) :;.c_.,�__...._ LM11astweight is 25% of rqmt r each panel attached. Blocks 3 Ballast count is the weight above divided by the block weight Blacks J 3-- ---- — Residual forces are shown to assist the user placing anchors Blocks z Page 8 of 19 Project: Houpt --Job #: 2022-02608 Date: 4/18/2022 Engineer: AL Summary of Ballast Calculations: Number of PV Modules: Number of Bays: Number of Positive Attachments: Number of ballast blocks: Block type: Block weight, W = 26 Modules 46 Bays 8 attachments 38 blocks 4x8x16 (Nominal) CMU Cap Block 32.5 Ib The block weight Is a critical component of these calculations. If the actual block weight(s) differ from that shown here, these calculations shall be considered invalid. Please contact PZSE so that accurate ballast counts may be provided. Weight of PV Modules & racking: 1,322 Ib Area covered by PV system: 764 Sq. ft Weight of Ballast: 1,235 Ib Average PV system dead load: 3.3 psf Total weight of PV system: 2,557 Ib Summary by Roof: Roof Name # of If of # of 5 # of PV Area Average Max Bay Roof 1 Arr 1 Modules Bays Blocks Attachments (Sq. ft) Weight (psf) Weight (Ib) Roof 1 9 18 15 3 264.5 3.6 81,2 Roof 2 17 28 23 5 499.5 3.2 81.2 Summary by Section: Section Name # of Modules # of Bas Y # of Blocks 5 # of Attachments Array Area (Sq. ft) Average Weight (psf) Max Bay Weight (Ib) Roof 1 Arr 1 9 18 15 3 264.5 3.6 81.2 Roof 2 Arr 1 17 28 23 5 499.5 3.2 81.2 Totals: 26 45 38 8 764 Note: Print order for large array calculations is "RIGHT THEN DOWN' 1 2 3 4 5 6 7 8 9 Page 9 of 19 !! I `!! \\ Ga. G |!| ,., \\ Project: Houpt -- Job #: 2022-02608 PIZ—H Date: 4/18/2022 Engineer: EMG Houpt Gravity Check (IEBC 403): Due to operational constraints of the PV panels, live loads are not permitted to be placed on the PV panels. Therefore, in the area of the array, the change in loading is as follows: Area covered by the array: Area of PV panels: % of array area that is covered by panels: Specified Roof Live Load: Live Load Replacement Allowed? Roof live load reduction (CBC 1607.12.2.1) Uniform Roof Snow Load: Existing Roof Dead Load: Roof Live Load Duration Factor (Wood): Dead Load Duration Factor (Wood): Existing Roof Load (Total including Duration Factors) Live Load Replacement: 80.9% * (12 / 1.25) _ Allowable 5% increase per IBC 3403.3 Allowable Load Increase or Replacement: Max Allowable Added Dead Load: 764.0 sq. ft. Per ESI/FME Plans 1.25 (NDS Table 2.3.2) 0.9 (NDS Table 2.3.2) 27.4 psf 7.8 psf 1.37 psf 9.14 psf 8.23 psf Load replacement check Max Allowable Added Dead Load: 8 23 psf Ballasted PV Array Dead Load: 3.90 psf 3.9 psf < 8.23 psf, Therefore OK Per IBC 3403.3 and by inspection, portions of the roof that are impacted by installation of the array will be subject to a net reduction in design loading. Therefore, the existing structure may remain unaltered. Page 14 of 19 553.9 sq. ft. 80.9% Lo = 20.0 psf Yes R1= 0.60 R2 = 1.00 Lr = 12.0 psf 0.0 psf 16.00 psf Per ESI/FME Plans 1.25 (NDS Table 2.3.2) 0.9 (NDS Table 2.3.2) 27.4 psf 7.8 psf 1.37 psf 9.14 psf 8.23 psf Load replacement check Max Allowable Added Dead Load: 8 23 psf Ballasted PV Array Dead Load: 3.90 psf 3.9 psf < 8.23 psf, Therefore OK Per IBC 3403.3 and by inspection, portions of the roof that are impacted by installation of the array will be subject to a net reduction in design loading. Therefore, the existing structure may remain unaltered. Page 14 of 19 RSJE Project: Houpt -- Job #: 2022-02608 Date: 4/18/2022 Engineer: EMG Houpt Lateral Check (IEBC 402.4 & ASCE 7-1611B.1): Weight of Existing Structure Roof Length Width Area %Solid Weight(asf) Weight Ib NS EW Existing Roof Dead Load 17 42 714 100% 16.00 11424 Walls (Parallel to N/5) Exterior: Stucco -Finished Wood Walls (Parallel to EM Exterior: Stucco -Finished Wood Length 34 Length 84 Height Area %Solid Weight (osf) Weight Ib 5.5 187 80% Height 5.5 Note: The wall height used for this analysis is equal to half of the top story height plus the parapet height. 15 2244 Area %Solid Weight (osf) Weight (Ib) 462 80% 15 5544 Weight of Existing Structure: I 192121b Weight of Proposed PV System - Roof 1 ..........,-................................................................................................................................................................................................................................................................................................................ Approx. Weight of PV System 950 Ib 10% Check - Diaphragm (N/S Direction) ........... ...............................m........................W........... ....,.m....................................................... .......,......................................... .............,............................. ................... .......................... ....... ............... Weight of Roof Diaphragm 11424 Ib Weight of E/W Walls 5544 Ib 10% of Existing Weight 1697 Ib Approx. Weight of PV System 950 Ib Percent increase 5.60% 1696.8 Ib > 950 Ib, Therefore OK 10% Check - Diaphragm (E/W Direction) ............ ....................................................................................................... ............_..............-................................. ......................................................w....._................_....._... ......................... Weight of Roof Diaphragm 11424 ib Weight of N/S Walls 2244 Ib 10% of Existing Weight 1367 Ib Approx. Weight of PV System 950 Ib Percentlncrease 6.95% 1366.8 Ib > 950 Ib, Therefore OK Per IEBC 402.4 & 403, ASCE 7-1611b.4, and by inspection; the increase in the lateral demand/capacity ratio of the existing structure due to the installation of the PV system is less than 10%. Therefore, the existing structure may remain unaltered. Page 15 of 19 Z -H Project: Houpt -- Job #: 2022-02608 Date: 4/18/2022 Engineer: EMG Houpt Lateral Check (IEBC 402.4 & ASCE 7-1611B.1): Weight of Existing Structure Length Width Roof N/5Eft Area %Solid Weieht(psf) Weight Ib Existing Roof Dead Load 47 28 1316 100% 16.00 21056 Walls (Parallel to N/S) Exterior: Stucco -Finished Wood Walls (Parallel to E/W) Exterior: Stucco -Finished Wood Length 94 LenKth 56 Height Area %Solid Weight(psf) Weight Ib 5.5 517 80% 15 6204 Height Area %Solid Weight(psf) Weight Ib 5.5 308 80% Note: The wall height used for this analysis is equal to half of the top story height plus the parapet height. Weight of Proposed PV Syl ..........r'o"..............................M................,.................m" Approx. Weight of PV System Weight of Existing - Roof 2 ....................................................... 1606 Ib 15 3696 10% Check - Diaphragm (N/S Direction) .. .... ............... ......_g.... „ .. ..... .m, . .................... ........, Weight of Roof Diaphragm 21056 Ib Weight of E/W Walls 3696 Ib 10% of Existing Weight 2475 Ib Approx. Weight of PV System 1606 Ib Percent Increase 6.49% 2475.21b > 1606 Ib, Therefore OK 10% Check - Diaphragm (E/W Direction) ............................................................................................................................................................................................................................................................................................................. Weight of Roof Diaphragm 21056 Ib Weight of N/S Walls 6204 Ib 10% of Existing Weight 2726 Ib Approx. Weight of PV System 1606 Ib Percent Increase 5.89% 2726 Ib > 1606 Ib, Therefore OK Per IEBC 402.4 & 403, 11b.4, and by inspection; the increase in the lateral demand/capacity ratio of the existing structure due to the installation of the PV system is less than 10%. Therefore, the existing structure may remain unaltered. Page 16 of 19 Diaphragm Boundary LFRS Elements check Existing Roof Dead Load = 16.00 psf Wall Weight = 15.00 psf Story Height = 11.00 ft Parapet Height = 0.00 Project: Houpt -- Job M 2022-02608 Date: 4/18/2022 Engineer: EMG The capacity of the structure has not been altered, so the capacity of the structure remains the same. However, the seismic demand is increased due to the addition of PV load. The increase in lateral demand -capacity ratio hence will be the same as percentage increase in gravity load that is tributary to the lateral force resisting system. NS direction Northern Center of Building Roof Area Existing roof weight Existing wall weight Existing total weight Additional PV weight Percentage increase in weight EW direction Southwestern Corner of Building Roof Area Existing roof weight Existing wall weight Existing total weight Additional PV weight Percentage increase in weight 1106.00 sgft = 17696 Ib 1846 ib = 19542 Ib 1039 Ib 5.32% <10%, OK = 260.00 sqft 4160 Ib 688 lb 4848 lb 422 lb = 8.71% <10%, OK Consideres 11 panels / 17 panels trib weight Consideres 4 panels / 9 panels trib weight There is no change in the projected area of the building due to the installation of PV panels. Note: Therefore there is no change in the total wind load on the building, and there is no change in the maximum lateral load on the building. Per CEBC 502.5, 503.4 & ASCE 7-16 11b.4 and by inspection, the increase in the lateral demand/capacity ratio of the vertical elements of the lateral force resisting system due to the installation of the PV system is less than 10%. Therefore, the existing structure may remain unaltered. Page 17 of 19 it att SSa 3jsAE £gR§3ReF}Ei Esti@ R at£3334PYp SA !gt%F6sIIE .�Et Eat d6€E sdRgg zv § x aA s€C t 9 .tI a 4 R 65 F- u;;; F M m a 0 M a v 0 0 0 v 0 0 0 Esn §p E a aa' '1011. > u s - Ee D . , .E.g . e -s2 > ECClb �9g"§ 61EEgpMEEBggA paUgY 9 ,R ai aa.sEa sEt €€s€al€�sg €Es&a.atlsEaEEE z9,:$DsA R€ R€ �Ea. REg�€R�e� RREsRRs s> M PH�`$dEa EAeEE 6 R 1) [ e es Ills F. F a S> ppi p€�I�2�@�@a93r9g �{�F pig p{h �$#a pFr . Z a&666g "{ �5P5 ` k4 g4 R§ R4 S 64 RS nY K E R R R R m ��6E BBQ §S�R3�$) & 's 6 i R�p� r I� y 6 o�F I• I� I• I I I :E$ fA Structural H3 White Residence ®esuFME ac. smugE,vcaaEna 1033 White Saila Way �,,,' General Notes oorwla oar Mai, Ca `§ da a89 u'E aElAl p�d ju &H tEl i SII I � ISI ����g3;E t &I EE a! e a l I it att SSa 3jsAE £gR§3ReF}Ei Esti@ R at£3334PYp SA !gt%F6sIIE .�Et Eat d6€E sdRgg zv § x aA s€C t 9 .tI a 4 R 65 F- u;;; F M m a 0 M a v 0 0 0 v 0 0 0 Esn §p E a aa' '1011. > u s - Ee D . , .E.g . e -s2 > ECClb �9g"§ 61EEgpMEEBggA paUgY 9 ,R ai aa.sEa sEt €€s€al€�sg €Es&a.atlsEaEEE z9,:$DsA R€ R€ �Ea. REg�€R�e� RREsRRs s> M PH�`$dEa EAeEE 6 R 1) [ e es Ills F. F a S> ppi p€�I�2�@�@a93r9g �{�F pig p{h �$#a pFr . Z a&666g "{ �5P5 ` k4 g4 R§ R4 S 64 RS nY K E R R R R m ��6E BBQ §S�R3�$) & 's 6 i R�p� r I� y 6 o�F I• I� I• I I I :E$ fA Structural H3 White Residence ®esuFME ac. smugE,vcaaEna 1033 White Saila Way �,,,' General Notes oorwla oar Mai, Ca ®~^ © d § A d( }/ƒ/}f § t() d d ») z #)[§§m /§ m« +e , 1033 Jim _ . ;INCESI/FME. ;e9PmPn! (neq m\E # /; n>\) \\ a ea m g, ®~^ © d § A d( }/ƒ/}f § t() d d ») z #)[§§m /§ m« +e , 1033 Jim _ . ;INCESI/FME.