Loading...
HomeMy WebLinkAboutX2020-1504 - Calcs (5)i BURKE STRUCTURAL ENGINEERS PC 151 KALMUS DRIVE, BLDG. E-140, COSTA MESA, CA 92626 (657) 189-0460 STRUCTURAL CALCULATIONS FOR RESIDENTIAL ADDITION AND REMODEL (R1) JOB ADDRESS: 4 GENEVE, NEWPORT BEACH, CA 92660 JOB #: 20055 PROJECT ENGINEER: ZZ CLIENT: BOBBY DADVAR BUILDING DMSI()N THOMAS BURKE, S.E. Remodel/Addition to an existing single-family residence. The existing structure is wood framed supported by conventional shallow concrete footings. Some existing steel beams are used for long spans. Existing foundation/basement walls are conventional concrete retaining walls. The existing lateral force resisting system is conventional plywood sheathed shear walls. BUILDING LOADS Building Loads Roof Flat Roofing, Metal roof; w1 = 3.0 psf; sheathing; w2 = 2.0 psf; Framing; w3 = 4.0 psf; Insulation; w4 = 1.0 psf; M/E/P; w5 = 1.0 psf; Ceiling; w6 = 3.0 psf; Misc; w7 = 1.0 psf; Crickets; w8 = 0.0 psf; Solar; w9 = 5.0 psf; Dead Load; DLR = w1+w2+w3+w4+w5+w6+w7+w8+w9 = 20.00 psf Live Loads; RLL = 20 psf; Roof slope, s:12; s = 0; DL for s:12 slope; DLRso = DLR'sgrt(s2+122)/12 = 20.00 psf; Floor Decks/Tile Finish, tile; w1 = 24.0 psf; 1.125" sheathing; w2 = 3.5 psf topping; w3 = 0.0 psf; Framing; w4 = 4.0 psf; Insulation; w5 = 1.0 psf; M/E/P; w6 = 0.5 psf; Ceiling; w7 = 3.0 psf; Misc; w8 = 1.0 psf; Dead Load; DLF = w1+w2+w3+w4+w5+w6+w7+w8 = 37.00 psf Partition; LLp = 10.0 psf; Live Loads; LLF = 40 psf Hardwood Finish, Hardwood;; w1 = 4.0 psf; 1.125" sheathing; w2 = 3.5 psf topping; w3 = 0.0 psf; Framing; w4 = 4.0 psf; Insulation; w5 = 1.0 psf; M/E/P; w6 = 0.5 psf; 2 Page addition & Remodel Job No. 4 Geneve Newport Beach, CA 92660 By TIP Ceiling; w7 = 2.5 psf; Misc; w8 = 1.5 psf; Dead Load; DLFw = w1+w2+w3+w4+w5+w6+w7+w8 = 17.00 psf Partition; LLp = 10.0 psf; Live Loads; LLF = 40 psf Building Areas 3rd Level Area; A3= 3388 ft2; 2nd Level Area; - A2= 3267 ft2; 15' Level Area; Ai= 3605 ft2; Level weights, gravity load - Level 0 is the lowest level For seismic distribution, structure base level is level 0. Seismic Weight 3nd Level; W3 = A3*( DLRso+ 5psf) = 84.70 kips; 2nd Level; W2 = A2*( DLFw+ 10psf) = 88.21 kips; 15' Level; W1 =.AI*( DLFw+10 psf) = 97.34 kips; Total Seismic Weight; WT = W3+ W2+W1 = 270.24 kips; Level Heights, average; 3rd Level Height, average roof height; h3 = 32.5 ft; 2nd Level Height; h2 = 21 ft; Ind Level Height; hi = 10 ft; Redundancy factor; p = 1.3; Seismic Importance Factor; le = 1.0; Overstrength factor; E2 = 2.5; Ss = 1,621 S1 = 0.588 41 Date 3 `�'� BURKE STRUCTURAL Project Page 5 ENGINEERS, PC Residence Addition & Remodel 151 KALMUS DRIVE, BLDG. E-140 Address Job No. COSTA MESA, CA 92626 4 Geneve 20055 By Date 657-289-0460 Newport Beach, CA 92660 pq www.BurkeSE.com TJB 4/28/2020 Approximate fundamental period Height above base to highest level of building; From Table 12.8-2: - Structure type; Building period parameter G; Building period parameter x; Approximate fundamental period (Eq 12.8-7); Building fundamental period (Sect 12.8.2); Long -period transition period; Seismic response coefficient Seismic force -resisting system (Table 12.2-1); Response modification factor (Table 12.2-1); Seismic importance factor (Table 1.5-2); Seismic response coefficient (Sect 12.8.1.1) Calculated (Eq 12.8-3); Maximum (Eq 12.8-3); Minimum (Eq 12.8-5); Seismic response coefficient; he=32.5ft All other systems G = 0.02 x = 0.75 T. = G x (hr,)x x Isec / (1ft)x= 0.272 sec T=Te=0.272sec TL = 8 sec A. Bearing -Wall -Systems 15. Light -frame (wood) walls sheathed with wood structural panels R = 6.5 le = 1.000 Ce_caic = SDs / (R / le) = 0.1663 C._max = Sol / ((T / 1 Sec) x (R / le)) = 0.3323 Cs_mm = max(0.044 x SDs x Ie,0.01) = 0.0475 Cs = 0.1663 Seismic base shear (Sect 12.8.1) Effective seismic weight of the structure; W = 267.8 kips Seismic response coefficient; Cs = 0.1663 Seismic base shear (Eq 12.8-1); V = Cs x W = 44.5 kips Vertical distribution of seismic forces (Sect 12.8.3) Vertical distribution factor (Eq 12.8-12); Cv = wx x hxk / E(wi x h,k) Lateral force induced at level i (Eq 12.8-11); F. = C. x V Minimum diaphragm forces (Section 12.10.1.1) Calculated min. diaphragm force (Eq 12.10-1); FPx = EFi x wPx / Ewi,(i=x to n) F,min = 0.2 x SDS x le x WPx F,m.=0.4 x SIDS lex Wpx Vertical force distribution table Portion of Height effective Distribution Lateral Weight tributary to Minimum from base seismic exponent Vertical force the diaphragm Level to Level i weight related to distribution induced at diaphragm force at (ft), hx assigned building factor, Cvx Level i at Level i Level i to Level i period, k (kips), Fx; (kips), wPx (kips), FPx (kips), wx 1 10.0; 97.3; 1.00; 0.174; 7.8; 97.3 21.0 2 21.0; 88.2; 1.00; 0.332; 14.8; 88.2 19.1 3 32.5; 1 84.7; 1.00; 1 0.493; 22.0; 84.7 22.0 I " BURKE STRUCTURAL Project �., ENGINEERS, PC Residen -. L I. 151 KALMUS DRIVE, BLDG, E-140 Address s- COSTA MESA, CA 92626 657-289-0460 t www.BurkeSE.com Velocity pressures table Page 7 Addition & Remodel Job No. 4 Geneve 20055 Newport Beach, CA 92660 By Date Z (ft) K. (Table 27.3-1) q. (psf) 15.00 0.85 1 22.38 20.00 0.90 23.70 32.50 1.00 26.20 Peak velocity pressure for internal pressure Peak velocity pressure - internal (as roof press.); q; = 26.20 psf Pressures and forces Net pressure; p = q x Gf x Cp. - q; x GC,I; Net force; F. = p x Ares Roof load case 1 - Wind 0, GCpI 0.18, -cue Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (Psf) Net pressure p (Psf) Area Aaf (ft2) Net force F. (kips) A (-ve) 32.50 -0.93 26.20 -25,36 942.50 -23.91 B (-ve) 32.50 -0.86 26.20 -23.95 942.50 -22.57 C (-ve) 32.50 -0.54 26.20 -16.66 1305.00 -21.74 Total vertical net force; Total horizontal net force; Walls load case 1 - Wind 0, GCpI 0.18, -cpe 'w.' - -oO.&A KIp5 Fw,h = 0.00 kips Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (Psf) Net pressure p (Psf) Area Aar (ft2) Net force Fw (kips) Al 15.00 0.80 22.38 10.50 870.00 9.14 A2 20.00 0.80 23.70 11.40 290.00 3.31 A3 32.50 0.80 26.20 13.10 725.00 9.50 B 32.50 -0.50 26.20 -15.85 1885.00 -29.88 C 32.50 -0.70 26.20 -20.30 1787.50 -36.29 D 32.50 -0.70 26.20 -20.30 1787.50 -36.29 Overall loading Projected vertical plan area of wall; Avert_w_o = b x H = 1885.00 ft2 Projected vertical area of roof; Aven , 0 = 0.00 ft2 Minimum overall horizontal loading; - Fw,total min = pmin_w x A„en_w_0 + pmin_r x Aven_r_O = 30.16 kips Leeward net force; R = Fw,wB = -29.9 kips Windward net force; F. = Fw,wA 1 + Fw,wA_2 + Fw,wA_3 = 21.9 kips Overall horizontal loading; Fw,mtal = max(Fw - R + Fw,h, Fw,mtai min) = 51.8 kips Roof load case 2 - Wind 0, GCp; -0.18, -Ocpe Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient cpe pressure qp p Aref Fw (ft) (Psf) (Psf) (ft2) (kips) A (+ve) 32.50 -0.18 26.20 0.71 942.50 0.67 7 �.. - BURKE STRUCTURAL Project Page 9 ENGINEERS, PC Residence Addition & Remodel 151 KALMUS DRIVE, BLDG, E-140 Address Job No. COSTA MESA, CA 92626 4 Geneve 20055 firs-za9-oa6o Newport Beach, CA 92660 By Date www.BurkeSE.com Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient cue pressure i p Aref Fw (ft) (Psf) (Psf) (ft2) (kips) C 32.50 -0.70 26.20 -20.30 1885.00 -38.27 D 32.50 -0.70 26.20 -20.30 1885.00 -38.27 Overall loading Projected vertical plan area of wall; Aven_w_go = d x H = 1787.50 ft2 Projected vertical area of roof; Avers r 90 = 0.00 ft2 Minimum overall horizontal loading; Fmtotei_min = pmin_w x Aver: _w 90 + pmm_r x Aven_r_go = 28.60 kips Leeward net force; Fi = Fw,ws = -27.9 kips Windward net force; Fw = Fw,wA_7 + Fw,wA_2 + Fw,wA_3 = 20.8 kips Overall horizontal loading; Fw,totei = max(Fw - Fi + Fw,h, Fw,mtei mm) = 48.7 kips Roof load case 4 - Wind 90, GCPI -0.18, +Coe Ref. Ext pressure Peak velocity Net pressure Area Net force Zone height coefficient cpe pressure qp p Ana Fw (ft) (Psf) (Psf) (ff2) (kips) A (+ve) 32.50 -0.18 26.20 0.71 893.75 0.63 B (+ve) 32.50 -0.18 26.20 0.71 893.75 0.63 C (+ve) 32.50 -0.18 26.20 0.71 1402.50 0.99 Total vertical net force, Total horizontal net force; Walls load case 4 - Wind 90, GCPI.0.18, +cue rw,v - L.Av KIPS Fw,h = 0.00 kips Ref. height (ft) Ext pressure coefficient cPo Peak velocity pressure 1 (Psf) Net pressure p (Psf) ea ref t2) Net force Fw (kips) E 15.00 0.80 22.38 19.93 5.00 j27 16.45 20.00 0.80 2370 2083 5.0032.50 0.80 26.20 22.53 7.50 15.49 B 32.50 -0.49 26.20 -6.18 1787.50 -11.04 C 32.50 -0.70 26.20 -10.87 1885.00 -20.49 D 32.50 - -0-70 - 26.20 - =1Or87 --1885-00- ---20.49----- Overall loading Projected vertical plan area of wall; Projected vertical area of roof; Minimum overall horizontal loading; Leeward net force; Windward net force; Overall horizontal loading; Aven_w_so = d x H = 1787.50 ft2 Avers r go = 0.00 ft2 Fw,totel_min = pmin_w x Aven_w_90 + pmin_r x Avert_r_90 = 28.60 kips R = Fw,wB = -11.0 kips Fw = Fw,wA 1 + Fw,wA_2 + F1wA_3 = 37.7 kips Fw,mw = max(Fw - Fi + Fw,h, Fw,totei_min) = 48.7 kips 9 BURKE STRUCTURAL Project , PC Page ENGINEERS1 7 oPs s.� Residence Addition & Remodel 151 KALMUS DRIVE, BLDG. E-140 Address IP�� COSTA MESA, CA 92626 Job No. 657-289-0460 4 Geneve 20055 i www.BurkeSE.com Newport Beach, CA 92660 By Date Vicoi[uN BX--------------------------- ��1 w pryY`va Y 1'aY. P d" a R L K �Y »t. aY` zv� hp' aft jd MIS wina+ew Plen vleW.Flel mol 12.5 ft 5 � LO LO m T Windward face r ��f 34yrtPb 4W (r ek "y Ke'Y M g¢�P� w yS�ge N eierys„h}L�3pA�j^�,Y}ge e."e..I N-qk p. Hsi„may%2 ll nfia ---58 ft-- ►--55 ft----� Side face Leeward face Seismic load control in ASD shear wall design. 11 p a == 3 ® m = m � W� ® J�. oo uo�oG�wo�a �oa `G € 08�� oho oo LL g=NONo n LLnp no 9 o a s O 9 1 s I - i 10 0 z � 3 mr m m i a$® x m I I ED LT J dalED �' - I w •. _ ttt \Itt s e I I 3^3 G I a Fo d I ` j _____ _______mQ .m, tlm-,T--ate __yLL i 4 I _ ��--- I y�IeP ° I m I I I It LLnn G2� I rT TJ 'o`w I I ! m ° a Im ...�---- hn i i i I / 1__..... _. _._..... _ ......_. _..___.._.J __--___—_ m L I j xe ®og I I =® awe _ — $"------------------ ,. w� r , mrED �g® 1-i n� 'az ! Q F — i lr w� - ...z..\.. F,. ba 4^ bz® ! no o� a (9 r7 W 6 o-- 0 O (H)--- N N z 0 f=- N- 6- V lei (3--- N \W W J D m cn I st Level - E W Job#: 055 Area ftZ E k EAenvE k ETOTAL k p'E k MGrid 1 303 0.656 5.682 6.338 8.239 3+4 976 2.112 14.304 16.416 21.341 5 1158 2.506 3.663 6.168 8.019 9 1168 2.527 12.476 15.003 19.504 SUM 3605 7.8 36.1 43.9 retaining wall 23 Job#: &055 1st Level - EW Grid L ft 0.7*vs klf SW Type ASD T (k) T (k) 1 15.00 0.384 F 3.460 3.803 3+4 11 1.358 2H 12.223 13.431 5 9 0.624 G 5.613 6.168 9 15.75 0.867 2F 7.802 8.573 0.7*vs = 0.7*p*E/L ASD T = 0.7*vs*H T = ASD T/p/0.7 25 i 27 -2.265k -2.265k -.027klf M3 N7 N8 -25.6 -15.5 -.175klf NJ N5 � N , -.532k N3 N4 N1 , ;2 Loads: LC 1, D 20055 SMF - DL SK-3 SMF.r3d 27 L. 29 N7 Ns -5.z -z M4 N5 NG � N s: M5 N3 N4 N1 •r.z Loads: RILL - Roof Live Load SK-5 20055 SMF - RLL SMEr3d 29 Company Designer 31 IIIRISAJob Number Checked By: Model Name 20055 (Global) Model Settings, Continued TZ 6.5 Drift Cat K4 Hot Rolled Steel Properties Label E Iksil G lkslT Nu Thp."WF nPnqitvrk/ft Y,.Iwrk-sn P" Pi IneQn pf A992 29000 1 11154 .3— .65 11 65 1..1 36 t,5 58-", 14 3 A572 Gr.50 2900 iilg4 j- 3 .65 49 50 1.1 65 1.1 290'0 7" :,j: Aj� 5 A500 Gr.B Rect 29000 11154 .3 .65 .527 46 1.4 58 1.3 A 1354 -3, 4 '"'49 -3 7 7 Al 5 29000 56 i 1.4 65 1.3 Frame 1HR Column Seismic Design Rule Joint Coordinates and Temperatures I RhPI Y rftl v rftI 7 rfil T— rm a— M; N 1 0 0 0.1 y 0A 2 - - ­—­ _ _ .,,, �,� �,7 0 A T 3 1 Ni 1 0 10 0 0 I RISA-3D Version 17.0.4 [SAProjects\20\20055-4 Geneve- BadvarkCaics\2020-04-12\SMF.r3d] 31 Page 2 Company Designer Job Number Model Name 20055 . Ivl r.f OU i 33 Checked By:_ 33 Page 4 "AA Company Designer Job Number Model Name 20055 35 Checked By:_ RISA-3D version 17.0.4 [S:\Projects\2M20055 - 4 Geneve - Badvar\Calcs\2020-04-12\SMF.r3d] 35 Page 6 Company Designer Job Number Model Name 20055 MI6A-3D Version 17.0.4 [SA rojects120\20055 - 4 Geneve - Ba 37 Checked By:_ .r3dj 37 Page 8 SA Company Designer Job Number Model Name 20055 39 Checked By:_ 10:�rrolects120120055 - 4 Geneve - BadvarlCalcs12020-04-12\SMF.r3d 1 3fage 10 Company Designer 41 IIIRISAJob Number Checked By: Model Name 20055 w Beam Deflections (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\SMF.r3d] 4fage 12 Global Parameters - Description: Project Title New Company Job Number Notes Global Parameters - Solution: Yes Check Weld Filler Metal Matching? Yes Full Shear Eccentricity Considered? No 43 RISA Connection version 11.0.2 05.21.2020 Page 1 of 27 43 45 SMF 1: LRFD Results Report (continued): Limit State Required Available Unity Check Result FY 36.60 ksi Minimum yield stress of material Agy 3.31 in2 Gross area subject to shear 71.50 kips - Shear yield strength Beam Web Shear Rupture 15.40 kips - 49.86 kips 0.31� _ PASS��- _Rn=0.6*Fu*Anv 0=0.75..._. (14-4) __... Fu 65.00 ksi ._._ _ 'Minimum tensile stress of material. Anv 1.70 in2 Net a reasubject to shear R. 49.86 kips Shear rupture strength Plate Shear Rupture 15.40 kips 63.55 kips 0.24 nf< Rn=0.6*Fu*Anv=0.75 (14-4) Fu 58.00 ksi Minimum tensile stress of material Anv 2.44 in2 Net area subject to shear 4)Rn - 63.SS kips Shear rupture strength Block Beam53.93 15.40kips .29 5353.93 kips 0.2 n(a Rn=l min(0.6*Fu*Anv. 0.6*FY*Agv)+Ubs*Fu*Ant) 0=0.75. _. (14-5) Agy 1.68 in2 Gross area subject to shear Anv 1.22 in2. Net area subject to shear Ubs 1.00 Uniform tension stress factor Ant 0.37 inZ Net area subject to tension F. 65.00 ksi Minimumtensile stress of material FY 50.00 ksi Minimum yield stress of material Rn 53.93'kips Blackshear strength a Plate Block Shear t Beam 15.40 kip- � kips � �83.82 kips 0.18 nfa Rn = l min(0.6*1Fu*Anw 0.6*FY*Agv) +Ubs*Fu*Ant ) = 0.75 (14-5) Ag<, 2.40 ink Gross areasubject to shear Anv 1.75 in Net area subject to shear Ub, 1.00 - Uniform tension stress factor Ant 1.03 1n2 Net area subject to tension Fv S8.00 ksi Minimum tensile stress of material FY 36.00 ksi Minimum yield stress of material (ORn 83Mkips Block shear strength Bolt Bearing at Beam Web _ 15.40 kips 35.78 kips 0.43 nfa R 2*11 n n spacng _�-- --- - ���Boltdiameter 0.75 (13-6a) - --� d_ 0.75in Fu 65.00 ksi Minimum tensile stress of material t _.._. .:..._ ......�....__. 0.35 in _. _._..._ ......:_, .A_ Thickness of material Lc -s acin _ 2.19 in _ Vertical distance from edges of adjacent holes R d3 n-spacing _ ._q 2 ki s 86 p Strength at spaces min R 9 p ( n spacing-tearouft R n bearings R n bolt _ -Bearing Rnbearin .w . ,_ 4095kips _.._ 2.4*d*t*Fv ,_ .. - ...M..._ ...e. Rn s aan texrout ........ ....... $ ...g_.,_ _.._ ...... _.._.. 59.72 kips ___...._ . �.,,,..,...,.._ Tear out at spaces .. .-1.2*Lc spanner *t*Fv . .. _.... - ......... -_, Rn-bolt a 23.86 kips Bolt shear strength Rn-bolt=Fnv*Abolt Fnv .._.. ---- , _ - _.... ..._ _ _.. .. 54.00 ksi � �. ...,,._.. Nominal shear stress of bolt 4)Rn _..._. 35.78 kips _.__. .. .____ ..-.....W.....„ Bolt bearing strength ..___....... .. _... _�_�. continued on next page... Page 3 of 27 45 47 SMF 1: LRFD Results Report (continued): Limit State Required Available Unity Check Result Beam Flange Tensile Rupture 101.27 kips 242.40 kips 0.42 PASS Rn=Fu*An=0.75 (14-2) F. 65.00 ksi Minimum tensile stress of material - An 4.97 in2 _ Net area subject to tension �Rn 242.40 kips Tensile rupture strength dm --�-� 9.48 in Moment arm between the flange forces Rreq 101.27 kips Required Flange Force (tension) Beam Flange Compression 101.27 kips 223.76 kips 0.45 PASS Rn=Fy*Ag 4)=0.9. (14-6) K. 0.65 Effective length factor !.. L; 2.86 in Unbraced length r 6.18 in -Radius of gyration _..wW ............: -- -- .._ KL/r _.....__ _. _ 10.39 ......_.. _�. ,.---.. ._ ....�....._...... _-- Plate slenderness F 50.00 ksi Capacity Minimum Yield stress for KL/r <= 25 ' _ A 4.97 in _ Grass area subject to compression c�Rn 223.76 kips Compressive strength - Column Flange Bending 101.27 kips 227.81 kips 0.44 PASS Fin = 6.25 * F * tt2 CO = 0.90 (110-1) deed 26.ii in' Distance from concentrated force to top of column Fyf 50.00 ksi Minimum yield stress of column tf 0.90 in Column flange thickness ., Rn M.81 kips Column flange local bending dm 9.48 in Moment arm between the flange forces RreQ 101.27 kips Required Flange Force (tension) - Column Web Yielding 101.27 kips P 629.30 kips P 0.16 PSk55 R (5*k+lb) *F *t 4)=1.00 (1102) deed 20.31 in Distance from concentrated force to top of column dCel - _ 12.70 in.� Column depth Fy 50.00 ksi Minimum yield stress of column tw-eq 1.55 m Equivalent web thickness for yielding.,tw eq tw+tdP *Fydp/Fy tw - 0.55 inColumn web thickness ? td 1.00 in Doubler plate thickness . . -JP . _ _� ....�........ Fydp ` __ 50.00 ksi .:.............-. _. .. .. ---- -` Minimum yield stress of doubler plate !. k 1.50 in Distance from outer face of the flange to the web toe of the ._ wW W lb 0.62 in Length of beanng 4)Rn 629.30 kips Column web local yielding _.� ..- ......:.._. dm 9.48 in ...... - -_- _....; Moment arm betweenthe flange forces ..R_eq req 101.27 kips p Required Fla - d q Flange Force (worst) in bolts due to moment Column Web Bucklin g�- � � �ips 101.27 k- 3127.55kips �� �� 0.03 PASS �SS Rn=24*tw3*(E*Fy)a'5/h+24*tdP3*(E*Fydp)0.5/h.. _.4)=0.90 ...._ (110-8) dead. 20.31 in Distance from concentrated force to Sop of column dcoi ....... _. 12.70 in.... Column depth ......... __ ___ ........ tw 0.55 in Column web thickness continued on next page... Page 5 of 27 47 SMF 1: LRFD Results Report (continued): 49 ` ,Limit State Required Available Unity Check Result tP 1.00 in Doubler plate thickness - k 1.81 in Distance from outerface of the flange to the web toe of the _. fillet tf 0.90 in Column flange thickness Doubler Shear Buckling __ PASS Check con _ : h / 2.24 * (E / Fy)o's _-, condition -_ tp r _ .............- (G2-2) tp -- _ 1.00 in - . - ... - _._. ,.. Doubler Plate thickness in Depth o the column Kdes 1.50 in Kdes of thecolumn h 9 70 m -.-.._ .u. ..._,-: Clear distance between flanges =d2 .- 2 *Kd.,,..es Modulus of elashcltv � F 50:00 ksi Minimum Yield Stress Doubler Plate Shear Yield 0.00 kips 381.00 kipss 0.00 pAcS._ n - Ndaubler * 0.6 * Fy_st * Aw * w -_ 4) = 1.0 __. (G2-1 ..__ _..... -_ Ndoubler 1 Count of doublers --- -- tP 1.00 in . Doubler plate thickness - - - - Fy-ja _. 56.60 ksi yield stress of doubler plate -- -- a 12.70in- -Cal umndepth - -- A!^w .- 12.70 inz ..:......__ Area of web - tP * de DG 13 (4.4-1) CV ..� ...._ .. ... 1.00 .. �__ Sheorcoefficient _ �Rn ._ ...__...- 381.00 kips Plate shear yield strength req 0.00 kips Required doubler plate shear force Doubler Weld at Column Web Limitations RASA Weld Min Size _- (J2.2b) _. _.... Check Weld Min Size Pass -- -- _-- -- --- ------ _ R 0.63 in ..._. ..... Weldsize ..: .:.... _.._. .� ,-. .. Dmm 0.25 in Min size allowed per Tablell.4 tmin 0.55 in Controlling member thickness Doubler Weld Strength at Column Flange 0.00 kips � 307.63 kips 0.00 plt,5g � On = C1 * a * 1.392 * D16 * L Single Fillet 1.392 = df * 0.6 * FE70 * 2o's/2 * 1/16, d,=0.75 (AISC 14th Eqn 8-2a) .... Ct 1.00 .... Electrode strength coeffi'cient(AISC14th table 8-3) t D.90 m _Base material thickness (column) _-- a 1.00 - Base material proration factor (re -a w rrangement of AISC 14rh D16 10.00 Weld fillet size in sixteenths of an inch -_L .: ,.u.,,, . r. ,221m. _0._.... Weldlengtlt. �Rn 307 63 kips _.. .IrIe g_ __. . Weld strength Doubler Weld Strength at Column Web_ O.DO kips126.32 kips 0.00 n(a d Rn = C1 * a * 1.392 * D16 * L Single Fillet 1.392 = 4) * 0.6 * FE70 * 2o's/2 * 1/16, (�=0.75 (AISC 14th Eqn 8-2a) Ct _ 1.00 Electrode strength coefficient (AISC 11 14th table 8-3) t 0.55 in Base material thickness (column) continued on next page... Page 7 of 27 49 51 SMF 1: LRFD Results Report (continued): ` Limit State Required Available Unity Check Result EC. : 29000.00 ksi Modulus of elasticity of column material F. C 50.00 ksi Minimum yield stress of column material Ratio 6.78 Width to thickness ratio bc/tc Limit 7.22 Limiting ratio, 0.30*(E�IFYc)as .. _.. _.. ....-_- Check Column Web .- �...... _...._. Pass Con ._ . . -.. diti. on: Ratio <= Limit P„ C 107.00 kips Axial compression in column ¢c 0.90 Resistance factor for compression Ac 28.20 11 in2 Gross area of the column Pyc 1410.00 kips Nominal axial yield strength, P c F c*Ac Cac 0.08 Ratio of required strength to available strength,. Cac=Pvc/(tpc - *P YC he 10.90 in dear distance between column flanges t.CW 0.55 in Thickness of column web Ratio 19.82 Width to thickness ratio, hc/tcw :Limit 54.38. Limiting ratio, 2.45*(EcIFYc)o:5#(1-0.93*Cac) _ -� Seismic Moment at Face of Column -- _ ^ Y 181.94 kips- IC Mf M � + Vh * Sb (AISC 358-10, Eqn 5.8 6) FY ..�... .-.._..� 50.00 ksi .__.__..._.-._.-. Minimum yield stress of material .. -.._ ..__'--,_ -- '---- Fv 65.00ksi Minimum tensile stress of material RY 1.10 _ Ratio of expelled yield stress#o the specified minimum yield - _.. ... ...- ` stress... ..... Cpr ---- __ . _ -__ 1.15 ......,-c .. Factor to account for peak connection strength Cps min(1.2, _ w- 54.90 in3 `. Plastic section modulus for fullbeam section . c. 2.00 in Depth of cut at center of the RBS thr 0.62:in Beam flangethickness dh 10.10:in m Beadepth Zags 31.39in3 Plastic section modulus at center of RBS,ZRBS=Zx2*c*tbf*(db-t . ___._._._.. ...._.m.m.. _......:... ..- bf) . .. ------ Mpr 165.45 kips -ft Probable maxim um moment at center of the .RBS,MPr-Cps*Ry ------ ........ ........... _ .__..__ Sh 9.25 in Distance from face of column to the plastic hinge L 270.00 in span of beam between column flanges Lh 251.50 in ,_,Clear Beam length between plastic hinges, Lh=L2*Sh V 5.66 kips .Shear due to gravity Vh 21.39 kips Probable maximum shear, Vh ((2*Mp,)/Lh)+Vg Mf 181.94 kips-ft Probable maximum moment at face of column din .__.._ ............ .............. 9.48 in ._ __..___._._ wMoment arm between the flange forces, din db-tb ._ __..� _..-._m.M.. ._..f, F ................................ 230 30 kips Design flange force F M /d ,.-. ._._Ptf .. ^! _.,... ........:,.: _ - Seismic Weld Limitations PASS Check Web Weld Material Pass Condition: Web weld must be E70 or E80 (AISC 341-10, A3.4b�.,, Web Weld _.. ._ .- _ E70 --- _ .. __. .. .. lNeb weld Check Web Weld Type _ Pass Condition Web weld must be a CJP AISC 358 10, 5.6(2)(a)) Weld Type C1P Web weld type continued on next page... Page 9 of 27 51 53 SMF 1: LRFD Results Report (continued): ` Limit State Required Available Unity Check Result FY 50.00 ksi Minimum yield stressof material Zx 54.90 in3 Plasticsection modulus for full beam section ; Mf 181.94 kips-ft Probable maximum moment see 'Seismic Moment at Face of ;. ,_ ._.. ...W...... -_.... Column' check _ _ �d*MPe. .. ... 251.63kips ft .__ _...e.. Flexural strength � of bea_ ... m at face of column Seismic Beam Web Checks 0.43 PASS Vh 21.39 kips Probable maximum shear, see Seismic Moment at Face of Column' check Check Beam Web Shear Yield Pass condition., Vh <= ip*Rny (G2-1 & AISC 358-10, 5.8 step 8) !. 69.51 kips Shear yield strength, see 'Beam Web Shear Yield' check Check Beam Web Shear Rupture Pass Condition: Vh <= W *Rnc (J4 4 & AISC 358-10, 5.8 step 8) ip*Rni . ...,., . 49.86 kips .. Shear rupture strength, see 'Beam Web Shear Rupture' check .. , ..x Seismic Trans. Stiffener Plate Limitations ., PASS Check Stiffener Requirement _ Fail Condition: t > max(ty t2) �f tt 1.20 in Thickness requirement tl=0.4*(1.8*bbf*tbf*((RYb*Fyb)/(RYA*F s (AISC 341-10, Eqn E3 8) �. ...._.. .......-:.. yc)))o ._.- a .-.,.-,�,.. .u_--.,. ......__m_.... t2 134in Thrckness?equirement t2=bbr16.(AISC 341-10;.EgnE3-9). 0.90in Column flange thickness bbf 8.02 in Beam flange width tbf 0.62 in Beam flange thickness Ryb 1.10 Ratio of expected yield stress to the specified minimum yield stress of the Beam material - RYC 1.10 Ratio of expected yield stress to thespecified minimum yield stresspf tnetolumn material '' Fyb 50.00 ksi Specified minimum yield stress of the beam flange Fyc 50.00 ksi Specified minimum yield stress of the column flange '.. Check Stiffener Thickness Pass : Condition::> 0 5 * tbf (AISC341-10 E3 6f(2)(a)) ' t 0.63 in Stiffener plate thickness _ Seismic Panel Zone Limitations ........... PASS Check Column Web Thickness .Pass Condition: two >= (d, + w,)190 (AISC 341-10, eqn E3-7) twC 0.55 in Column web thickness db 10.10 in Depth of connecting beam. :. _..... . ......._. _. __.... _.. __ t fb __,_..... 0.62 in .._.. ..---. Beam flange thickness d� 8.86 in Clear distance between beam flanges, d,=db 2*tR' . _ ....... _. .... -.. . _ _. ..�. m ..._ wi 10.90 in - _ _ . ... _. Width of panel zone between column flanges Check Doubler Thickness : Pass Condition tdp > (d, + w,)190 (AISC 341-10, eqn E3 7) ._._.� .. ._.-....,._�. __... _ tap __..M.... 100in w.. ...._._, Doubler plate thickness Seismic Column Panel Zone Shear 230.30 kips 209.55 kips N/A Rn = 0.60 * FYC * do * twC (Pr<=0.4*Pc) 4) = 1.00 (AISC 358-10, 5.4 (1)) Pi 107.00 kips Axial force in the column at the connection 3. PC _.. _ _ 1410.00 kips Pc=Py FyC*A ... ... FYC 50.00 ksi Minimum yield stress of column A 28.20in2 Column cross -sectional area . ,._ .. . dC ,......... 12.70 in ��Column depth continued on next page... Page 11 of 27 53 55 SMF 1: Connection Properties Report Seismic Detailing Seismic System Column/Beam Direct Weld Moment Connection SMF 1 Column/Beam Direct Weld Moment Connection SMF (RBS) Web Doublers Configuration One Side Beam Section WI0X45 Material A992 Hole Type STD Plate Section P0.5Ox4.00x6.62 Width 4.000 in Depth 6.620 in Hole Type STD Doubler Section P1.66)(16.60M.10 Material A572 Gr.50 Fy 50.000 ksi Fu 65.000 ksi E 29000.000 ksi Thickness 1.000 in Width 10.900 in Depth 22.100 in Transverse Stiffener Section P0.63x4.82xI0.90 Material A572 Gr.50 Fy 50.000 ksi Fu 65.000 ksi E 29000.000 ksi Full Depth Stiffener Yes Thickness 0.625 in Min Width 4.825 in Max Width -- ---- 5.825 in Type Cip Beam Bolts A325-'N continued on next page... Page 13 of 27 55 SMF 2: LRFD Results Report 57 LRFD Column/Beam Direct Weld Moment Material Properties Column W12X96 A992 Fy = 50.00 ksi Fu = 65.00 ksi Beam W 10X88 A992 Fy = 50.00 ksi F� = 65.00 ksi Plate PO.5Ox4.00x5.8 A36 Fy = 36.00 ksi F„ = 58.00 ksi 4 Doubler P1.00x9.07x22. A572 Gc50 Fy = 50.00 ksi F„ = 65.00 ksi 80 i Transverse P1.00x4.82x10. A572 Gr.50 Fy = 50.00 ksi Fa = 65.00 ksi Stiffener 90 - .Input Data: ''. Shear Load 31.40 kips User Input Shear Load Moment 170.00 kips-ft User Input Moment Axial Load 0.00 kips User Input Axial Force Puf_c 207.95 kips Required Flange Force (compression) S Puf_t 207.95 kips Required Flange Force (tension) Top Column Dist 120.00 in User Input Top Column Dist 1 Column Force 92.00 kips User Input Column Force ._Story Shear 1.70 kips..__ User Input Story Shear, 'Input Data: " _ .....,.,_.. _ _ ................. .... ..._._ Seismic System SMF(RBS) User Input Seismic System Gravity Shear, Vg 19.80 kips User Input Shear due to Gravity Clear Span,L 270.00 in User Input Clear Span of Beam ' Sh 9.25 in User Input Dist from Column to Plastic Hinge { ZFactor 0.57 User Input Ratio =ZxeSI I Note: Unless specified, all code references are from AISC 360-10 Limit State Required Available Unity Check Result ieometry Restrictions at Beam rtk3 Check Min Bolt Spacing Pass . Condition:. Smin >_ (2+2/3) * dbolt -�Min (J3.3) Sm,n .....Tu _ .......... ............ 3.00 in ...... .. bolt Spacing ... _._ ...:..... _.._... dbolt ... 0.75 in .:.... _.... .Bolt diameter __.. Check Max Bolt Spacing Pass Condition: Srnaxa= min(12.00 in, 24*t) (J3.5a) 5max 3.00 in Max bolt sp acing t 0.50 in Thickness'of governing element (Plate) Check Min Edge Distance Pass Condition: EDmm >= EDanow (13.4) Check Max Ede Distance g Pass Condition: EDmax �= min 6 00 in, ( 12*T) (J3.5) Ieam Web Shear Yield 31.40 kips 106.00 kips 0.30 PASS Fin = 0.6 *Fy*Agv*Cv .. .F__Y .. .... _.. _...... .._...__ .. . _.40 = 1.00 (G2-1) ...,,.", _. ._ ___ ._.i ...stress __._......._...... 50.00ksi Min-imum. Yfield a material.- taf Agv W _ _ 3.53 In2 Gross area subject to shear _Web Cv� 1.00 shear coefficient (G2 2)-�--� dtRn 106.00 kips Shear yield strength 'late Shear Yield 31.40 kips 63.07 kips 0.50 n/a Fin = 0.6 *Fy*Agv 41 =1.00 (14-3) continued on next page... Page 15 of 27 57 59 SMF 1: LRFD Results Report (continued): " Limit State Required Available Unity Check Result Bolt Bearing at Shear Plate 31.40 kips 35.78 kips 0.88 n/a Rn - 1*Rn-ed e + 1*Rn-s acin 4) = 0.75 (J3-6a) d - 0.75 in Bolt diameter Fv - 58.00 ksi Minimum tensile stress of material.. t 0.50 in Thickness a material ` - ' Lc -edge - 1.01 in _ _ Vertical distance from edge of hole 4o edge of material LC sparing 2 19 inVertical distance from edges of adjacent holes ,,,. R - n•edge kip 23.86 P s R R Stren 9th at ed 9a min (n edge teoroutR n-beonngn bolt Rn-spari, 23 86 kips Strength at spaces =min R tnP RnbeR n sppgp9 n bolt) Rn•beadng 52.20kips Bearing=2.4*d*t*Fu R 11edge tearout 35.28 kips p .,Tear out at edge = 1.1 *Lc edge *t*Fu Rn-spacing-tearaut 76.13 kipspaces Tear out ats 12*Lc-spacrn .9*t*F u Rn-bolt 23.86 kips Bolt shear strength'Rn-bolt Fnv*Abort Fnv : 54.00 ksi Nominal shear stress of bolt 4)Rn 35.78 kips :Bolt bearing strength Bolt Shear at Beam Web w � �-- 31.40 kips 35.78 kips �0.88 � nja Rn=Fnv*Ab*Nbolt*C ._. ..__ ..._ tp=0.75 (J3-1) - Fnv m54.00 ksi--�WWShear stress N type-��- Ab ._ _ 0.44ini .. _.�. _,. Areaofbolt --... ._ ...,,,.-_.. �._..-_._;._ Nbolt ... ....... 2 ... _... M -__-_-.-. .__... ..:.......... Number of bolts _ C .... - _ 100 �w. Eccentncrt coe dent Rn 35.78kIlps _ Boltshearrupturestrength Flange Weld Strength _ - PASS Complete Joint Penetration (J2.6) _-- _Req'd Filler (Column) E70 Req'd Filler (Beam) -E70 Weld Electrode (Filler) E70 Column Weld Strength PASS Complete Joint Penetration ..-._.__.. .,.._ _ ._ _ . (12.6) ..........._ _ , .._ ....___,. - Req d Fdler (Column) - E70 Req'd Filler (Plate E60 Weld Electrode _ .._ m..,,.... u E70 Beam Web Weld Strength PASS Complete Joint Penetration (J2.6) Req'd Filler (Column) E70 Req'd Filler (Beam) E70 IN _ Electrode (Flller� _,-..�..�,.. ., _. _.._.. E70 Beam Flange Tensile Yield 207.95 kips 458.87 kips 0.45 PASS Rn.=Fy*Ag 4)=0.90 (J41) FY 50.00 ksi: Minimum yield stress of material ' Ag 10.20 inZ Gross area subject to tension epRn 458.87 kips Tensile yield strength dm 9.81 in Moment arm between the flange forces RreQ 207.95 kips Required Flange Force (tension) - continued on next page... Page 17 of 27 59 61 SMF 2: LRFD Results Report (continued): " Limit State Required Available Unity Check Result FY 50 .00 ksi Minimum yield stress of column E .. _ .. 290_00 0..0 ki ---,. ... Modulus ofelsti c) .. ... _ ............. tdp 1.00 in Doubler plate thickness :. 'F d 56.00 ksi Minimum yield stress of doubler plate h 9.70 in Clear distance between flanges h=d-2*kdes $kn 5808.98kips Column web compression 11 buckling do 9.81 in Momentarm between the flange forces Rfe 207.95 kips Required Flange Force (compression) Column Web Crippling 207.95 kips 2057.12 kips 0.10 PASS Rn=0.8*twZ*(1+3*(Ib/dcol)*(tw/tf)iS)*(E*FY*tf/tw)a.s+. 4)=0.75_ (J 10-4) 2*0.8*tdp2*(1+3*(I b/d col)*(tdp/tf)1.5)*(E*FYdp*tf/tdp) 0.5 dend 120.50 in Distancefrom concentrated force ta:top of column Ib/dcal 0.08 Bearing length to column depth ratio dCO) 12.70 in Column depth tw 0.55 in. Column web thickness tf 0.90 in Column flange thickness lb 0.99in Length of bearing F ....vY. _ 50.00 ksi _...�.-..._....a Minimum yield stress of column _.._.r._. E ._..-.,;... - 29000 00 ksi _ .._ Modulus of elasticity ,. .......... .....:_w...:_ . ..-: td 1.00 in Doubler plate thickness FYdp .__.. .__ .-._�...... 50 00 ksi Minimum yield stress of doubler plate .e On _....W.... ._ „_..w._ : 2057.12 kips ..._.. _.... Column web crippling capacity ....din �� 9.81in Moment arm between theflangeforces Rfeq e 207.95kips Required Flange Force(compression) Column Panel Zone Shear 209.65 kips 188.59 kips N/A Rn = 0.60 * FYc * do * twc (P,<=0.4*Pc) 4) = 0.90 (J10-9) P, 92.00 kips Axial force in the column at the connection Pc ..... ___. _ _ 1410.00 kips, ....,....� Pc P F c*A Y, ._ FYc 50.00 ksi Minimum yield stress ofcolumn� A 28.20in2 Columncrosssectionalarea d, 12.70 in Column depth twc 0.55:in Column web thickness tfc 0.90 in Column flange thickness btc 12.20 in Column flange: width db 10.80in Beam depth d•Rn 188.59 kips Web panel zone capacity ,_ Rf .. ,.. ... _20795kips_Beamflangeforce.Rt- M/din M 170.00 kips-ft Moment demand din 9.81 in Moment arm from centerline forces Vabove 1.70kips Story shear in column above connection R .. _.. P .... ..... 209.65 kips _. .._. ._._ ....... _ _. _.�.. Panel zone shear demand R R + V ..... .. _. _ ... Unbalanced moment 17.21 kips-ft Doubler plates are provided Unbalanced force 21.06 kips Doubler plates are provided continued on next page... Page 19 of 27 61 63 SMF2: LRFD Results Report (continued): Limit State Required Available Unity Check Result Check Max Beam Depth: Pass _ Condition beam shape < W36 (A/SC 358 10, 5.3.1(2)) Beam Shape W10 Selected beam shape depth f Check Max Beam Weight. Pass Condition:. beam weight <= 0.03 kips/in (AISC 358-10, 5.3.1(3)). Beam Weight _ _ 0.01 kips/in _ Selected beam weight °= Check Beam Flange Thickness Pass Conditian:tbf <= 1.75in(AISC35810,5.3.1(4JJ tbf .,; 0.99 in Beam flange thickness _ m Check Span to Depth Ratio Pass condition: Span/db>= ZOO (AISC 358-10,5.3.1(5)) ' Span 270.00 in Beam span db 10.80in Beam depth Check Max Column Depth : Pass Condition: column shape < W36_(AISC358 10,5 3 2(3)J w.... .._.. ........_. Column Shape _� W12 ......_.. .. ... _. _.. -... . Selected column shape depth _ Check Shear Plate Thickness . _ Pass Condition t >- 0.38 in (AISC 358 10 5 6(2)(a)) tP 0.50 in Shear plate thickness _ i _S Thickness Ratios Seismic Width to T #�t��3 Limiting Width to Thickness Ratios (AISC 341-10, Table D1.1) Check Beam Flange- Pass Condition: Ratio <=Limit bb 5.15 in Half of beam flange width tbf 0.99 in Beam flange thickness- Eb 29000.00 ksi Modulus of elasticity of beam material Fyb SO.00ksi : Minimum yield stress of beam material Ratio 5.20 Width to thickness ratio, bb/tbf_ Limit 7.22 Limiting ratio 030*(Ey/FybJos Check Beam. Web Pass - Condition.: Ratio <-Limit ; Pub - 0.00 kips Axial compression in beam I)c 0.90 Resistance factorfor compression Ab 26.00 in2 Gross area of the beam _P1b _ _ 1300.00kips Nominal axial yield strength, Pyb=Fyb*Ab Cab 0.00 Ratio of required strength to available strength, tab Pub/(wc -[ *p bl r hb 8:82 in Clear distance between beam flanges tbw 0.60 in Thickness of beam web Ratio 14.58 Width to thickness ratio, hb/tbw Limit 59.00 Limiting ratio, 245*(Eb/Fyb)o.5*(1o.93*Cab) Check Column Flange Pass Condition:. Ratio .=Limit be 6.10 in Half of column flange width ...... .....__ --- tcf 0.90 in -------------- .. .. . ,__.. _�. .... .._ Column flange thickness Ec 29000.00 ksi Modulus of elasticity of column material .. ,,- -_. Fyc ............. _ .. .. ........� .. ._._,_. _._. ... . 50.00 ksi ........el s-- Minimum yield stress of column material .....__- ... ......... _....,. Ratio 6.78 .Width to thickness ratio, bc/tcf Limit - 7.22 Limiting ratio 030*(E FX5 Check Column Web ..: ....... w_ ......... .. . ..._,. Pass Condition: Ratio , Puc .. _...�.... 92.00 kips Axial compression in column �c 0.90 Resistance factorfor compression AC 28.20 in Gross area of the column P c _._Y. .. ..: _._ ........_._ _..___.. 1410.0 0 kips � ___.. Nomin.a.l axial -yield strength, P c F c*Ac .._...T..... continued on next page... Page 21 of 27 63 65 SMF 2: LRFD Results Report (continued): Limit State Required Available Unity Check Result Seismic RBS Connection Detail Limitations PASS '. w. ...... Checka ,. Pass ... ....: .. ......:.. Condihon 05*b < a< 07575*b ( AISC 358358-1B egn581) _...._.... .61_.-. bf.:. a ; 5.50 in Horizontal distance from face of column flange to the start of the. RBS. bbt 10.30 inBeam _ flange width Check b Pass_ Condition_0_65*d <= b <= 0 85*d (AISC 358 10 b 7.50 in Length of the RBS cub �. d 10.80 in Depth of beam 1 Check c Pass _ _ Condition: 0.1 *bb <= c <= 0.25*bb (AISC 358-10, eqn 5 8 3) c 2.50 in Depth of cut at center of the RBS' Seismic Column -Beam Moment Ratio PASS M ps/ M* > 11 1.0 (AISC 341-1 0, Eqn E3 1) _. FYI... 50.00 ksi - Minimum yield stress of column material _. - Puc - 92.00 kips Axial forcein column AC 28.20 in Gross area of the column 2c 147.00 in3 Plastic section modulus of the column M*pc 572.54 kips ft Nominal flexural strength of the column, M*pc=Zc*(Fyc puc�Ad perAISC341-10.Egn(E3-2a) MPS 339.66 kips ft Probable maximum moment see Seismic Moment at Face of Column' check a 5.50 in Horizontal distance from face of column flange to the start of .the RBS b -------------------------------- 7.50 in Length of RBS cut c 2.50 in Depth of cut at center of the RBS _ do 12.70 in _ Depth of the column Res 52.21 kips Shear force at center of RBS, VRes=Vb, see 'Seismic Moment at'. Face of Column check MuV 6 7.8 8 kips ft Additional moment due to shear a mp i ifica t i a n, Muv VRB5 - *(a+0.5*b+0.5*dc)per AISC 358-105.4(2)(a) _ ------ ---- _ - -M*p6 407.53 kips ft Expected flexural strength of the beam, M*pb=Mpr+Muv, per AISC 358-10 5.4 (2)(c) M*PC/ M.pb 1.40 Column -beam moment ratio Seismic Flexural Strength of Beam 379.90 kips-ft 517.92 kips . �ft ... 0.73 PASS MPe = Ry * Fy * Zx $d = 1.00 (A15C 358-10, Eqn 5.8-8) Ry 1.10 Ratio of expected yield stress to the specified minimum yield stress FY 50.00 ksi Minimum yield stress of material ;. Z. 113.00 in .Plastic section modulus for full beam section ' Mf 379.90kips-ft Probable 11 maximum moment 11 seeSeism ic Mament at Face of 'Column'check '0 *MPe 517.92 kips ft Flexural strength of beam at face of column �. Seismic Beam We Checks 0.72 PASS - Vh 52.21 kips Probable maximum shear, see 'Seismic Moment at Face of - Column' check Check Beam Web Shear Yield Passe Condition: Vh <= tp*Ray (G2-1 & AISC 358-10, 5.8 step 8) *Rn 106.00 kips Shear yield strength, see 'Beam Web Shear yield' check continued on next page... Page 23 of 27 65 67 SMF 2: LRFD Results Report (continued): ` Limit State Required Available Unity Check Result Seismic Doubler Plate Strength PASS RreQ 255.16kips Required doubler plate �sheor force due to seismic forces, seed 'Seismic Column Panel Zone Shear' check Check Doubler Plate Shear Yield Pass < rpR�y (G2 1J RQ 762.00 kips _R1eQ Plate shear yield strength, see 'Doubler Plate Shear Yield checl Check Doubler Weld Strength at Pass C1P-weld: see 'Doubler -Weld Strength at Column Flange'check Column Flange _ _.__.. ........ -. .. _._ ._...�.. ........ _____... Check Doubler Weld Strength at Pass Condition: Rreq <= rPRncw Column Web - I)Rncw 277.91'kips r Weld strength at column web see 'Doubler Weld Strength at Column Web' check Page 25 of 27 67 69 SMF 2: Connection Properties Report (continued): Diameter, in. ................Rows 3/4" 1 Bolts per Row 2 Longitudinal Spacing 3.000 in Transverse Spacing 3.000in Slip Critical No moment Weld E70 Type - _ _ C1P .. _. .. _. Transverse Stiffener Weld E70 ... Type 'Doubler Ci p Flange Weld __. E70 Type _.. _.._. _. _.... ,...., C1P _E70 _.. .._ .... Doubler Web Weld ___..... Type ....Fillet _..... _._.. __ __.. Fillet Size 11.000 Sixteenths Web Weld E70 Type .... .., C1P .. Assembly_ Column/Beam Clearance 0.000 in Plate Vertical Position 2.480 in Beam Bolts Edge Distance Dimensions Beam Bolts/Beam Edge Dist 1.500 in _.. Beam Bolts Horz Edge Dist 2.500 in Beam Bolts Vert Edge Dist 1.420 in RBS Connection Dimensions Horiz Dist from Col to RBS (a) 5.500 in Length of RBS (b) 7.500 in Page 27 of 27 69 FQ R T E CM MEMBER REPORT PASSED 71 ROOF, RR1 1 piece(s) 2 x 10 Douglas Fir -Larch No. 10 12" OC 12 0.51 AII locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. �13�''e'� A4tH51�AJw3�Htdd �9lbakd 'aY€pl@ e, �.rff i66➢) rRrllfiffinSHpfi Member Reaction (Ibs) 477 @ 2 1/2" 3281 (3.50") Passed (15%) -- 1.0 D + 1.0 Lr (All Spans) Shear (Ibs) 433 @ V 3/4" 2081 Passed (21%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (Ft-Ibs) 2647 @ 11' 6" 2819 Passed (94%) 1.25 1.0 D + 1.0 Lr (All Spans) Live Load DeFl. (in) 0.697 @ 11' 6" 1.130 Passed (L/389) -- 1.0 D + 1.0 Lr (All Spans) Total Load DeFl. (in) 1.447 @ 11' 6" 1.507 Passed (L/187) -- 1.0 D + 1.0 Lr (All Spans) • Deflection criteria: ILL (U240) and TL (L/180). • Top Edge Bracing (Lu): Top compression edge must be braced at 2' 9" o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (W): Bottom compression edge must be braced at 23' o/c based on loads applied, unless detalled otherwise. • A 15% increase in the moment capacity has been added to account for repetitive member usage. • Applicable calculations are based on NDS. wny9g4g8VGpa��.1�.(�Jq R !Wtka� @i �„yrf(¢L`C3 :�w F. ..?eee.. e m m:..s ..€.�vgv°Si •. R+Pt�rM ��fix�Pa �If1 '�Pei�aF�A•�ve.mee..e.A era e 1 -Beveled Plate-DF 3.50" 3.50" 1.50. 247 230 477 Blacking 2 - Beveled Plate - DF 3.50" 3.50" 1.50" 247 230 477 Blocking Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. a 4R$�i�4 Oifie a " 1"- Uniform (PSF)�- 0 to B. 12" 21.5 20.0 Default Load Member Length : 23' 5/8" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : A5D Member Pitch : 0.5/12 ,e.. .e..... es te e <. me a .=`� .,, a'. ee.�r " , e...e,.m. .....m.m v Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design cnteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible W assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASfM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodpmducts/document-libmry. The product application, Input design loads, dimensions and support information have been provided by ForteWEB Software Operator ForteWEB Software Operator Job Notes 2hao 55555 (555) 555-5555 zhaa@burkese.com 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 Fill Aame: 20055 Weyerhaeuser Page 2 / 31 Ffi WEB ROOF, RR3 1 piece(s) 2 x 12 Douglas Fir -Larch No. 1 @ 24" OC 12 0.51 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. Pgfr 12e°sq## m <e Member Reaction (Ibs) „oCWkkscaE ranee e , 789 @ 2 1/2" 3�ewed 3281 (3.50") A.e Passed (24%) I.DF a -- eRa e e ��ifdM m s° 1.0 D + 1.0 Lr (All Spans) Shear(Ibs) 687 @ V 2 3/4" 2531 Passed (27%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (R-Ibs) 3585 @ 9' 6" 3790 Passed (95%) 1.25 1.0 D + 1.0 Lr (All Spans) Live Load DeR. (in) 0.355 @ 9'6" 0.930 Passed (U628) -- 1.0 D + 1.0 Lr (All Spans) Total Load DeFl. (in) 0.738 @ 9' 6" 1.290 Passed (U303) -- 1.0 D + 1.0 Lr (All Spans) • Denecuon cmena; LL (L/Z40) and TL (L/180). • Top Edge Bracing (Lu): Top compression edge must be braced at 2' 4" o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 19' o/c based on loads applied, unless detailed otherwise. • A 15% Increase in the moment capacity has been added to account for repetitive member usage. • Applicable calculations are based on NDS. ': �drin4 �Sl�t� ">�ati9 C4.'+;'NR43(IiE61 y �:e "^`ed°��?�t _w`s„ ea. '" e.e a �d4s! JfA�11fia1@= S4�fld g� „ HO�XC `3driL A€�A40ZfFA o.ed ^. -.-.- 1 - Beveled Plate - DF 3.50" 3.50" 1.50" 409 380 789 Blocking 2 - Beveled Plate - DF 3.50" 3.50" 1.50" 409 380 789 Blocking • Blocking Panels are assumed to carry no loads applied directly above them and the full load is aoolied m the memhr heron ri—i""ea. �. I - Uniform (PSF) 0 to 19' 24" 21.5 20.0 DefauR Load NM Member Length : 19'11/16" System : Roof Member Type Building Use : Residential Building Code : IBC 2015 Design Methodology : Aso Member Pitch : 0.5/12 s .m.�, NIae , a.e'-. �� 5 m �_ WR .m Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criterla and published design values. Weyerhaeuser expressly disclaims any other warranties " related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASfM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.cam/woodproducWdomment-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator F. MWEB Software Operator Job Notes o55s)sss-ssss I o@burkese-mm 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0. 1.5,Daata: V73.2.0 Weyerhaeuser 1`II27Name: 20055 Page 4 / 31 b l F 0 R T E..a CM MEMBER REPORT PASSED 75 ROOF, RB2 f pielce(s) 1 3/4" x 9 1/4" 2.0E Microllam@ LVL 16, All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. )9Ffe19BI11i5 mw=°.,. ee,°,+kUdi°Ca(9hop, Member Reaction (Ibs) ° 718 @ 2" °°°f .,m 2161 (2.25") ,?fego�k,..°e°* °a^.m Passed (29%) LISI?;m -- tip6�t±NlllDitrdlioiPafter!r.°Nc .°°°s ^a°=-= 1.0 D + 1.0 Lr (All Spans) Shear(Ibs) 634 @ V 3/4" 3645 Passed (16%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (Ft-Ibs) 2895 @ 8' 3 1/2" 7002 Passed (41%) 1.25 1.0 D + 1.0 Lr (All Spans) Live Load DeFl. (in) 0.281 @ 8' 3 1/2" 0.542 Passed (L/693) -- 1.0 D + 1.0 Lr (All Spans) Total Load Defl.(in) 0.617 @ 8' 3 1/2" 0.813 Passed (L/316) -- 1.0 D + 1.0 Lr (All Spans) • Deffedion criteria: ILL (U360) and TL (L/240). • Top Edge Bracing (Lu): Top compression edge must be braced at 12' 8" o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 16' 5" o/c based on loads applied, unless detailed otherwise. °3�4 3C Y 6,°.,^.�af1'E#1fiA9'c� w"dS °�`e�•r,PRr•Z'b^° -y qq 1- Stud wall - DF 3.50" 1 2.25" 1.50" 1 395 332 727 11 9 Rim Board 2 - Stud wall - DF 3.50" 1 2.25" 1.50" 1 395 332 727 1 1/4" Rlm Board Kim edam is assumed to carry an roads appneo already move it, oypassing Ire member being designed, 20 ai ,yam ' Hf U� ^aka s �b®is'�fS21i".asY°'�,5�w ,�A+rtRR513� r 0 - Self Weight (PLF) 11/4" to 16' 5 3/4" N/A 4.7 -- 1 - Uniform (PSF) 0 to I6' 7" (Front) 2' 21.5 20.0 Default Load System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authonty having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall pmjed. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -parry certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by 1CC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable A M standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyeraeuser.com/modproducts/documenPlibmry. The product application, input design loads, dimensions and support information have been Provided by Forte WEB Software Operator FOrteWEB Software operator job Notes Zhao 55555 (555) 555-5555 zhao@burkese.com 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 Weyerhaeuser File7Name: 20055 Page 6/31 fill (" 0 R T E CM MEMBER REPORT PASSED 77 ROOF, RB5 1 piece(s) 7" x 11 1/4" 2.0E Parallam@ PSL Overall Length: 15' 7" 15' All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. e...m _"W— .*a seee.e s :k6Cifp['3fsidf�.4h .e.e..eme PTrRva&., e,e. IRgcu16° e,P� ,e Fe::.s a iBliilhitlljfBiMISB.br� a„ePa.e e.e ve Member Reaction (Ibs) 7208 @ 2" 9844 (2.25") Passed (73%) -- 1.0 D + 1.0 Lr (All Spans) Shear (Ibs) 6153 @ 1' 2 3/4" 19031 Passed (32%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (Ft-Ibs) 27258 @ 7' 9 1/2" 44925 Passed (61%) 1.25 1.0 D + 1.0 Lr (All Spans) Live Load DeO. (in) 0.341 @ 79 112" 0.508 Passed (L/537) -- 1.0 D + 1.0 Lr (All Spans) Total Load Defl. (in) 0.727 @ 79 1/2" 0.762 Passed (U252) -- 1.0 D + 1.0 Lr (All Spans) • Deflection criteria: ILL (L/360) and TL (L/240). • Top Edge Bracing (Lu): Top compression edge must be braced at 15' 5" o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 15' 5" a/c based on loads applied, unless detailed otherwise. • Member should be side -loaded from both sides of the member or braced to prevent rotation. a - .. 11Jipiil#S,. " iDe�h sA6H94�i11 : , 1 - Stud wall - DF 3.50" 2.25" 1.65" 3875 342E 7303 1 114" Rim Board 2 - Stud wall - DF 3.50" 2.25" 1.65" 3875 3428 7303 1 1/4" No Board mm aaara is assumeo m carry an macs appnea aneary came, a, m passing me member naing oesigneu. S 5r tis a -ro a L s , ss ae'g :tr"d1`eliffillh elk7ia eli13rT8 a _P,.Pe. vre� & eE Worm { X feZk} A,aainsRs eve 0 - Self Weight PILE) 11/4" to 15' 5 3/4" N/A 24.7 -- 1- Uniform (P5F) 0 to 15' 7" (Front) 22' 21.5 20.0 Default Load System : Roof Member Type : Flush Beam Building Use: Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12 y e Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of retard, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASfM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to w .weyeihaeuser.com/woodpmducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator ForteWEB Software Operator 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 Weyerhaeuser Flame: 20055 Page 8 / 31 lob Notes Zhao 5555 sssss :1 (sss) sss-ssss zhao@burkese.com 2 FQ R i GS ® MEMBER REPORT PASSED 79 ROOF, RB7 1 piece(s) 5 1/4" x 11 1/4" 2.0E Parallam® PSL 1016, All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. �3� ��f.�SR��A ee ee P m.. , Member Reaction (Ibs) a ulcLad7mNtLRtlit9„Et7 ?,e 4162 @ 2" sen ,.e, 7383 (2.25") .lFeorO�.._ ePm PA Passed (56%) J.REv -- sEgajlt �'gmfimeTao{�gElt15� :e vAe ag 1.0 D + 1.0 Lr (All Spans) Shear (Ibs) 3301 @ 1' 2 3/4" 14273 Passed (23%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (Ft-Ibs) 11057 @ 5' 6 1/2" 33694 Passed (33%) 1.25 1.0 D + 1.0 Lr (All Spans) Live Load DeFl. (in) 0.097 @ 5' 6 1/2" 0.358 Passed (L/999+) -- 1.0 D + 1.0 Lr (All Spans) Total Load DeFl. (in) 0.206 @ 5' 6 1/2" 0.538 Passed (L/626) -- 1.0 D + 1.0 Lr (All Spans) • Deflection criteria: LL (L/360) and TL (L/240). • Tap Edge Bracing (Lu): Top compression edge must be braced at 10' 11" o/c based an loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 11" o/c based on loads applied, unless detailed otherwise. -."' e. �w�. rrr�ee '18BiI!'t:4ir�tlAme. s: 5upyfs�s ,ee e,.A�(at� ,�tvaiml�;n�gnie� .vim IX9sY:t�+ie �I avE✓$a 1-Stud wall- DF 3.50" 2.25" 1.50" 2295 1995 4240 1 1/9" Rim Board 2 -Stud wall - DF 3.50" 2.25" 1.50" 2295 1995 9290 1 1/4" Rim Board Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed. a'sUUN a ^¢ °`"A'rfi[lrlia a`'�'99p a �a ¢ iiveuEN L1lt� e� s P{l44 CI: ®'. 0 - Self Weight (PLF) 11/4" to 10' it 3/4" N/A 18.5 -- I - Uniform (PSF) 0 to 11' 1" (Front) 18' 21.5 20.0 Default Load System : Roof Member Type: Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : Aso Member Pitch : 0/12 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values Weyerhaeuser expressly disclaims any other warranties related N the mftware. Use of this software is not intended W circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this saftware. Products manufactured at Weyerhaeuser facilities are third -parry certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable AS FM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to w.vw.weyerhaeuser.com/modpmducts/dacument-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator ForteWEB Saftware Operator 6/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.6, Data: V7.3.2.0 7q Weyerhaeuser Fillgame: 20055 Page 10 131 Job Notes zhao sssss (sss) sss-ssss zhao@burkesemm 4 r o R t GT CM ,. MEMBER REPORT PASSED 81 ROOF, H1 1 piece(s) 6 x 8 Douglas Fir -Larch No. 1 Overall Length: 13' 3" 13, All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. �� LC:Re541t+ ,e P meee Member Reaction (Ibs) ;; ilcFuah�LtlP�„Bd06 1282 @ 0 � „e �ilPuwedy e . S156 (1.50") 3iesd16r e.q a -: Passed (25%) Uf��„,,, -- a e: 'fimatroir, EF3ISkYf3 1.0 D + 1.0 Lr (All Spans) m Shear (Ibs) 902 @ 9" 4208 Passed (21%) 0.90 1.0 D (All Spans) Moment (Ft-Ibs) 3368 @ 6' 7 1/2" 4641 Passed (73%) 0.90 1.0 D (All Spans) Vert Live Load DeFl. (in) 0.090 @ 6' 7 1/2" 0.442 Passed (U999+) -- 1.0 D + 1.0 Lr (All Spans) Vert Total Load DeFl. (in) 0.434 @ 6' 7 1/2" 0.663 Passed (U367) -- 1.0 D + 1.0 IT (All Spans) Let Member Reaction (Ibs) 711 @ 13' 3" N/A Passed (N/A) 1.60 1.0 D + 0.6 W Lat Shear (Ibs) 648 @ 7" 7480 Passed (9%) 1.60 1.0 D + 0.6 W Lat Moment (Ft-Ibs) 2355 @ mid -span 6051 Passed (39%) 1.60 1.0 D + 0.6 W Lat DeFlection (in) 0.313 @mid -span 1.325 Passed (U508) -- 1.0 D + 0.6 W Bi-Axial Bending 0.81 1.00 Passed (81%) 1.60 1.0 D + 0.6 W Deflection criteria: LL (1-1360) and TL (L/240). Lateral collection antera: Wind (L/120) Applicable calculations are based on Nos. 00pp�v.,e,:ee �sr n .m.E� TEGgl¢p,,1e4W..,..e.ea„ail R!%pf`�IW sc#?e,.s,:1Q&as 5 e`.e.Awe .......Mb 1-Tnmmer-DF 1.50" 1.50" 1 1.50" 1 1017 265 1282 None 2- Trimmer -DF 1.50" 1.50" 1 1.50" 1 1017 265 1282 None System : Wall Member Type : Header Building Use: Residential Building Code : IBC 2015 Design Methodology: Aso So! $(IpPbPFffi"".P.A . 3 ." p1mq ae . `.GbStd714C.m5rr T¢e/d98ldr e� (,eSOYiLS" ...... . .".. .. n -eft 2% Douglas Fir -Larch Nails lad x 3" Box (End) 8 light I 2% IDouglas Fir -Larch Nails I10d x 3" Box (End) 1 8 s a 1i88tl .I,$ �ic�illsSrls w.v,e, e,4pfiP.�9!4���} �t1)rPkt}'llliatlt� (O. a (tLarle'snp41'C°$} 4:4P!erlgdt& 0 - Self Weight (PLF) 0 to 13' 3" N/A 10.9 -- 1- Uniform (PSF) 0 to 13' 3" 2' 21.5 20.0 Default Load 2 - Uniform (PLF) 0 to 13' 3" N/A 100.0 - WALLABOVE 1 - Uniform (PSF) I Full Length 1 5' 6" 1 32.5 • ASCE/SEI 7 Sec. 30.4: Exposure Category (C), Mean Roof Height (33'), Topographic Factor (1.0), Wii determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Defection checks are performed using 42% of this lateral wind load. ForteWEB software Operator 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 g] Weyerhaeuser FIiE Name: 20066 Page 12 / 31 Job Notes Zhao 5555 (555) ss (Sss) burke zhaa@budcese.com a F V R T Ek CM MEMBER REPORT PASSED 83 ROOF, H2 1 piece(s) 6 x 6 Douglas Fir -Larch No. 1 0 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. ,101 d...� ....P.e, , Member Reaction (Ibs) , m4d3aap, ...�.....e 643 @ 0 5156 (1.50") ple Passed (12%) Ltd.. -- mkrPerm ...e....s 1.0 D + 1.0 Lr (All Spans) Shear (Ibs) 421 @ 7" 3086 Passed (14%) 0.90 1.0 D (All Spans) Moment (Ft-Ibs) 858 @ 3' 4 1/2" 2496 Passed (34%) 0.90 1.0 D (All Spans) Vert Live Load DeO. (in) 0.015 @ 3' 4 1/2" 0.225 Passed (L/999+) -- 1.0 D + 1.0 Lr (All Spans) Vert Total Load Dell. (in) 0.073 @ T 4 1/2" 0.313 Passed (U999+) -- 1.0 D + 1.0 Lr (All Spans) Lat Member Reaction (Ibs) 379 @ 6' 9" N/A Passed (N/A) 1.60 1.0 D + 0.6 W Let Shear(lbs) 313 @ 7" 5485 Passed (6%) 1.60 1.0 D + 0.6 W Lat Moment (Ft-Ibs) 639 @ mid -span 4437 Passed (14%) 1.60 1.0 D + 0.6 W Lot Deflection (in) 0.030 @ mid -span 0.675 Passed (U999+) -- 1.0 D + 0.6 W Bi-Axial Bending 0.34 1.00 Passed (34%) 1.60 1.0 D + 0.45 W + 0.75 L + 0.75 Lr • Deflection criteria: LL (4/360) and TL (L5/16"). • Lateral deflection criteria: Wind (IJ320) • Applicable calculations are based on NDS. • This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation. deg i�ettp[ 7"e ra�s9k � ` e NO ... 1�'. aeR � e e -- Wf1®.a--:. .., �tliJ v e.L. �iL 4`3 "'AMMLi m.e.e... ee__. dOiBi .eee e .2� e.....- S se es 1-Trimmer-OF 1.50" 1.50" 1.50" 508 135 643 1 None 2-Trimmer-of 1.50" 1.50" 1.50" 50B 135 643 1 None System: Wall Member Type : Reader Building Use : Residential Building Code : IBC 2015 Design Methodology : ASB :VdBFF36a'eFipa3 7iiBil�ttpfM1lldAY1F �� {pprJ'§fi>�%%"3�Y}- mm,m e,e,.4h1t0.' a .v v.v. ,p�z,�eW e. 0 - Self Weight (PLF) 0 to 6' 9" N/A 7.7 -- 1 - Uniform (PSF) 0 to 6' 9" 2' 21.5 20.0 Default Load 2 - Uniform (PLF) 0 to 6' 9" N/A 100.0 - WALL ABOVE 1 - Uniform (PSF) • ASCE/SEI 7 Sec. 30.4: Exposi determined using full member • IBC Table 1604.3, footnote f: Full Length 1 5' 6"1 34.0 checks are performed using 42 % of this lateral wind load. Porte WEB software operator Jab Notes zhao 55555 (555) 555-5555 zhao@burkese.com 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 Fil#Aame: 20055 Weyerhaeuser Page 14 / 31 I F V R I Ea M) MEMBER REPORT PASSED 85 ROOF, RB10 1 piece(s) 4 x 12 Douglas Fir -Larch No. 1 Overall Length: 6' 7" 0 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. ��'JS.fStC. �.-e=*.P Member Reaction (Ibs) Jtciue4;?'2*dtbpE`° 1024 @ 2" dliLnwedvq 4922 (2.25") •a2sdaC, =d Passed (21%) Cfili�sapBJdii9^v.tfeom).= -- ,-:�__°. 1.0 D + 1.0 Lr (All Spans) Shear(Ibs) 663 @ V 2 3/4" 5906 Passed (11%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (Ft-Ibs) 1568 @ 3' 3 1/2" 8459 Passed (19%) 1.25 1.0 D + 1.0 Lr (All Spans) Live Load DeFl. (in) 0.007 @ 3' 3 1/2" 0.208 Passed (L/999+) -- 1.6 D + 1.0 Lr (All Spans) Total Load DeFl. (in) 0.016 @ T 3 1/2" 0,313 Passed (L/999+) -- 1.0 D + 1.0 Lr (All Spans) • Deflection criteria: LL (L/360) and TL (L/240). • Top Edge Bracing (Ld): Top compression edge must be braced at 6' 5" o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 5" o/c based on loads applied, unless detailed otherwise. • Applicable calculations are based an NDS. ,l ` "� s 4.. rara:g1Elt 'tdAtda4PRRltrt�lld4i "'°' s m � Su�{tpotks P e.ee.e e. mA.°a S A '9btei xwalra�r� we..ee.va e ; ��ae%d _ tP+naa �nsu4fta>B� e 4 aPa141 �ocesast�€x i ,...vee es- evee.e 1- Stud wall - DF 3.50" 2.25" 1.50" 563 494 1057 1 1/4" Rim Board 2-Stud wall- DF 3.50" 2.25" 1.50" 563 494 1057 1 1/4" Rim Board Run Board is assumed to carry all loads applied directly above it, bypassing the member being designed. e (epm t�k�ta� {vla� 'Ss ; p�pu rx4)emm Bx « ram. 0 - Self Weight (PLF) 1 114" to 6' 5 3/4" N/A 10.0 -- 1- Uniform (PSF) 0 to 6' P' (Front) 7' 6" 21.5 20.0 Default Load System : Roof Member Type: Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12 aeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design attend and published design values. Weyerhaeuser expressly disclaims any other warranties to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder ar framer is Bible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by Phis software. Products manufactured at aeuser facilities are third -parry certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 tested in accordance with applicable ASrM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to input design loads, dimensions and support information have been provided by ForteWEB Software ForteWEB software Operator Job Notes 2hao 55555 (555)555-5555 zhao@burkese.com 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5,{tData: V7.3.2.0 Weyerhaeuser Fil#Aame: 20055 Page 16 / 31 P111141 wBB ROOF, RB12 1 piece(s) 4 x 12 Douglas Fir -Larch No. 1 6" All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. 9 Member Reaction (Ibs) 1074 @ 2" ------- --tl>FdR{5. ., 4922 (2.25") e,:,,ua, eA.,;. Passed (22%) L'tlps`" ....roe -- Lffii Se 9e4,r!n!!!r([j FrA3 ...m.em�. .e °:• a. 1.0 D + 1.0 Lr (All Spans) Shear(Ibs) 973 @ V 2 3/4" 5906 Passed (16%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (Ft-Ibs) 6344 @ 12' 1/2" 8459 Passed (75%) 1.25 1.0 D + 1.0 Lr (All Spans) Live Load DeFl. (in) 0.406 @ 12' 1/2" 0.792 Passed (L/703) -- 1.0 D + 1.0 Lr (All Spans) Total Load DeFl. (in) 0.912 @ 12' 1/2" 1.188 Passed (L/312) -- 1.0 D + 1.0 Lr (All Spans) • Deflection criteria: ILL (U360) and TL (U240). • Top Edge Bracing (Lu): Top compression edge must be braced at 23' 11" o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 23' 11" a/c based on loads applied, unless detailed otherwise. • Applicable calculations are based on NDS. i -Stud wall - DF 3.50" 2.25" 1.50" 601 482 1083 11/4" Rim Board 2-Stud wall-DF 3.50" 2.25" 1.50" 601 962 1 1083 1 1/4" Rim Board • Rim Board is assumed W carry all loads applied directly above it, bypassing the member being designed. 37er-- tot S Tngi t ( inen l fe e.,a ee =Ya m,& _f�dam]n.e �`e.e.e.e, 0 - Self Weight (PLF) 11/4" to 23' 11 3/4" N/A 10.0 -- 1- Uniform (PSF) 0 to 24' 1" (Front) 2' 20.0 20.0 Default Load System : Roof Member Type :Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12 qay .r. S o"o-N ee e.„, °a, a.-=Y.... ... A..e. ,....A .e:e s........ ..._mL Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authoni having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodpmducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator ForteWEB Software Operator Job Notes Zhao 55555 (555)555-5555 zhao@budrese.com 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 Weyerhaeuser FiName: 20055 Page 18 / 31 r#ji WEB Upper Floor, D]S 1 piece(s) 2 x 8 Douglas Fir -Larch No. 1 @ 16" OC Overall Length: 9' 7" 0 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. ; �Ig/kliHS9l��it, ewep ee Member Reaction (Ibs) ..... a art'mdf7r 283 @ 2 1/2' -,Allnwi.�e 2109 (2.25") "-XusulE`vge, Aem Passed (13%) &9P -- ,yr 'ffE.�"emirma„6,tat%F�t Bra `. 1.0 D + 1.0 L (All Spans) Shear (Ibs) 181 @ 10 3/4" 1305 Passed (14%) 1.00 1.0 D + 1.0 L(AII Spans) Moment (Ft-Ibs) 281 @ 2' 3 1/2" 1511 Passed (19%) 1.00 1.0 D + 1.0 L (All Spans) Live Load DeO.(in) 0.007 @ 2' 3 1/2" 0.104 Passed (U999+) -- 1.0 D + 1.0 L (All Spans) Total Load Defl. (in) 0.011 @ 2'3 1/2" 0.206 Passed (L/999+) -- 1.0 D + 1.0 L(AIl Spans) T)-Pro'" Rating N/A N/A N/A -- N/A • Deflection criteria: LL (U480) and TL (U240). • Top Edge Bracing (Lu): Top compression edge must be braced at 4' S' o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 5" o/c based on loads applied, unless detailed otherwise. • A 15 % increase in the moment capacity has been added to account for repetitive member usage. • Applicable calculations are based on NDS. • No composite action between deck and joist was considered in analysis. uppt?ris 1iii l I a se�sa J$ a .-..."."s 1 - Stud wall - DF 3.50" 2.25" 1.50" 113 183 296 1 1/4" Rim Board 2 -Stud wall - DF 3.50" 1 2.25" 1.50" 113 183 296 11/4" Rim Board • Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed. 1 - Uniform (PSF) 0 to 4' 7" 1 16" 37.0 60.0 Default Load 89 PASSED System : Floor Member Type : luist Building Use : Residential Building Code : IBC 2015 Design Methodology : Aso Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -parry certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable A M standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to input design loads, dimensions and support information have been provided by FartaWEB Software Operator ForteP/EB software operator Job Notes Zhao 55555 (555) 555-5555 zhao@burkese.cam 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 Weyerhacuser FiAame: 20055 Page 20 / 31 1 T V R T Eg CM MEMBER REPORT PASSED 91 Upper Floor, F72 1 piece(s) 11 7/8" T1I@ 210 @ 16" OC Overall Length: 177" b 1 t' L o a All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. .. � 1°(R411�$ e_ A_,s'_s Member Reaction (Ibs) �aa d>lnee, 776 @ 2 1/2" traroab�. 1134 (2.25") =. env.e.as".1 Passed (68%) 1.00 arnbmakdFr,Y 9ai�e.,wa..,ee aa.-: 1.0 D + 1.0 L (All Spans) Shear (Ibs) 759 @ 3 1/2" 1655 Passed (46%) 1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-Ibs) 3291 @ 8' 9 1/2" 3795 Passed (87%) 1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in) 0.381 @ 8'9 1/2" 0.429 Passed (11/541) -- 1.0 D + 1.0 L(All Spans) Total Load Defl. (in) 0.510 @ 8' 9 1/2" 0.858 Passed (1-1404) -- 1.0 D + 1.0 L (All Spans) TJ-Pro'" Rating 42 30 Passed -- -- • Deflection criteria: ILL (U480) and TL (L/240). • Top Edge Bracing (Lu): Top compression edge must be braced at 3' 11"o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 17' 5" o/c based on loads applied, unless detalled otherwise. • A structural analysis of the deck has not been performed • Collection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge'" Panel (24" Span Rating) that is glued and nailed down. • Additional considerations for the T3-Pro'" Rating include: None. R ` '8a aa3"2s t4�7JfRRR(IB , s pppgFi srxt eyme�dL,e �dP� .,.:q fee a a6 _8­ 0... I -Stud wall - or 3.50" 2.25" 1 1.75" 199 586 785 1 1/4" Rim Board 2 - Stud wall - DF 3.50" 2.25" 1.75" 199 586 785 1 1/4" Rim Board Rom board Is assumed to carry all loads applied directly above it, bypassing the member being designed. e m a ^a a €c DY7 �Id@FII)MP e c gs g i 1- Uniform (PSF) 0 to 17'7' 16" 17.0 50.0 Default Load System : Floor Member Type : loist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD sscs - 5 r `�5ot.pe, ,1. . e a.....'s"INg- 13 .....,. -. vv.. �...., A.� ._m...E,..."a Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blacking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -parry certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to mw.weyerhaeuser.com/woodproduM/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Forte WEB Software Operator lob Notes Zhim 55555 (555) 555-5555 zhao@burkese.com 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5,gqD�a1ta: V7.3.2.0 Weyerhaeuser FiIE (game: 20055 Page 22 / 31 MEMBER REPORT Upper Floor, 2FB1 1 piece(s) 5 1/4" x 7" 1.8E Parallam® PSL All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. e ' iifaM+ea"e s k@�t7t `s.e e.e .e: L4T€, 3Aaae FnFp6ai8ifnn,`�.?.Atgerni Member Reaction (Ibs) 3660 @ 2' 7809 (3 50') a Passed (47%) wee � , e e.s..°:°: 11.0 D + 1.0 L (All Spans) Shear(lbs) 2745 @ 10 1/2" 5635 Passed (49-/o) 1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-Ibs) 5810 @ 3' 6" 9483 Passed (61%) 1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in) 0.132 @ 3' 6" 0.224 Passed (L/606) -- 1.0 D + 1.0 L (All Spans) Total Load Defl. (in) 0.192 @ 3'6" 0.333 Passed (L/416) -- I.0 D + 1.0 L (All Spans) • Deflection criteria: LL (I /36m and n n nam • Top Edge Bracing (Lu): Top compression edge must be braced at 7- 0/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compressian edge must be braced at 7' o/c based on loads applied, unless detailed otherwise. Pining f`MFfe..rse'e ry.. ^.a 7 +n•P[Ma....�e �,�r.,,, .. � 1 i -SNd wall -SPF 3.50" 3.50" 1 " 1148 2512 3660 Blocking ! - Stud wall - SPF 3.50" 3.50" 1.64" 114R 2512 3660 Blacking Blocking Panels are assumed to carry no loads applied direNy above them and the full load is applied N the member being designed. . 1'mke k �d^jY" a Y B dy„ iti 'K. AIN gy: A rCa�a .e �aaaul��aw�r v ma =e �.. -Self Weight (PLF) 0 to T N/A 11.5 -- - Uniform (PLF) 0 N 7' (Top) N/A 316.5 7ll.8 Linked from: F13, Support 1 93 ASSED System : Floor Member Type : Drop Beam Building Use : Residential Building Cade: IBC 2015 Design Methodology : Aso :: ' R "L L:a e3 ve. vae w .ev Weyerhaeuser warrants that the swing of its products will be m accordance with Weyerhaeuser produd design criteria and published design values. Weyerhaeuser expressly disclaims any other warannes related to the softwareUse of this software is not intended to circumvent the need for a design professional as determined by the authority hag jurisdiction. The designer of record, builder or flamer is responsible to assure that this calculation is compatible with the overall project. Acressones (Rim Board, Blacking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry. standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASI M standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.cam/woodpmduR /document -library. The product application, Input design loads, dimensions and support information have been provided by ForteWEB software Operator Sob Notes =Opo-lo,r 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5,gDaata: V7.3.2.0 Weyerhaeuser FIIEName: 20055 Page 24 / 31 :1 F©R ! E CM MEMBER REPORT PASSED 95 Main Floor, 1FB1 1 piece(s) 5 1/4" x 11 7/8" 2.0E Parallam® PSL Overall Length: 9' 11' All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. ee, Member Reaction (Ibs) a i1fF4AF 54� kin e. 8613 @ 9' 7" A ee 31Vdv ed e.tl€Y 18047 (5.50") l.� m,e e.e Passed (48%) ktJ7 vvv.m". -- 2uad $vmpB:tP6l1N 1.0 D + 1.0 L (All Spans) Shear(lbs) 7141 @ 8' 5 5/8" 12053 Passed (59%) 1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-Ibs) 18030 @ 5' 8 5/16" 29854 Passed (60%) 1.00 1.0 D + 1.0 L (All Spans) Live Load DeFl. (in) 0.154 @ 5' 15/16" 0.308 Passed (L/720) -- 1.0 D + 1.0 L (All Spans) Total Load DeFl. (in) 0.223 @ 5' 15/16" 0.463 Passed (L/497) -- 1.0 D + 1.0 L (All Spans) • Deflection criteria: LL (L/360) and TL (L/240). • Top Edge Bracing (Lu): Top compression edge must be braced at 9' 11" o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 9' 11" o/c based on loads applied, unless detailed otherwise. 63 `F+'4^••B�.pTY."gP,-q"®I�q'.��.Sq E :RTC�'A.fY YTBCtl5F 4's'ry^*�� Bd.� `.e y €� 5 a. pp�1P48 P..`s..: e.ve a m... k q�t d6W W We .'AfF)15u �SCBa m e iMFP6e ..'��rlrf' 1 - Column - SEE 5.50" 1 5.50" 2.18" 2208 1 4936 7194 Blocking 2- Column -5PF 5.50" 1 5.50" 2.63" 2672 1 5942 8614 Blocking Blocking Panels are assumed to carry no loads applied dme:Jy above them and the full load is applied to the member being designed. ee ` ¢%r�� jai 0" �?.9 s s6 eraFi d�3 Laauen kill ppga ree.e.'.,: ve.ve.m e erai� e e.e4lmo 0 - Self Weight (FILE) 0 to 9' 11" N/A 19.5 -- 1- Uniform (PSF) 0 to 9' 11" (Front) 3' 17.0 50.0 Default Load 2 - Uniform (PLF) 0 to 9' 7" (Front) N/A 316.5 717.8 Linked from: F33, Support 1 3 - Paint (lb) 7' 3" (Front) N/A 1148 2512 Linked from: 2FB1, Support 2 System : Floor Member Type :Drop Beam Building Use : Residendal Building Code : IBC 2015 Design Methodology : ASD '�W@Y@F�taB{1SG8T°Nete£ €v s Weyerhaeuser warrants that the sizing of Its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of retard, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/modpmducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator ForteWEB software Operator Job Notes Zhao 55555 (555)555-5555 zhao@burkese.com 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0. 1.5,gDrata: V73.2.0 FIlA9Name: 20055 Weyerhaeuser Page 26 / 31 F1116 ' WEB 0 Main Floor, H3 1 piece(s) 4 x 12 Douglas Fir -Larch No. 1 31 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. Mao89i1�L4 „, :.. Member Reaction (Ibs) _, e 2 Tre�lydr6, , 1447 @ 4" illVawed e., 9297 (4.25") m e... :s ._e„m Passed (16%) Ltd -- e443a ombwatmfi jPaSKaltp4 '.^ ....es. _"..r 1.0 D + 1.0 L (All Spans) Shear (Ibs) 439 @ 1'4 3/4" 4725 Passed (9%) 1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-Ibs) 1030 @ V 11 1/2" 6768 Passed (15%) 1.00 1.0 D + 1.0 L (All Spans) Live Load Dell. (in) 0.002 @ 1' 11 1/2" 0.081 Passed (L/999+) -- 1.6 D + 1.0 L (All Spans) Total Load DeO. (in) 0.003 @ V 11 1/2" 0.162 Passed (L/999+) -- 1.0 D + 1.0 L (All Spans) rena: a t4vau/ ana i L IV Zsut. Top Edge Bracing (Lu): Top compression edge must be braced at 3' 9" o/c based on loads applied, unless detailed otherwise. Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 9" o/c based on loads applied, unless detailed otherwise. Applicable calculations are based on NDS. x s eNND �§-: �nE14'frRMJITr. s.R@oSgppti(fi;(tlr4� '� :: p vA a s._ e e e e ee e,a "pt.e... " )4atlait$tY Dllt F4ec i#P& 1.,,ck�drx, nm Q01ee! 1 - Column - DF 5.50" 4.25" 1.50" 401 1126 1527 11 114" Rim Board 2- Column -DF 5.50" 4.25" 1.50" 401 1126 1527 1 1/4" Rim Board Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed I" System : Floor Member Type : Flush Beam Building Use: Residential Building Code: IBC 2015 Design Methodology : ASD Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compadble with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASFM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuseccom/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator ForteWEB software Operator 5/21/20209:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V73.2.0 gZ Weyerhaeuser FiAame: 20055 Page 28 / 31 Job Notes Zhao 55555 (555) 555-5555 2hao@budcesecom �i Main Floor, 1FB13 1 plece(s) 3 1/2" x 11 718" 2.0E Parallam@ PSL 15, All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. ° S9 Q8"611 'e ^e.v.a.ar Member Reaction (Ibs) •_ d19Yoe7 6k 6tb�l..se 2236 @ 4" a /119lR4e Pmw 12031 (5.50") e...... eve,ees .. Passed (19%) ...;iaa"&1:2mL(tidltdtx -- D`d1Ee]mje.ee�,. ,e. 1.0 D + 1.0 L (All Spans) Shear (Ibs) 1829 @ V 5 3/8" 8035 Passed (23%) 1.00 1.0 D + 1.0 L(AII Spans) Moment (Ft-Ibs) 8168 @ 7' 11 1/2" 19902 Passed (41%) 1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in) 0.265 @ 7' 11 1/2" 0.508 Passed (L/690) -- 1.0 D + 1.0 L (All Spans) Total Load Defl. (in) 0.373 @ 7' 111/2" 0.762 Passed (L/491) -- 1.0 D + 1.0 L (All Spans) • Deflection critena: LL (L/360) and TL (L/240). • Top Edge Bracing (Lu): Top compression edge must be braced at 15' 11" o/c based on loads applied, unless detailed otherwise. • Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 15' 11" a/c based on loads applied, unless detailed otherwise. s v kS�4'+i'E1PPP!'I `e a s N�,. ,. �Alj?[)�i °i deas:_� -`Ia�.m tilE;e 'J�(,'pfl��`e,P6i�sa5l Ifipe 7]d! TOigl; s add�snaH� � a T,; 1 - Column - SPF 5.50" 5.50" 1.50" 644 1592 2236 Blocking 2- Column -SPF 5.50" 5.50" 1.50" 644 1592 2236 Blocking Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. e A ks `E "5 ea9i2eaa Qp '°4{ a `RE`5l%lt,„f!'2�9� m.m see...LLeNe.. SEIY•eWL+CdEi e9��^Fa e9� m.e.e SdIYSN .. .e.e.e.. 656 ^tl: s 0 - Self Weight (PLF) 0 to 15' 11" N/A 13.0 -- 1- Uniform (PSF) 0to 15'11"crop) 4' 17.0 50.0 Default Load System : Floor Member Type: Drop Beam Building Use : Residential Building Code : RIC 2015 Design Methodology: Aso .�. ..., eato.4ieS.m... v� �...-�P.: e..P�.eev .»AA_ma.Am a..ee d..e���°Avea�, Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended W circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third -parry certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodpmducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator ForteWEB Software Operator Job Notes Zhao 55555 (555) 555-5555 zhao@burkese.com 5/21/2020 9:09:16 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 Weyerhaeuser Fil2�f�ame: 20055 Page 30 / 31 701 );i.. N1 "N2 Loads: LC 6, D+RLL Burke Structural Engineers.. SK - 1 TJB RB3 RB3 LOAD RB3.r2d 101 103 Company Burke Structural Engineers P.C. Designer TJB Job Number Checked By_ n!aran=ra^>,=x Model Name RB3 Joint Coordinates and Temperatures Hot Rolled Steel Design Parameters Label Sha a Len th ft Lb-0ut ft tb-in ft Lcom t ft Lcom bot ft L-tor u... K-out K-in Cb Function 1 RB3 W8X15 26.75 i Lb out I Lateral Joint Loads and Enforced Displacements (BLC 1 : DEAD) Joint Label L,D,M Direction Ma niWde k,k-ft in,rad , k*02/f... N1 L Y 1.1 Joint Loads and Enforced Displacements (BLC 2 : LIVE ROOF) Joint Label .,., L,D,M _Direction Ma niWde k k-ft in,rad k*s^2/f... 1 N1 L Y 8 Member Point Loads Member Label Direction _ Magnitude[k k-ft] Locationf t No Data to Print . Member Distributed Loads (BLC 1: DEAD) Member Label Direction Start Ma nitudetk/ft,... End Ma nitude k/ft F... Start LocatEnd Location ft,% 1 RB3 Y -.043 -.043 0ion R,% 0 Member Distributed Loads (BLC 2 : LIVE ROOF) Member Label Direction Start Magrefk/R ... End Me nitude k/ft,F..Start Location ft% ft End Location °/ 1 i RB. 3 Y i 04 -.04 0 I 0_ 1 Basic Load Cases Load Combinations Description 5... P... S... B... Fa... B... Fa... B... Fa... B... Fa... B... Fa... B... Fa... B... Fa... B... Fa... B... Fa... B... Fa 1 -- 1AD Y Y1 DL1.41 —I 2 • 1.2D+1:6L+U:5RLL : Y " - D 1.2 LL,'C_6 R•, ;S 3 1.2D+0.5L+1.6RLL e5, Y DL 1.2'LL! .5 R... 1.61 4. f]+L '• 5 D+0.75L+0.75RLL Yes.Y Yea, Y .°-Cl DIL 1 iL 1'.�. LL'.75 t R .75 j E.�� IR RISA-2D Version 18.0.0 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\RB3.r2dj Page 2 103 105 Company Burke Structural Engineers P.C. Designer TJB Job Number Checked By a.meets, rsxex:::)Ifll.,Y Model Name RB3 Envelope Member Section Stresses Member Section Deflections Service LC _ Member Label Sec x finl v finl (n) Uy' Ratio No Data to Print ... Beam Deflections Envelope A/SC 15th(360-16): LRFD Steel Code Checks _ Member Shape Code Ch... Loc[ft] LC Shear C... Locft LC phi-Pnc fkl phi'Pnt rkl_phi"Mn k-ft Cb E n 1 RB3 W8X15 .5894.737 3 1 .054 4.458 3'L 7.476 199.8 22.051 z- H1-1b RISA-21D Version 18.0.0 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\RB3.r2q Page 4 105 107 Company Burke Structural Engineers P.C. Designer TJB Job Number Checked By Model Name RB9 (Globan Model Settings Hot Rolled Steel Properties Label Elksi] G ksi Nu Therm \1E5F I k Den!;/ft^3] Yield[ksi] 1 A36 Gr36 92 000 11154 3 .3.: 65 49 36 A572 faf, i1 ° 2900Q� Z. - 65� 49.. ,` 50 .,: 3 A992 29000 11154 3 .65 49 I 50 4. { A500 Grp E nil 290°. 11154` 3 •• ".85< 52 7 —z, , 5 A500 Gr.B Rect 29000 11154 .3 .65 .527 46 6. ,,,..� ,4r.t� ., °.''"' ` 290W , e- 1 154 . .` ° 3 ,.65: ,. =.49 A1085 29000 11154 .3 65 .49 i 50 Hot Rolled Steel Section Sets Label Sha e T e Desi n List Material Design Rules Ain 1 90,270 L.l 0,180 in4 1 SB1 W10X39 Beam None A992 Typical 115 45 209 RISA-21D Version 18.0.0 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\RB9.r2d] 109 Company Burke Structural Engineers P.C. Designer TJB Job Number Checked By._ Model Name RB9 Joint Reactions (By Combination) Envelope Joint Reactions Joint X Ik1 LC v Ik1 I C Mnmonf rtr_kl I r] 1 N2 max 7 12.776 3 0 �1 7 2 3 °', N1 mint max -0 0 7 12.776 3 0 7 4 1 min 0- Ic 7 0 1` 5 Totals max 0 7 25.553 3 l- Envelope Maximum Member Section Forces RISA-2D Version 18.0.0 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\RB9.r2dj Page 3 109 111 Loads: LC 4, D+0.75L+0.75RLL Envelope Oniv Solution SK-1 20055 UPPER FLOOR PLANTER upper planter.r3d Company Designer 113 Job Number Checked By: Model Name 20055 (Global) Model Settings, Continued Hot Rolled Steel Properties 1.1 111 Joint Coordinates and Temperatures 24.5 75 RISA-31D Version 17.0.4 [S:\...\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\upper planter.r3d] 113 Page 2 Company Designer 115 Job Number Checked By: Model Name 20055 Basic Load Cases (Continued) BLC Descrintinn CahMnnni X r.ro,Ahi V ('ro,Ahi 7 r,,Ahi Wa f o,.i.a 5 6` DL MAIN FLOOR LL,MAIN FLOOR ` l- LL 1 7 ELX . EL 2 8 irt1 " Load Combinations Envelope Joint Reactions Envelope Maximum Member Section Forces RISA-31D Version 17.0.4 [S:\...\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\upper planter.r3d] 115 Page 4 Company Designer 117 IIIRISAJob Number Checked By: ,•;,;,,;;.:„,K.,,:,,,.,;;., Model Name 20055 Envelope Member Section Stresses (Continued) Beam Deflections RISA-31D Version 17.0.4 [S:\...\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\upper planter.r3d] 117 Page 6 { 119 2FB21 39 W,36 FB1 N 38 N35,V33 o rn N41 m m m N N m N N46 2FB4A 2FB4 2F8 8 N45 ,. '2 N3yv82 NI 1..__.-N36- m � N m N m iy m N N N 2FB14 2FB14A N28 19 N24 N25 2FB5A 2FB5 2FB12 'N23 N44 V5 N43 V4 N2! V6 'N m LL m N h142 LL N 2FBBA'. 2FBB N11 N8 : 18 '17 7 N9 O_ n _ m LL LL N12 NNIB LL NN13 N16 N15 N14 Envelope Only Solution 20055 UPPER FLOOR FRAMING SK-1 main.r3d 119 i. -- 121 1FB3 fi4 Nfi2Nfi0 'N65 1FB1 ............... g 5 ___. N65A N . 6 :83 47 m N 34MP.8. '85 N80 C7 n ttl LL 6%A m 1FB10 73 N72 1 FB9 NU- -_-J69 '... , 68N '74 1FB17 :U7 �N78 -N81 N79 ''. FB14 82 N54 IN53 W13A. N75A Envelope Only Solution 20055 LOWER FLOOR FRAMING SK-3 main.r3d 121 123 2Fg4q O ., 2Fg21 ti F0 17 2Fg4 7Fg M � 2Fg5q ti 2FBg,�;O 2Fgs tiF ^5 2Fg1q `l� B14 � `IF ^^ 2Fg rIQ ?Fg12 �01 1Fg1 9 v� . a 1Fg14 1Fg1p n 1FB18 g 1 Envelope Only Solution 20055 UPPER FLOOR AND LOWER FLOOR FRAMING - 3D SK-5 main.60 123 Designer 127 Job Number Checked By: Company Model Name 20055 (Global) Model Setdngs, Continued Seismic Code ASCE 7-16 eistrAioBse�leva#ion "_ =Not Entered jAdd Base Weight? Yes Ct Z .02 Not Entered. -' ' jTZ (sec) Not Entered �(.. t 3 . ,. vi RZ 3 ..75 ,. Ct Exp. Z .75 TL sec 5 5k Cat I or !1- Drift Cat Other bm X 1 lCd X J4 ' R_ho X 1 Hot Rolled Steel Properties Wood Material Properties RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Caics\2020-04-12\main.r3dj 127 Page 2 Company Designer 129 IIIRISAJob Number Checked By: Model Name 20055 Joint Coordinates and Temperatures (Continued) M I7 -25.25 K. IQ N 83 Hot Rolled Steel Design Parameters 91i. 19.75 RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 129 Page 4 Company Designer 131 -IIIRISAJob Number Checked By: Model Name 20055 Joint Loads and Enforced Displacements (BLC 1 DL ROOF) N36 15 Y Joint Loads and Enforced Displacements (BLC 2 : RLL ROOF) JointLoads and Enforced Displacements (BLC 3 : DL UPPER FLOOR) Inintl nh Pl 1 r1 M nirac}inn h4annihvldl4 4-B1 !in ro,h /4*eM/B 4-cA9*01 1 N 11 _ L Y -.3 2, N11 _ L Ye . 3 N44 L Y -1.58 4'" N45 W L' 5 N86 L Y -1.2 7 N1 L Y 0 RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 131 Page 6 Company DeSAsigner 133 Job Number Checked By: Model Name 20055 Member Distributed Loads (BLC 3 : DL UPPER FLOOR) (Continued) Member Distributed Loads (BLC 4 : LL UPPER FLOOR) Member Distributed Loads (BLC 5 : DL MAIN FLOOR) Memher I nhal nirocfinn qfJ AAcnnih Worwff C Cued ft A.....d+..A,I & n- � 1 2.°• ° 3 - 1 FB6 1 �BZ . 1FB8 — �.. Y Y Y ...... ...... �yy n ..."I 34 34 na unuu nl ... -.34 34 mn weal �fl /o 0 0 CII LUla 00 %o 0 0 _ RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 133 Page 8 Company Designer 135 '111RISAJob Number Checked By: Model Name 20055 Load Combinations (Continued) DescriPtion Fa... BLC Fa... B... Fa... B... Fa... B... Fa,,, B F B Fa... B... Fa... B. Fa... B... Fa... 19 Y -1.0-�, '*d"D 40� 72 es 21 S ) -0.7*2.... (1.0+0��.�14Sds)D a S� Y IDL11 �j L)�l 751 7-22 OJOSS s D+O (lk-0-110SOPtP.75:��, esl Y. IDO ' 1 LIL': 15i T' 23 (1.0+0.105Sds)D+0.75...,Yes :Y:: !DL l.l... ELX-1 .... ,2 4A0 fl 14Sds)D+Q;r 5 IYO CY. -'MU-449 LX 1.75 25 (0.6,14Sds)D-07*25E -14Sds)D4 Yes y 11%11.449i -1.75 ELXI IE- 27 (1-0+0.141S, ds)D-0.72.... Yesi Y I DLII-1 T-A i((`l.0+0.105Sds)D+0.75 �Ya` s, 1Y 1 -LIL 29 ... Yesl y;: MIA— LL �.75 ELZ-1.... 30::AQ.&;,14S z)D:fq, IOU,A4 1,n 31 (0.6,14Sds�D70- *2 s Y DO -44 E 1.75 33 DL e s Y DL 1 34 es Y., LLa' i 35 RLL Ye Y RL 1 ff EL l�X 37 EILZ es Y ELZ 1 Envelope Joint Reactions RISA-3D Version 17.0.4 [SAProjects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 13fage 10 -h Designer 137 IRISA Job Number Checked By: Company Model Name 20055 Envelope Maximum Member Section Forces (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 13 fage 12 Company Designer 139 `" Job Number Checked By: a. vn=esrse.x.:ov.a:., Model Name 20055 Envelope Member End Reactions RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 1$ fage 14 Company -h Designer 141 Job Number : Checked By: Model Name 20055 En VP1nnP MPtnhPr End RPacfinns lCnnfinuPdl Member Me... Axialk L Shear LC zShear LC Torouelk-ft C, - Mome... LC z-zMome... LC 11 °02 mm ° A 1.4 ._ .� -1°: 1` 103 J Max; 0 37 0 1 37 0 37 0 37 0 37 0 37 144 -°—min ,, 1 =.32 ` `" 2_.- 105 2FB9 I maxI 0 37 14.813 2 0 37 ! 0 1 37 1 0 37 0 37 - ,. 107 J Imax 0 37 0 36 0 37 .05 31 0 37 : 0 37 108 min 11, . 2 . ..,;. 1.. 0.67< 30-° 0 .., .,1 -,,0,, - • 9 Lei 109 2FB8A I max; 0 37 0 37 0 37 0 37 0 37 ! 0 37 ! 1.10 min . e'. _ -1q2 2 e��Q 1°. D , .s; 1 ° t7._ 1 : `°t1c '`'c c.i; ill J max 0 37 0 37 0 37 1 0 37 0 37 7.415 2 ,12 min 0 , 1 - " `�1 716 2 e °0 �..�', ` °0 , .� 1 : ° 0 . '... .A .'. 35 113 ! 2FB8 I max 0 37 14.625 2 0 37 0 37 0 37 7.432 2 1�14 ( -- mine : i0 1 0 i ', 0 115 ! J !max, 0 37 1 .002 _36 37 0 37 1 0 37 0 37 0 37 16 1 `! A*602; 2 1 1 0: 1 0-� 117 2FB7 I max' 0 37 2.395 3 0 37 0 37 0 37 0 37 man � 1: � 0. : l 36 I Q .,.1 i -0 119 J max 0 37 0 37 0 37 0 37 0 37 0 37 72(? mlrt R 1 _ '2t395 3.'` ' 1,TO 121 2FB6 I Imax 0 37 3.138 3 0 37 .113737 0mil `=.6; 7.s.. e .., 34 Q !. 1;.-=`,:S79 29 123 J Imax 0 37 0 37 0 37 .118 3737 0 37 1:24 °° ' min 0 : = 1 -1,029 i A' : P 1°°-- --579 29 ; 0! 1.� 4 ' T 125 2FB5A I max 0 37 0 37 0 37 0 1 37 0 37 0 37 12 ,• rflin . 1 s , 13, -, 2 1 Q ` 1 . 0;' L `1 0 ! ° `"0 1 127 J max 0 37 0 37 0 37 0 37 0 37 11 21.815 2 1 1,2 I .. . Q 1- t7 1 e -', ,•° 0' - 1 0' 1 0 35 's's 129 1 2FB5 I max 0 37 27.512 28 0 37 0 37 0 37 1 21.798 2 1 °';�TT- .�. A. °.1-` -:936 b�°;,__D`-`=1 01` "1;015:`3ii 131 1 max; 0 37 2.197 36 0 37 0 37 0 37 0 37 132; '. man ;:° i . 1 ! -321671 28. 0 1 3. 133 2FB4A I max' 0 37 0 1 37 0 37 0 37 0 37 0 37 931" min _ A`° 1 =4..8 2 Q °' 1 0° ' '�1 135 J Imax 0 37 0 37 0 37 1 37 25.165 2 136 'min 0 1° _ -5.266 [ 2 Q 1 0 1 0= 1 0---35 i 137 2FB4 I ;max 0 37 25.571 2 0 37 0 37 0 37 25.165 2 138 infra :_ ;�1' 1 :783 36 `p, .1 1 10 1 %0... 35 .1 139 J max 0 37 -2.35 36 0 37 ! 0 37 0 37 0 37 140`nYn - ... .1.... 31�872 ! 28 ° ..Q ... 1 , e 0__. 1. ` ;.0 1 ,0ee.. ,,� 1,. { 141 2FB2 I max 0 37 11.228 21 1 0 37 007 ` 24 0 37 ! 0 37 42 . ,. ,i. 3. . ` min , D 1- -3.242 k 24-. 0 : {j0 . ° 1 O ' 1. °.0 .1. 143 J Imax 0 37 ' 1.567 36 0 37 .007 24 0 37 0 37 4 "� _ ':°min 0 1 „< -10, 2 ! 3 R_a 1 009: 21 Oe 1 0 145 1FB17 I 'max 0 37 7.215 1 29 0 37 0 37 0 37 0 37 146_ min_ - 4 1 197 1_ 0, , 1 0 1% 0 1 147 J max' 0 37 .011 37 0 37 0 37 0 37 0 37 148 rnira°; ' 4 ,. j `1. -2.499° 2-; Q 1 0 1 `i A 1 0 1 149 1FB16 I maw 0 37 197 37 0 37 0 37 0 37 0 37 min. 11 : -7.2181 29: 0 ° 1 151 J max 0 37 0 37 0 1 37 0 37 0 37 0 37 152 ' '�rriin, 0 1 i . 0 ,°F° 1 0. 1 RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 74 fage 16 Company SADesigner 143 Job Number Checked By: f, Model Name 20055 Envelope Member End Reactions (Continued) 37 Member Section Deflections Strength 37 RISA-31D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 14:page 18 Company Designer 145 -IIIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 14fage 20 Company SADesigner 147 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 14fage 22 Company SADesigner 149 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 14fage 24 Company Designer 151 'hIRISAJob Number Checked By:_ Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 15-Page 26 Company SADesigner 153 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 15,fage 28 Company Designer 155 'hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 15?age 30 Company Designer 157 IIIRISAJob Number Checked By: 4 , TK ,."„ly Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 15 fage 32 Company Designer 159 -IIIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 15fage 34 -h ` Company Designer 161 Job Number Checked By: IRIS ,�ar!MrTs^:nFK,nOVPAI- Model Name 20055 Member Section Deflections Strength (Continued) LC Member La¢g Sec x m yjjp]_ z in x Rotate rad U n ' Ratio n Uz Ratio 906"2#1613 t? 742 0 =1.49e 2 �G fG 907 2 1 0 .652 0 1.248e-2 1882 NC 90$ 3..." 13" " -:412 _ Q `"-1,026e-2 : S280 " " N ..": 909 4 0 -.154 0_ -8.041e 3 3840 NC 0 =Q17 "` 0. -5,824e-3 I NCI NC-', 911 10 2FB12 1 0 1 -1.184 0 0 NC NC 0 ... 99T'=, .°. ,0 ` ' ' ...,.0.. 153"1.1'1_,.., 913 3 0 -.768 0 0 1013 NC 9144 . _ ` q f ° ?" NCI- 915 5 1 0 -.16 0 0 NC NC 16.`1b` 2F81,1 `° 1,.;" 0 .423a" q°°"" 1"A41e3 JLLAC N..d. 917 2 0 -.157 0 1.441e 3 172 NC 918° 3= 0 ° .7�1,�, °""I 0 '° "• " 1.44 ,eS - 86" ` �NC:� 919 4 0 -1.325 0 1.441e-3 57 NC 92D-- - •, i s: 0` '. _ ""'1.9t7� ° " �` kA41e.3."'r . 43 i NC 921I 101 2FB10 1 0 281 0 1.009e2 NC NC 22a ` 2, 'Efi:lg9e2 80 NC:: 923 3 0 -.629 0 1 1.009e-2 287 NC 924: _ °" `! 4,"� :° 0:z"„ 807 ..a",, ., 1009." IOu' Nr.`" 1 925 5 0 -.983 0 1.009e-2 142 NC 926 •10°.':� , 2 ;` 1` + `• 0 ° =.24 A , .. " -.106e NC" ,927 1 2 0 -.288 0 1.106e-2 1751 NC 928 j 3 .. ` 0 ° . 's -,2r p° 1.105e 2 [ 1347 NC 929 4 0 -.152 0 1.104e-2 2054 NC 930 _ 5 0 _ `i1 5` 1:1.Q4 "' ° NC __ NO, 931 10 2FB8A 1 0 .338 0 2.692e-4 95 NC tom 933 3 0 .029 0 2692e-4 187 NC 4 q -.13•" 692e4= .` 369 NC.". 935 5 0 -.292 0 2.692e-4 I NC INC 2.692e4 `i` NC"= NC` a 937 2 0 -1.455 0 2.692e 4 372 NC 2.892e 4 '` 259 NC 939 4 0 1354 0 2.692e-4 362 NC 94P; 5 r`! Q ©25` 6 .2'692e4 :.. "1C '' NC" ' 1 941 10 2FB7 1 _0_ -.04 0 -3.662e-3 I NC NC 942" 2 • ° ° ` D " -,496,„ C " NC 943 3 0 948 0 3.662e 3 8195 NC 944" 4.397 -8,"662e,3""; ., NC _i .: NC° 945 5 0 1.841 0 -3.662e-3 NC INC 948 10 - .. 2F&6....: `i F ".,1 , • :'. ` Q ...' . , f .811', . " . "" Q. ,... .$:662e-3 NG:i 947 2 0 1.853 0 3.187e 3 3619 NC 0 949 4 0 -1.8 0 -2 237e-3 4314 NC 950 ` ° _ 5 0 1.748 0 . 1':,762e3 NC '. NC 951 10 2FB5A 1 0 564 0 0 106 NC 952 .°" 2 "q. tl 433•,. " ` ,'` Q _ 0^ 138 NC. 953 3 0 .298 0 0 201 NC 0" " f` ``°'°`(� ,.., °•'`!.0", �': 38B "I• .: NC".. °` 1955 1 5 1 0 0 0 0 NC NC 956°j°10" _ 72FB5 ., 1 , ° `: ° 0 .0°..:.. ° .q °9" °° ( . .NC RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 16fage 36 Company Designer 163 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main. r3d] 76fage 38 -h Designer 165 IRISA Job Number Checked By:Company_ Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main. r3d] 18?age 40 Company -h Designer 167 Job Number Checked By: ,a __c,!1:cc;nrmhY Model Name 20055 Member Section Deflections Strength (Continued) RISA-31E) Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main. r3d] 16-Page 42 Company Designer 169 IIIRISAJob Number Checked By:_ Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 1Btyage 44 Company -h Designer 171 Job Number - Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 17 fage 46 I RI Company Designer 173 °' Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 17,fage 48 Company IIIRISADesigner 175 Job Number Checked By: aseo�;cyix cav�n-hr Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 17 page 50 Company -h Designer 177 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 17-Page 52 Company Designer 179 'hIRISAJob Number Checked By: a vr:>ae, ac!�x *xi+:ice Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 17fage 54 Company IIIRISA Designer Job Number Model Name 20055 Member Section Deflections Strength (Continued) 181 Checked By: RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 18page 56 Company Designer 183 IIIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 18fage 58 Company 'h Designer 185 "- Job Number Checked By: <.=;T.,.r=s:I•.!:.xModel Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 18page 60 'hIRI Company DesiSA gner 187 Job Number Checked By: ..,.........,.___ I%+-,�N, Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 18fage 62 Company Designer 189 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 18!page 64 -h Designer 191 Job Number IRISA Company Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 19 fage 66 Company Designer 193 IRISA Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 19fage 68 Company Designer 195 IIIRISAJob Number Checked By: Model Name : 20055 - e Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 19Page 70 Company Designer 197 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Stren_pth (Continued) .q'. aT'i ti•'� 3:037e5:°°' t1G �2791 17 2FB8 1 0 077 0 3.037e 5 NC NC �2792 0 `" l, -�392" °° __.3037e-5 ( 137$ Nor RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 19-fage 72 Company Designer 199 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 19fage 74 Company Designer 201 Job Number Checked By:_ >r.=xr::=c•se.x c:^ss:sgn:- Model Name 20055 Member Section DeflecSons Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 20'page 76 Company Designer 203 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 20fage 78 Company Designer 205 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) 171 IE 3 NC NC RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj PO§)age 80 Company Designer 207 HIRISAJob Number Checked By: Model Name : 20055 Member Section Deflecdons Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 20-Page 82 Company -h Designer 209 Job Number Checked By:_ Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 20fage 84 Company Designer 211 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 21page 86 Company Designer 213 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] P1fage 88 Company Designer 215 iIIRISAJob Number - Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 21!Fage 90 Company Designer 217 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main. r3d] 21page 92 Company Designer 219 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d1 21 fage 94 Company Designer 221 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 22'iage 96 Company -h fi Designer Job Number .. Model Name 20055 Member Section Deflections Strength (Continued) 223 Checked By: RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main. r3d] 22:Page 98 Company Designer 225 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) 23 421 -.227 -1 no -2.4 NC 51ro' NC NC A RISA-31D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2&ge 100 Company Designer 227 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2¢jage 102 Company Designer 229 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2&ge 104 Company Designer 231 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2fiage 106 Company Designer 233 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2filags 108 Company Designer 235 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2&ge 110 Company Designer 237 hIRISAJob Number Checked By: <: re::=rf:.:-.,cs;Kcor,•:,vr Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2 jjege 112 Company Designer 239 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2f?Pge 114 Company Designer 241 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 241age 116 Company Designer 243 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main. r3d] 2&ge 118 Company Designer 245 IRISA Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&ge 120 Company Designer 247 Number Checked By: hIRISAJob Model Name : 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2&ge 122 Company Designer 249 IRISA Job Number Checked By: ssrrsc.^r<.r,K ,rns�ary Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\2M -4 Geneve - Badvar\Calcs\2020-04-12\ in.r3d] 2&ge 124 Company Designer - 251 hIRISAJob Number Checked By: a hrta?:.re:!?e�2�er>b:aw Model Name 20055 Company Designer 253 HIRISAJob Number Model Name : 20055 Checked By: Member Section DeflecSons Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\2M - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&ge 128 Company Designer 255 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2&9e 130 Company Designer 257 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2fjage 132 Company Designer 259 '' Job Number Checked By: htJaae: a111:.11Y Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&ge 134 Company Designer 261 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&ge 136 Company Designer 263 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&ge 138 Company Designer IRISA Job Number AW-;,„F;K Model Name 20055 Member Section Deflections Strength (Continued) 265 Checked By: RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&ge 140 Company Designer 267 `' Job Number : Model Name : 20055 Checked By: Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2&ge 142 Company Designer 269 IIIRISAJob Number Model Name Checked By:_ 20055 RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2&ge 144 Company Designer 271 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) LC Member Label Sec x in in z m x Rotate r n U ' Ratio n Uf Ratio 6516 ° 33 2F85A ,: `' 0` 366' O 0 6517 1 2 1 0 .279 0 0 215 NC 6519 4 0 .098 0 0 612 NC 6520 ' S q� ➢ ➢ _ _ 0 NC N �6521 33 2FB5 1 1 0 1 0 0 0 NC NC 6522.... °s .. ° ° ,° 2 ; ''.. '6 . ... ° -.63$ ' , _ �0 0` �' 865 N 6523 3 0 -1.042 0 579 NC t➢°0.° ° 765: NGL. , '6525i 5 0 .754 0 0 NC NC 6526 33 .... . °B4A ' 1.. ° _ q .' •' ! 338" 6527 2 0 .258 1 0 0 232 NC '6628 c3.177 ° Cl 0 338 ' N 6529 t 4 0 .092 _ 0 0 654 NC 653➢ 5 0 0 0 •, NC N: • • ' 6531 33 2FB4 1 0 0 0 _ 0 NC NC 6532 . '. 2° ° '0 ° ', 58 1` ` ° ` D . ° 0 6533 3 0 -.959 0 0 713 NC "1°.-°` 0: `�.. . `°939 ' Nr 6535 5 0 908 0 0 NC NC 6536" 33 (;Q.05e 6537 _ 2 0 1.529 0 8.756e 4 635 NC 6538 �. 3 ` ., ➢ ' =i.697 . 6 " -?462e-4 °I 452 NG 6539 4 0 -1.508 _.._.__ 0 -6.167e-4 640 NC� 6540 _ 5 q ;1064 ! 9.873_e'4 NC ! NG 6541: 33 1 FB17 1 0 .02 0 1 0 8756 NC -.053e0'2538-'NC' 6543 3 0 078 0 0 1945 NC fi544 .. 4 6545 5 0 0 0 0 NC NC 6M �°35.' :`° . 1F816 u 0 - ➢2° ;D 0 NC -NG_ 6547 2 1 0 .045 0 0 5461 NC 65461 . 3 Q �''�� Q18', 6549 4 0 122 0 0 998 NC 6550. `5➢ '-.274-, .6 0 48q' -". INC, 6551 33 1FB14 1 0 -.093 0 4.217e-3 3035 NC_ 6552 _ 2 ➢ ='3 0 _ ° 4 217 3 `': �1222° NO 6553 3 0 -.361 0 4.217e-3 897 NC 554 -- .4 '; 0..,.; -247 6555i 5 0 0 0 4.217e-3 NC NC 655 =33 - "1 812�._.°.. .. 1° ? 'i 0. 012i0.c' 031e �}�:'.. NO NC.. °:. 6557 2 0 084 0 1.957e-4 2406 NC fi55B 3 q 135 9 -2.183e 44. 2095 '' NC 6559 4 0 -.171 0 3344 NC 6560 5 2 0 _-2.409e-4 i 2.635e 4 :.NC N i6561 33 1FB11 1 W0, 0 0 0 0 NC .: 1 NC 5622 ° -.00T q . N. 6563 3 0 -.011 0 0 3683 NC 0' St)39 : '. NC 6565 5 0 0 0 0 NC NC 81D J 1 D' -T95_. ", 6 6463e-.5° . NC` NC. ' RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2 flage 146 Company Designer 273 Job Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) L ember Label Sec xJ z iffi x otat ra n U ' Ratio n ' Ratio fl 6619 4 0 .012 0 0 INC NC 662iI 5,. a 0' - ° tl.:' �, ` ' �� fl N� NC 6621 33 M53 1 0 0 0 0 INC NC� 0 0° . 00 NC NC 6623 3 0 0 0 0 NC NC 662A 6625 4 5 0 0 U " 0 0 0 INC NC� �6626 34�_ M47 1 106 6627 2 1 .103 0 0 NC NC 6626 e. 3 ; . -�1 0 6629: 4 .097 0 i 0 0 NC NC 86301.D93 0' '_ D 0 NC 6631 34 M46 ! 1 .271 0 0 0 INC NC 66 °` 1 2, :: °: 27. , , 0°.,` p °' 0 NC _i . NG , 8633 3 27 0 0 0 INC NC 663A a 4• ` , ,.2�9 : '° 0 °', ° �! i . " fl.` NC _ _ NC , , . 6635 5 269 0 0 1 0 NC NC 6637� 226 0 0 10 INC Nd NC 6638 . ° — 3 226 6639 4 .225 0 0 0 NC NC °, -.25 16641i 34 M44 1 019 0 0 0 IN INC 6642 2 019 fl.• 0- NC LNC G , 6643 3 .019 0 0 0 NC IN 66A4,° ° w fl N °-° �6645 5 .018 0 0 0 NC NC 1646 ,:34 ', - M4 1° °- ' ° .0 1. ` b , p 647 2 059 0 0 0 NC _ NC 6°648 ° £ .: a057 0 ',� 4 . 0 6649 4 .056 '„ 0 0 0 NC INC 6651 34 '_ M37 1 .404 0 0 0 INC NC 6652E. 2 ;:.397 ° 0 '!, 0 ` 0 NC NG g6653 3 .389 0 0 0 NC NC Ci654 382 fl°° -° ° �.: fl NC N 6655 5 .374 0 0 0 NC NC 6656 34�' M36 1 6657 2 17 0 0 0 NC NC 66591 4 `� .163 0 0 0 Na NC NC .. INC . ..16 16661 34 M_31 1 .45 0 0 0 NC NC �6662 : ` 444 �I) % b. - 0 �° 0 NC _ NC 6663 3 .438 0 0 0 NC INC 6664 4• i ,° .432 p 0.. 17[-- _ 'NC ` . ° NC 6665 _ 5 426 0 0 0 NC NC 6`66fi'° '3 4:°(', �r130 � '°� _ 16667 2 .454 1 0 1 0 0 NC NC Company Designer 275 HIRISA Job Number Checked By: Model Name : 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2 fpge 150 Company Designer 277 hIRISAJob Number Checked By: Model Name 20055 Member Section DetlecGons Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2 fiege 152 Company Designer 279 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2Aage 154 Company Designer 281 hIRISAJob Number Checked By: Model Name 20055 Member Section Deflections Strength (Continued) LC Member Label ec x rinl v [in]Z101 x Rotate rad 1n] U ' Rati n Uz' Ratio 702 35=� ... °° 2FBSA `.:.°°..1 .° e0 . 62 °,0- 5.885�5:'' :_73.�-. -• I��'::.: 7027 2 0 .042 0 5.885e-5 985 INC 7028 _.._,'. ° ,3°.° 02,: 7029 4 i 0 .002 0 5.885e-5 2955 NC_ 703`0 5 0• -:019. ,.. 0..` ` .5.885e5 j ":NC :: NG` ... 7031 35 2FB8 1 0 019 0 5.885e-5 INC INC 64° {1.5$55 t ° 3074 !, `' ° `NG 033 3 T "_ 0 -.237 0 5.885e-5 - 2024 NC , 34 �7035, .. 4e 0 ` .:' 1'71. 0 .I ,_ .885e 5 i 7i 1} ! 5 0 003 0 5.885e 5 INC NC 2F67 1:,°`, A°. 0°(1"3 0• 3.876e4 !7037 2 0 -.064 0 -3.876e-4 IN INC -038 _=" .;° 3 0. °. 12 a°° ` =,87be4 .°° NC-- 7039, 4 0 -.178 0 -3.876e-4 NC NC 7 0:. 7041 35 2FB6 1 0 -.232 0 -3.876e-4 NC NC 01-1 . -287 "- 1 -3.83e 4 5409 ! N 7043 3 0 .324 w 0 -3.831e-4 ' 4314 NC 7044 ` 4 0°°` ; --5. 9 0 -3.808e 4°_'.. 6750',"' NO:` ° 7045 5 0 -.357 0 -3 786e-4 INC NC 7 35 = 2F� 5A°'." . ° 1 0'- .127 �. °° ° ° 0'° 7047 2 0 096 0 0 627 INC r04$t".` ` ` a < <. ` 941` -1N°` , 7 449 4 l_ 0 .032_ 0 0 1883 INC NC. 7051 35 2FB5 1 0 0 0 0 NC INC 7052°198 0 0 2714 7053 3 1 -.334 0 1 0 1730 NC 0- 7055 5 0 223 0 0 INC NC 7050 35,', _ 2F84A 116= 516: NC�-° 7057 2 1 0 1 .087 1 0 0 687 NC� .0 8 :0 ' 0 1034 7059 _4 0 1 .029 0 0 2060 INC 7060 pNIC... „� 7061 35 2FB4 1 0 0 0 0 NC NC 7062 °° - 2 0 3365 ' 7063 3 0 .293 0 0 2149 INC 7064 °4 ` 0"'_, ,i. -. 3' "'` ( .. 0 0 , -.. ....26$1 7065 5 0 -.251 0 0 NC NC 1" . 357, 786e 4 �IGI Nit 7067 2 0 -.668 0 -3.621e-4 874� � NC�'i 7068 . e %3 0 - 455e 4 7069 4 0 -.649 0 -3 29e-4 878 NC 7070 . `° _ 5 0­", - '° ,323= -3.15e 4 NC?:"e. 7071 35 1 F617 1 1 0 .002 0 0 INC NC [7072 2 0 .604. ° =T77.0 °= NC 7073 3 0 -.005 0 0 INC INC 707 ._' ° 4 ` ` "0 .. 403s 7075i 5 0 0 0 0 NC NC RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2 fage 156 Company Designer 283 IIIRISAJob Number Checked B Model Name 20055 y— Member Section Deflections Strength (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&ge 158 Company Designer 285 Job Number Checked By: Model Name 20055 Member Section Deflections Stren_pth (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badv ar\Calcs\2020-04-1 2\ main. r3d] 2&ge 160 Company Designer 287 Job Number Checked By: Model Name 20055 Member Section Detlecdons Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&ge 162 Company Designer 289 hIRISAJob Number Model Name 20055 Checked By: Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2&ge 164 Company Designer 291 HIRISAJob Number Checked By: Model Name : 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2Aege 166 Company Designer 293 hIRISAJob Number Checked By:_ Model Name 20055 Member Section Deflections Strength (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&ge 168 Company Designer 295 hIRISAJob Number Checked By: a zaa^,,; �_, Model Name 20055 Beam Deflections (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 2&ge 170 Company Designer 297 hIRISAJob Number Checked By: Model Name 20055 Beam Deflections (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main. r3d] 2&ge 172 Company Designer 299 IIIRISAJob Number Checked By: Model Name 20055 Beam Deflections (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 2&9e 174 Company Designer 301 `" Job Number Checked By: Model Name 20055 Beam Deflections (Continued) Company Designer 303 HIRISAJob Number Model Name : 20055 Checked By: Beam Deflections (Continued) Company HIRIS" Designer 305 Job Number Checked By: Model Name : 20055 Beam Deflections (Continued) 2 12 7. .051 RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 3&ge 180 WRISADesignerCompany 307 Job Number : Model Name : 20055 Checked By:_ Beam Deflections (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 3&ge 182 Company Designer 309 IIIRISAJob Number Model Name 20055 Checked By:_ RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Galcs\2020-04-12\main.r3d] 3&ge 184 Company Designer 311 '" Job Number Checked By: Model Name 20055 Beam Deflections (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 3fiage 186 Company Designer 313 Job Number Checked By: Model Name 20055 Beam Deflections (ConSnued) LC Member Label oan Location m UY Ratio 969 3 14.237 1 -.016 2307 9.70 ' 20'. ".1FB18, , 1- S:Dfi4. „ _484 399 . 971 20 1 FB1 1 5.057 -.023 4749 1`i.536, .61 °" i 5069 � 973 21 2FB22 1 11.383 -.342 815 11 914. 21 _ 2FB21 1 6 °" f15 2664 975121 2FB20 1 0 258 1395 ,17�6°"-- 2 . , 1ffi 01 1,1143h9" 977121 2FB19 1 8.805 .048 3558" 979 ' 21 2FB18 1 4.425 -.214 458 9$0 21-NC- 21 ! 2FB16 1 8.125 -.15 1297 982' '21 "' 2F615 „ 1 14.92` -44 983 21 2FB14A T 1 4.58 -.022 4927 9841 21 . 2FS14 1 8.17.° 985 21 2FB13 1 3.711 -.198 862 986` 21 a_. •.2F612, ,°:,: 1 4:499 .' , r:073 133a` 987 21 2FB11 1 3.044 .011 6680 969: 21 1 2FB10 1 i 1.479 0 NC 991 21 2FB9 1 7.219 .102 1845 92 21 ,'; 2FB8A " 1� 993 21 ' 2FB8 1 19.483 1 -1.229 372 994 i 21 i, 2FBZ _ 1 z.625-°` .: - 007 9067 995I 21 2FB6 1 4.813 -.047 2706 997 21 2FB5 1 17.053 -.903 426 99$ . 21 i2i179 , 999 21 2FB4 1 15.625 -.487 738 I,0001 21 2932 '` I`. 1001, 21 1FB17 1 ! 0 .022 800 1602 : 2 _ 7.1 5° _._ _.OD,: 1003 21 1FB16 1 0 249 627 �' 11.7a.. 1005i 21 1 FB14 1 0 032 429 10os ,2 4.$96 ` f1. b ` :. 1007 3 11.75 -.105 1 1366 ' 4 ,. ` T9.828 e;' OIF,. , ,.'. ':. 3826. 1009 5 23.255 -.002 2663 1.010 2b 1011 2 20.25 -.063 1150 1012 21 _ 1 F)38 1 [ " ` 1 4 9 ...028 . 1439 10131 2 4.069 -.008 2896 1014 3 T.459= -,p42!` 1654 1015 21 _ 1 FB7 1 5.15 -.11 1118 341 21.°'. 1FB6�, 1'` 4IT°. 296$ 10171 21 1 FB5 1 9 -.557 1 341 848 ] 10191 21 ! 1 FB4 _ _ 1 9 -.621 305 RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 3 f pge 188 Company Designer 315 Job Number Checked By: Model Name 20055 Beam Deflections (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 3 f�3ge 190 Company Designer 317 Job Number Checked By: Model Name 20055 Beam Deflections (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 313age 192 Company Designer 319 Job Number Checked By: Model Name 20055 Beam Deflections (Continued) LC Member Label Span Location [ftj y, rinln 121Y Ratio 1275 26 i' 1 FB14 1 0 1 .029 484 1276 2, °, .. ° ?i.898 . e NC ° 1277 3 11.75 1 -.095 1515 1278 4 19.628 1279 5 23.255 002 2863 1280 ' 28 1 9. " 1 1A.25 ° _ -.49 :1 438 - 1281 2 ! 20.25 1 -.065 T 1113 1283 2 4.069 -.008 2852� 7.459 .. 043 : ' 1633 1285 26 1 1 FB7 1 5.15 -.11 1118 1286 26 1-FE36"°` L 1_ _ 2.562 =.ii 14 3641 1287 26 1 FB5 1 9 -.448 424 288-' 2 1289 26 j 1 FB4 1 9 -.286 664 129±3 2 19.25 �D i 1380` - 1291 261 1FB3 1 6.197 -.144 922 1292 ". 1293; 3 14.237 006 6129 1294 y26 ;° 1, FB18 . 1 1295 26 1 FB1 1 5.215 .051 2133 12 2 11.694" _013. 'f 5793.. 1297, 27 2FB22 1 - 11.383 -.342 814 _ 1298 27 ] 2FR21 1 6 054 ; + 2664' 1299 2FB20 _ _1 1 �� 0 -.258 1395 1300 2.__ 18 ` 0.17 4349. 1301 27 f 2FB19 1 1 8.984 .051 3324 °1. ° 1303 27 1 2FB18 1 1 4.255 -.042 2308 1304 27 - ° . .2-17BI °``' _ � F 3i 0 ° N 1305 27 2FB16 1 1 8.125 -.15 1297 =.44"8`°` 1307 27 2FB14A 1 4.58 022 4927 13Q8 27 2FB°14:e 1 _.. 8.17 {1. - _ INC 130927 2FB13 1 7.125 -.033 5110 1310­27. �° _ 2FB12 1 AW: . _ -.073 ° _ 9331.. 11311 27 2FB11 1 3.044 011 6816 13i2° 0 �;°` NC° 1313 27 2FB10 1 1.566 0 NC 1315 27 2FB9 1 7.219 102 1846 1 16 "21 UNA 6049 .' 1317. 27 2FB8 1 19.483 -1.228 373 1'318 27 _ 2FB7. 1" ° 2.825 '1319 27 2FB6 1 4.813 -.047 2706 1=320 27 3 2FMA-1: 0' -.051" - 2339 1321 27 2FB5 1 17.388 -.491 784 4&1 27 L12FB4;;l " I'°. 1.:. 4 '' _ 058 'I`. , ';: _ 2079- 1323127 2FB4 1 15.625 461 181 1324' 27 _ 2FB7 1 11.625 709 393 13251 27 1 FB 17 1 1 0 .023 1 _ 771 RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj Apge 194 Company Designer 321 Job Number Checked By: Model Name 20055 Beam Deflections (Continued) LC Member Lel Scan Location ' in (InII'Ai Patg 1377 28 2FB4 1 15.938 -.893 11 403 ,37$..28, ° .° 2F82 _ $8. 1379.28 i 1 FB 17 1 0 .033 540 1381 28 1 FB 16 1 0 -.351 444 -1382 2 1 1,75 89$ 1383 28 1FB14 1 0 .048 i 290 5$8 ° '" U09 691g 1385i 3 11.75 -.16 901 , 2477° 1387 5 23.255 _02°., 003 1747 365 13891 2 ' 20.25 -.08 910 1a90 2$. : • 16B8". 1 - . 1.4 9 _ 037 1026` 1391 T 2 1 4.069 -.012 1876 3"- 7.4 9 . ` -A6 . t , . . ' 103Z; 1393i 28 1 1 FB7 1 5.15 -.262 470 1394 2 = - : 'IFB6 1°° ,. 2,52 1 0 -7 ° °.. 2$19 1395 28 1FB5 1 9 531 357 _ jc 1397 28 1 FB4 1 9 -.40 1 473 .:° , 1399 28 1 FB3 1 6.03 -.242 550 140`Q; 2 12.06 =:01 _ 2351. 1401; 3 14.237 -.009 3795 -402 28 '. 1F3°1$-. 1�' 8.232 ` 752 �� °° 257 "'. 1403 28 1 FB1 _ 1 5.215 .022 4960 1404` 2 _. 15.17 0" NC 1405 29 2FB22 1 11.383 -.319, 873 •"-"2F21 140 29 ! 2FB20 1 ! 0 537 670 i40&. ". 1 028 - 2531 ° 140929 .. 2FB19 1 1 8.625 .099 1728 141"Q 2. 17.25-115' 465 1411i 29 2FB1811 _ ° 1 4.17 -.077 1271 1412 . 29 IF B17 ° . 1 , 3 0 ° . _ NC • ° . ;1413 29 2FB16 1 8.125 -.29 672 MA w' . 2FB75 , 1 n" 1415 29 2FB14A 1 4.58 .__ -.046 2369 416 "29° ,: 2F9.4 1 ° 5.191 017 1417 29 2FB13 1 7.125 -.032 5280 1418°29 i• 2FB12 1,.,i. 4.415., 097:. `100-4 , 29. 2FB11 1 3.044 .015 4834 1422 - [:e 2 3.1 015 -_` 8320° 29 2FB10 1 1.566 0 -- NC _ 2._ -6.OB9.. j°° 0_. - NC 1423 29 2FB9 1 7.219 -.142 1334 1424',.29 : _ 2F8"8A ,-1 "0 -,03 3589 .' 1425i 29 2FB8 1 19.483 -1.763 259 1 26,25 °- 408 $195 1427 29 2FB6 1 4.813 _ -.045 2796 RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 3Aage 196 Company Designer 323 Job Number Checked By: Model Name 20055 Beam Deflections (Continued) RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 3fP9e 198 Company Designer 325 hIRISAJob Number Checked By: Model Name 20055 Beam Deflections (Continued) LQ Member Label Snan Location '[in] n UIV Ratio 15811 33 2FB11 1 3.044 .01 7691 1583 33 2FB10 1 1.566 0 NC 15$4 . ! 2 ... e 7219° ©;` ', INC 1585 33 2FB9 1 7.219 089 2124 158£ 33 . ` " ° 2FB8A 0° :.,01° ` 69 $ 1587 33 : 2FB8 1 19.483 1.068 429 15$8,` 33` ' ° 2Fk37 'I ` " 5.25 °: 0 :'° °" NC , 15891 33 2FB6 1 4.813 -.04 3115 r'190 33 ;: 2 S5A 1 0'` °=.046`°_ 2692 1591 33 2FB5 1 17.053 -.668 576 1592 33 j . " 21F84A i' ° 1 0 -.05 ° ° 2383 ; 1593 33 21FB4 1 15.938 -.507 710 4594 33 `_ ' `2F$2 ° 4 `� 11:fr6 =�61 - 452, 1595 33 1FB17 1 0 .02 921 2073 1597 331 4616 1 0 -.216 722 598 1599 1 0 _ _._ .028 494 1600" `.33_;1FB14 'i .. 2°, I,.°;.. •. 4;- " e° 0. ' _ NC` 1601 3 11.75 092 1573 1602 , 4` 1:9.828 "- -,014. °. 4404.: 1603� �1604 _ 5 23.255 _ -.002 3065 � 10.25 `-,37iiLL" 580° 1605 2 20.25 -.049 1497 1606.33 i3. 1FS8. ° .". ( 1 ° 1.469 =.'024 1811 1607 2 4.069 -.006 3520 608 16M 33 1 FB7 1 5.15 -.096 1287 1610i 33 1F66 1° - 1611 33 1 FB5 1 9 -.325 584 1613 33 1 FB4 1 9 -.248 764 1614'° 2 ° °-`19.25 1598 ` °I 1615 33 1 F63 1 1 6.197 _-.462°�° -.125 1062 161Fi 2 ° 42 09 -,0D6 �.... 4366 1617, 3 14.237 005 7055 161$.33:I ,°1FB18 1. °°8,084. =:421 .. 1619 33 1 FB1 1 5.057 -.02 5466 1620 :.. 2 11.ra38 ` d113 5830' ` - 1621 34 . 2FB22 1 23.25 0 NC m2FB21` 1623 34 2FB20 1 0 -.383 939 _ 4348 °+ 16251 34 2FB19 1 I 8.266 .066 2593 �1626 ° . �- 2 _17.25 ,. J -,0n": 1 1627 34 2FB18 1 4.17 -.048 2043 1628 ° 34.. + , 2FB17 ° 1. °°° - �3 0 INC 1629 34 2FB16 1 8.125 -.193 1011 1630: 34 2FB15 = `` 1 ... 9 6 -.487"„° 544: 1631 34 I_ 2FB14A 1 4.58 033 3324 RISA-3D Version 17.0.4 [S:\Projects\20\20055 -4 Geneve - Badv ar\Ca lcs\2020-04-1 2\ main. r3d] 3&ge 200 Company Designer 327 IIIRISAJob Number Checked By: Model Name 20055 Beam Deflections (Continued) 171 35 2FB1 FB14 FB1 17. 16.08 -.03 L RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3dj 3ppge 202 Company Designer 329 IIIRISAJob Number Checked By: Model Name 20055 Beam Deflections (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\main.r3d] 3&ge 204 WRISACompany Designer 331 Job Number Checked By: Model Name 20055 Beam Deflection Checks (Continued) Beam Desian Rule So..... Deff in Ratio LC Dell in Ratio LC DO in Ratio LC 47 1 FB4 Ty ) ��lj j -.414 458 2(DI-+LL) -.369 515 14(DL+LL.:!. -.16 1185 5(LL+RL..I. 49 1 FB3 % Typical 1 261 q&I 508 2(DL+LL)i -.245542 4(DL+LL... -.16 8315(L-+RL. 50,:1- :2' 1�-- Oil 2J. , 200, ]Zj , DIAL) -�.611+:2264-,4(DL+,LL..- Rif I +PL� _51 3 -.01 3540 �2 L+LL) -.01 3687 4(DI-+LL... -.006 5794 5(i-L+RL.. .52 53 11=1318 1 FBl blow, Typical -035 3105 L+LQ, 12(DL+LL) .67W -.031 3481 L 4 LL., -.015 1 564, t 7188 5(L.L+RL.,I. 1� :� � , , c -1 -- - :,4,o46 12(11D� - A38Z �4 _L�1-3,250�21,1-?NO �' -150 r+RL.I. Envelope AISC 15th(360-16): ASD Steel Code Checks Envelope Wood Code Checks IRISA-31D Version 17.0.4 [SAProjects\20\20055 - 4 Geneve - Badvar\Caics\2020-04-12\main.r3d] Olage 206 ® zi Project Job Ref. 333 Tedds Section Sheet no./rev. 1 Calc. by Dale Chk'd by Date App'd by Date Z 5/14/2020 STEEL BEAM ANALYSIS & DESIGN (AISC360-16) In accordance with AISC360-16 using the ASD method Tedds calculation version 3.0.14 Wad Envelope -Combination 1 0.843 a.o it i 5.5 i 11 i A B 2 C kip ft -12.749 Rending Moment Envelope -12.7 1 'J 0.0 ram /171 it i lS 5.5 i it i A 1 B 2 C Nips Shear Forte Envelope 5.8 5.295 o.oaiia -4,636 "-i 35 6 ft i 55 1 11 i A 1 B 2 C Support conditions Support A Vertically free Rotationally free Support B Vertically restrained Rotationally free Support C Vertically restrained Rotationally free Applied loading Beam loads Dead self weight of beam x 1 Dead full UDL 0.315 kips/ft Live full UDL 0.51 kips/ft Load combinations Load combination 1 SupportA Dead x 1.00 Live x 1.00 333 . 9ed Project Job Ref. 335 Tedds Section Sheet no./rev. 3 Cale. by Date Chk'd by Date App d by Date Z 5/14/2020 Safety factors Safety factor for tensile yielding Sb = 1.67 Safety factor for tensile rupture fk = 2.00 Safety factor for compression ,G = 1.67 Safety factor for flexure fp = 1.67 Lateral bracing Span 1 has lateral bracing at supports only Span 2 has continuous lateral bracing Cantilever tip is unbraced Cantilever support is continuous with lateral and torsional restraint Classification of sections for local buckling - Section B4.1 Classification of flanges in flexure - Table B4.1b (case 10) Width to thickness ratio bf / (2 x tf) = 7.95 Limiting ratio for compact section apff = 0.38 x q[E / Fy] = 9.15 Limiting ratio for non -compact section Nff = 1.0 x q[E / Fy] = 24.08 Compact Classification of web in flexure -Table B4.1 b (case 15) Width to thickness ratio (d - 2 x k) / tw = 29.91 Limiting ratio for compact section AvwT = 3.76 x q[E / Fy] = 90.55 Limiting ratio for non -compact section km = 5.70 x q[E / Fy] = 137.27 Compact Section is compact in flexure Design of members for shear - Chapter G Required shear strength Web area Web plate buckling coefficient Web shear coefficient - eq G2-3 Nominal shear strength — eq G6-1 Safety factor for shear Allowable shear strength Vr = max(abs(Vm.), abs(Vmm)) = 5.795 kips Aw=dxtw=1.872inz kv = 5.34 Cv,=1 Vn = 0.6 x Fy x Aw x Cvt = 56.166 kips st = 1.50 Vc=W/n=37.444kips 335 OFTekid Project Job Ref. 337 Tedds Section Sheet no./rev. 1 Cale. by Date Chk'd by Date App'd by Date Z 5/14/2020 STEEL COLUMN DESIGN In accordance with AISC360.10 and the ASD method Column and loadina details Column details Column section Pipe STD x3-1/2 Design loading Required axial strength P, = 28 kips (Compression) Maximum moment about x axis Mx = 0.0 kips_ft Maximum moment about y axis My = 0.0 kips_ft Maximum shear force parallel to y axis V,y = 0.0 kips Maximum shear force parallel to x axis V. = 0.0 kips Material details Steel grade A53 Gr. B Yield strength Fy = 35 ksi Ultimate strength F. = 60 ksi Modulus of elasticity E = 29000 ksi Shear modulus of elasticity G = 11200 ksi Unbraced lengths For buckling about x axis L, = 144 in For buckling about y axis Ly = 144 in For torsional buckling L = 144 in Effective length factors For buckling about x axis Kx = 1.00 For buckling about y axis Ky = 1.00 For torsional buckling K� = 1.00 Section classification Tedds calculation version 1.0.09 337 #W Tekla' Project Job Ref. 339 Tedds Section Sheet no./rev. 1 Calc. by Date Chk'd by Date App'd by Date Z 5/14/2020 STRUCTURAL WOOD MEMBER DESIGN (NDS) In accordance with the ANSI/AFBPA NDS-2012 using the ASD method Analysis results Design axial compression P = 16800 lb T Eq Sawn lumber section details Nominal breadth of sections bnem = 6 in Dressed breadth of sections b = 5.5 in Nominal depth of sections dnom = 6 in Dressed depth of sections d = 5.5 in Number of sections in member N = 1 Overall breadth of member bb = N x b = 5.5 in Species, grade and size classification Douglas Fir -Larch, No.1 grade, Posts and timbers Bending parallel to grain Fb = 1200 Ib/in2 Tension parallel to grain Ft = 825lb/in2 Compression parallel to grain Fc = 1000 Ib/in2 Compression perpendicular to grain Fryerp = 625 Ib/in2 Shear parallel to grain Fv = 170 Ib/in2 Modulus of elasticity E = 1600000 Ib/in2 Modulus of elasticity, stability calculations Emm = 580000 Ib/in2 Mean shear modulus Gdaf = E / 16 = 100000 Ib/in2 Member details Service condition Dry Load duration Ten years Unbraced length in x-axis L. = 12 ft Effective length factor in x-axis Kx = 1 Effective length in x-axis L.. = Lx x Kx = 12 ft Unbraced length in y-axis Ly = 12 ft Effective length factor in y-axis Ky = 1 Effective length in y-axis Ley = Ly, x Ky = 12 ft Section properties Cross sectional area of member A = N x b x d = 30.25 in2 Section modulus S. = N x b x d2 / 6 = 27.73 in3 Sy = d x (N x b)2 / 6 = 27.73 in3 Second moment of area Ix = N x b x d3 / 12 = 76.26 in Tedds calculation version 1.7.07 339 ® Tee' Project Job Ref. 341 Tedds Section Sheet no./rev. 1 Calc. by Date Chk'd by Date App'd by Date Z 5/14/2020 STRUCTURAL WOOD MEMBER DESIGN (NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method Analysis results Design axial compression P = 22900 lb V-5.5"---O�i Sawn lumber section details Nominal breadth of sections boom = 6 in Dressed breadth of sections b = 5.5 in Nominal depth of sections dnom = 8 in Dressed depth of sections d = 7.5 in Number of sections in member N = 1 Overall breadth of member bb = N x b = 5.5 in Species, grade and size classification Douglas Fir -Larch, No.1 grade, Posts and timbers Bending parallel to grain Fb = 1200 Ib/in2 Tension parallel to grain Ft = 825 Ib/in2 Compression parallel to grain F� = 1000 Ib/inz Compression perpendicular to grain Fc na,p = 625 Ib/inz Shear parallel to grain Fv = 170 Ib/inz Modulus of elasticity E = 1600000 Ib/inz Modulus of elasticity, stability calculations Emm = 580000 Ib/inz Mean shear modulus Gdd = E / 16 = 100000 Ib/inz Member details Service condition Dry Load duration Ten years Unbraced length in x-axis Lx = 12 ft Effective length factor in x-axis Kx = 1 Effective length in x-axis L. = Lx x K. = 12 ft Unbraced length in y-axis Ly = 12 ft Effective length factor in y-axis Ky = 1 Effective length in y-axis L., = Ly x K, = 12 ft Section properties Cross sectional area of member A = N x b x d = 41.25 inz Section modulus Sx = N x b x d2 / 6 = 51.56 in3 Sr=dx(Nxb)2/6=37.81 in3 Second moment of area Ix = N x b x d3 / 12 = 193.36 in4 Tedds calculation version 1.7.07 341 ® Project 4Ap Ref. 343 Tedds Section et no./rev. Calc. by Date Chk'd by Dale P. by Date Z 5/14/2020 STEEL COLUMN DESIGN In accordance with AISC360-10 and the ASD method Column and loading details Column details Column section HSS 4x4x1/4 Design loading - Required axial strength Pr = 50 kips (Compression) Maximum moment about x axis M. = 0.0 kips_ft Maximum moment about y axis My = 0.0 kips_ft Maximum shear force parallel to y axis V, = 0.0 kips Maximum shear force parallel to x axis Vrx = 0.0 kips Material details Steel grade A500 Gr. B Yield strength Fy = 46 ksi Ultimate strength Fu = 58 ksi Modulus of elasticity E = 29000 ksi Shear modulus of elasticity G = 11200 ksi Unbraced lengths For buckling about x axis L. = 144 in For buckling about y axis Ly = 144 in For torsional buckling L = 144 in Effective length factors For buckling about x axis K. = 1.00 For buckling about y axis K, = 1.00 For torsional buckling K, = 1.00 Section classification Tedds calculation version 1.0.09 343 d Project Job Ref. 345 Tedds Section Sheet no./rev. 1 Cale. by Dale Chk'd by Dale App'd by Date Z 5/14/2020 STEEL COLUMN DESIGN In accordance with AISC360-10 and the ASD method Column and loading details Column details Column section HSS 5x5x1/4 Design loading Required axial strength Pr = 80 kips (Compression) Maximum moment about x axis Mx = 0.0 kips_ft Maximum moment about y axis My = 0.0 kips it Maximum shear force parallel to y axis V,y = 0.0 kips Maximum shear force parallel to x axis V, = 0.0 kips Material details Steel grade A500 Gr. B Yield strength Fy = 46 ksi Ultimate strength Fe = 58 ksi Modulus of elasticity E = 29000 ksi Shear modulus of elasticity G = 11200 ksi Unbraced lengths For buckling about x axis L. = 144 in For buckling about y axis Ly = 144 in For torsional buckling L. = 144 in Effective length factors For buckling about x axis Kx = 1.00 For buckling about y axis Ky = 1.00 For torsional buckling K: = 1.00 Section classification Tedds calculation version 1.0.09 345 o 4PTekid Project Job Ref. 347 Tedds Section Sheet no./rev. -a 1 Cale. by Date Chk'd by Data App'd by Date Z 4/30/2020 FOUNDATION ANALYSIS & DESIGN (ACI318) In accordance with ACI318-14 FOOTING ANALYSIS Length of foundation L. = 5.5 ft Width of foundation L, = 5.5 ft Foundation area A = Lx x Ly = 30.25 ft2 Depth of foundation h = 18 in Depth of soil over foundation hwi = 0 in Density of concrete yconc = 150.0 Ib/ft3 1.911 ksf Mifr'Fii Column no.1 details Length of column Ix1 = 12.00 in Width of column 1,1 = 12.00 in position in x-axis x1 = 33.00 in position in y-axis y1 = 33.00 in Soil properties Gross allowable bearing pressure gallow_Goss = 2 ksf Density of soil ra = 120.0 Ib/ft3 Angle of internal friction �b = 30.0 deg Design base friction angle gbb = 30.0 deg Coefficient of base friction tan(gbb) = 0.577 Self weight Fsm = h x 7conc = 225 psf 1.911 ksf 1.911 ksf Tedds calculation version 3.2.08 347 v G d Project Job Ref. 349 Tedds Section Sheet no./rev. 3 Calc. by Date Chk'd by Date App'd by Date Z 4/30/2020 Load combinations per ASCE 7-10 1.4D (0.233) 1.21) + 1.61- + 0.51-r (0.200) 1.21) + 1.01 + 1.61-r (0.200) (1.2 + 0.2 x SDS)D + 1.01- + 0.2S + 1.0E (0.236) (0.9 - 0.2 x Sos)D + 1.0E (0.119) Combination 14 results: (1.2 + 0.2 x SDs)D + 1.01- + 0.25 + 1.0E Forces on foundation Ultimate force in z-axis Moments on foundation Ultimate moment in x-axis, about x is 0 Ultimate moment in y-axis, about y is 0 Eccentricity of base reaction Eccentricity of base reaction in x-axis Eccentricity of base reaction in y-axis Pad base pressures Minimum ultimate base pressure Maximum ultimate base pressure Fuz = yD x A x Fam + yD x Fna = 81.9 kips Mux=yDxAxFa„nxLx/2+yDx(FD:ixxi) =225.1kip_ft Muy = yD x A x Fsm x Ly / 2 + yo x (FDii x yt) = 225.1 kip_ft eux = Mux / Fuz - Lx / 2 = 0 in euy=Muy/Fuz -Ly/2=0in qul= Fuz x(1-6xeux/Lx-6xeuy/Ly) /(Lx xLy)=2.706ksf qu2 = Fuz x (1 - 6 x eux / Lx + 6 x euy / Ly) / (Lx x Ly) = 2.706 ksf qua = Fuz x (1 + 6 x eux / Lx - 6 x euy / Ly) / (Lx x Ly) = 2.706 ksf qua= Fuz x(1+6xeux /Lx+6xeuy/Ly) /(Lx xLy) =2.706ksf qumm = min(qu1,qu2,qu3,qu4) = 2.706 ksf qumex = max(qui,qu2,qu3,qu4) = 2.706 ksf Moment diagram, x axis (kip_ft) 0 0 ;zae�$rer as eE �A 9e.e.P P.m <e�mm 497 Moment design, x direction, positive moment Ultimate bending moment Wx.mex = 33.24 kip_ft Tension reinforcement provided 7 No.5 bottom bars (9.8 in c/o) Area of tension reinforcement provided Asx.bo[.p. = 2.17 In2 349 4WTekW Project Job Ref. 351 Tedds Section Sheet no./rev. 5 Cale. by Date Chk'd by Date App'd by Date Z 4/30/2020 Minimum area of reinforcement (8.6.1.1) As.min = 0.0018 x Lx x It= 2.138 in PASS - Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement (8.7.2.2) smax = min(2 x h, 18 in) = 18 in PASS - Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement Depth of compression block Neutral axis factor Depth to neutral axis Strain in tensile reinforcement (8.3.3.1) Nominal moment capacity Flexural strength reduction factor Design moment capacity One-way shear design, y direction Ultimate shear force Depth to reinforcement Shear strength reduction factor Nominal shear capacity (Eq. 22.5.5.1) Design shear capacity Two-way shear design at column 1 Depth to reinforcement Shear perimeter length (22.6.4) Shear perimeter width (22.6.4) Shear perimeter (22.6.4) Shear area Surcharge loaded area Ultimate bearing pressure at center of shear area Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Design shear stress capacity (8.5.1.1(d)). d = h - Cr.. - 0x1ot - 0y.bot / 2 = 14.063 In a = Asy.botprov x fy / (0.85 x fc x Lx) = 0.516 in P' = 0.83 c=a/pt=0.625in Et = 0.003 x d / c - 0.003 = 0.06448 PASS - Tensile strain exceeds minimum required, 0.004 Me = Asy.botpmv x fy x (d - a / 2) = 149.78 kip_ft Of = min(max(0.65 + (at - 0.002) x (250 / 3), 0.65), 0.9) = 0.900 OM. = �f x Me = 134.802 kip_ft Mu.y.max / �Mn = 0.247 PASS - Design moment capacity exceeds ultimate moment load Vu.y = 14.158 kips dv = min(h - Cnom - Ox.bot - Oy.bot / 2,h - Cnom - oy.top / 2) = 14.063 in Ov = 0.75 Vn = 2 x a, x 4(fc x 1 psi) x Lx x dv = 124.521 kips OVa = 0v x Vn = 93.391 kips Vu.y / OW = 0.152 PASS - Design shear capacity exceeds ultimate shear load dv2 = 14.375 in Ixp = 26.375 in lyp = 26.375 in bo = 2 x (Ixt + dv2) + 2 x (lyt + dv2) = 105.500 in Ap = Ix,podm x ly,parrm = 695.641 in Asur = Ap - Ix1 x Iyt = 551.641 in qup.avg = 2.706 ksf Fup = yD x FD:t + yD x Ap x Fsvn - qup.avg x Ap = 60.692 kips vug = max(Fup / (bo x dv2),0 psi) = 40.019 psi P=lyt/Ixt=1.00 =40 vcpa = (2 + 4 / R) x A, x J(f c x 1 psi) = 402.492 psi Vcpb = (e, x dv2 / bo + 2) x i, x 4(fc x 1 psi) = 499.777 psi vcpo = 4 x a, x �(fc x 1 psi) = 268.328 psi vcp = min(Vcpa,vcpb,Vcpc) = 268.328 psi �v = 0.75 Vn = vcp = 268.328 psi ovn = ov x vn = 201.246 psi 351 ® Project Job Ref. 353 Tedds Section Sheet no./rev. 1 Calc. by Date Chk'd by Date App'd by Date Z 4/30/2020 FOUNDATION ANALYSIS & DESIGN (AC1318) In accordance with AC1318-14 FOOTING ANALYSIS Length of foundation L. = 4.5 ft Width of foundation Ly = 4.5 It Foundation area A = L.. Ly = 20.25 ft2 Depth of foundation h = 18 in Depth of soil over foundation hsoll = 0 in Density of concrete T.aac = 150.0 Ib/ft3 1.904 ksf 1.904 ksi Column no.1 details Length of column 1.1 = 12.00 in Width of column 1y1 = 12.00 in position in x-axis x1 = 27.00 in position in y-axis y1 = 27.00 in Soil properties Gross allowable bearing pressure gallowomss = 2 ksf Density of soil ysoll = 120.0 Ib/ft3 Angle of internal friction �b = 30.0 deg Design base friction angle 5bb = 30.0 deg Coefficient of base friction tan(gbb) = 0.577 Self weight Fawt = h x y�oao = 225 psf 1.904 ksf 1.904 ksf Tedds calculation version 3.2.08 353 T IG A Project Job Ref. 355 Tedds Section Sheet no./rev. 3 Cale. by Date Chk'd by Date App'd by Date z 4/30/2020 Load combinations per ASCE 7.10 1 AD (0.134) 1.2D + 1.61- + 0.51-r (0.115) 1.2D + 1.01- + 1.61-r (0.115) (12 + 0.2 x Sos)D + 1.01 + 0.2S + 1.0E (0.136) (0.9 - 0.2 x SDS)D + 1.0E (0.069) Combination 14 results: (1.2 + 0.2 x SDs)D + COL + 0.2S + 1.0E Forces on foundation Ultimate force in z-axis Moments on foundation Ultimate moment in x-axis, about x is 0 Ultimate moment in y-axis, about y is 0 Eccentricity of base reaction Eccentricity of base reaction in x-axis Eccentricity of base reaction in y-axis Pad base pressures Minimum ultimate base pressure Maximum ultimate base pressure Fuz=yDx A l+yoxl=54.6 kips Mux=yDxAx l Lx/2+ypx(l xxl)=122.9 kip_ft Muy=yo x A x lx Ly/2+yox(l xy1)=122.9 kip_ft eux =Mux/l-Lx/2=0in euy=Muy/Fuz-Ly/2=0in qm=F,ax(1-6xeux /Lx-6xe„y/Ly) /(Lx xLy)=2.696ksf qu2 = Fuz x (1 - 6 x eux / Lx + 6 x euy / Ly) / (Lx x Ly) = 2.696 ksf qv3 = Fu� x (1 + 6 x eux / Lx - 6 x euy / Ly) / (Lx x Ly) = 2.696 ksf qua=lx(1+6xeux /Lx+6xe„y/Ly) /(Lxx.Ly) =2.696ksf qumin = min(qu1,qu2,qu3,qu4) = 2.696 ksf qumm = max(gvi,gv2,qus,qu4) = 2.696 ksf Shear diagram, x axis (kips) 24.1 Moment diagram, x axis (kip_ft) 1c4 D D eW 27.1 Moment design, x direction, positive moment Ultimate bending moment Mu.x.mex = 16.385 kip_ft Tension reinforcement provided 6 No.5 bottom bars (9.4 in c/c) Area of tension reinforcement provided A.xeapmv = 1.86 in2 355 TG d Project Job Ref. 357 Tedds Section Sheet no./rev. 5 Cale. by Date Chk'd by Date App'd by Date Z 4/30/2020 Minimum area of reinforcement (8.6.1.1) Maximum spacing of reinforcement (8.7.2.2) Depth to tension reinforcement Depth of compression block Neutral axis factor Depth to neutral axis Strain in tensile reinforcement (8.3.3.1) Nominal moment capacity Flexural strength reduction factor Design moment capacity One-way shear design, y direction Ultimate shear force Depth to reinforcement Shear strength reduction factor Nominal shear capacity (Eq. 22.5.5.1) Design shear capacity Two-way shear design at column 1 Depth to reinforcement Shear perimeter length (22.6.4) Shear perimeter width (22.6.4) Shear perimeter (22.6.4) Shear area Ae.min = 0.0018 x L. x h = 1.75 in2 PASS - Area of reinforcement provided exceeds minimum sm. = min(2 x h, 18 in) = 18 in PASS - Maximum permissible reinforcement spacing exceeds actual spacing d = h - Crum - 0x.bot - Oy.bot / 2 = 14.063 in - a = Aey.baprov x fy / (0.85 x fc x Lx) = 0.540 in p' = 0.83 c=a/pt=0.655in Et = 0.003 x d I c - 0.003 = 0.06142 PASS - Tensile strain exceeds minimum required, 0.004 M„ = Aey.bm.pmv x fy x (d - a / 2) = 128.269 kip_ft �f = min(max(0.65 + (Et - 0.002) x (250 / 3), 0.65), 0.9) = 0.900 oMp = v x M. = 115.442 kip_ft Wy.max / 0Mn = 0.142 PASS - Design moment capacity exceeds ultimate moment load Surcharge loaded area Ultimate bearing pressure at center of shear area Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Design shear stress capacity (8.5.1.1(d)) Vu.y = 6.186 kips dv = min(h - Crom - �x.bot - �y.but l 2,h - Cnem - 0y.wp / 2) = 14.063 in �v = 0.75 Vn = 2 , k, q(fc x 1 psi) x Lx x dv = 101.881 kips OVA _ �v x Vn = 76.411 kips Vuyl�w=0.081 PASS - Design shear capacity exceeds ultimate shear load dv2 = 14.375 in Ixp = 26.375 in lyi, = 26.375 in bo = 2 x (6, + dv2) + 2 x (lyt + dv2) = 105.500 in Ap = Ix,perim x ly.perlm = 695.641 in Asur = Ap - Ixi x lyt = 551.641 in2 qup, = 2.696 ksf Fup = 7D x FDzi + yD x Ap x Fbva - qup.avg x Ap = 36.664 kips vug = max(Fup / (bo x dv2),0 psi) = 24.176 psi Q = lyt / Ixi = 1.00 =40 vupa = (2 + 4 / p) x k x 4(fu x 1 psi) = 402.492 psi vupb = (w x dv2 / bo + 2) x 7, x q(f o x 1 psi) = 499.777 psi vopc = 4 x X x q(fp x 1 psi) = 268.328 psi vop = min(vopa,Vopb,Wpo) = 268.328 psi 0, = 0.75 vn = vep = 268.328 psi Ovu = (,v x vn = 201.246 psi 357 4FTeklif Project Job Ref. 359 Tedds Section Sheet no./rev. 1 Calc. by Date Chk'd by Date App'd by Date Z 4/30/2020 FOUNDATION ANALYSIS & DESIGN (ACI318) In accordance with ACI318-14 FOOTING ANALYSIS Length of foundation Width of foundation Foundation area Depth of foundation Depth of soil over foundation Density of concrete 1.913 ksf klRSNEM Column no.1 details Length of column Width of column position in x-axis position in y-axis Soil properties Gross allowable bearing pressure Density of soil Angle of internal friction Design base friction angle Coefficient of base friction Self weight L,=4ft Ly=4ft A=LxxLy=J6ftz h=18in No = 0 in yconc = 150.0 Ib/ft3 1.1 = 4.00 in ly1 = 4.00 in x1 = 24.00 in y1 = 24.00 in galmw_Gross = 2 ksf yscn = 120.0 Ib/ft3 �b = 30.0 deg gbb = 30.0 deg tan(gbb) = 0.577 Fawn = h x yconc = 225 psf 1.913 ksf 1.913 ksf Tedds calculation version 3.2.08 359 #FTekld Project Job Ref. 361 Tedds Section Sheet no./rev. 3 Calc. by Date Chk'd by Date App'd by Date z 4/30/2020 Load combinations per ASCE 7.10 1.41D (0.152) 1.2D + 1.61- + 0.51-r (0.130) 1.2D + 1.OL + 1.61-r (0.130) (1.2 + 0.2 x SDs)D + 1.01 + 0.2S + 1.0E (0.153) (0.9 - 0.2 x SDs)D + 1.0E (0.078) Combination 14 results: (1.2 + 0.2 x SDs)D + 1.01- + 0.2S + 1.0E Forces on foundation Ultimate force in z-axis Moments on foundation Ultimate moment in x-axis, about x is 0 Ultimate moment in y-axis, about y is 0 Eccentricity of base reaction Eccentricity of base reaction in x-axis Eccentricity of base reaction in y-axis Pad base pressures Minimum ultimate base pressure Maximum ultimate base pressure 0 Fuz = yD x A x Fsx4 + yD x FDzt = 43.3 kips Mux=yD x A Fsvex Lx/2+yD x(FDri xXi) =86.7 kip_ft Muy=yDxAxFsmxLy/2+yDx(FDzlxy+)=86.7kip_ft eux=M.x/Fuz-Lx/2=0in euy = Muy / Fuz - Ly / 2 = 0 in qu1 = Fux x (1 - 6 x eux / Lx - 6 x euy / Ly) / (Lx x Ly) = 2.708 ksf qU2 = Fuz x (1 - 6 x eux / Lx+ 6 x euy / Ly) / (Lx x Ly) = 2.708 ksf qua=Fuzx(1+6xeux /Lx-6xe„y/Ly) /(Lx xLy) =2.708ksf qu4=Fuzx(1+6xeux /Lx+6xeuy/Ly)/(Lxx Ly) 2.708 ksf qumin = min(qui,qu2,qu3.qu4) = 2.708 ksf qumm = max(qut,qu2,gU3,qu4) = 2.708 ksf �s to.t Moment diagram, x axis (kip_ft) lei Moment design, x direction, positive moment Ultimate bending moment Mu.x.mxx = 16.065 kip_ft Tension reinforcement provided 6 No.5 bottom bars (8.2 in c/o) 361 IG a' Project Job Ref. 363 Tedds Section Sheet no./rev. 5 Calc. by Dale Chk'd by Date App'd by Dale Z 4/30/2020 Tension reinforcement provided 6 No.S bottom bars (8.2 in c/c) Area of tension reinforcement provided A¢y.bolpm, = 1.86 in2 Minimum area of reinforcement (8.6.1.1) A..mn = 0.0018 x L. x h = 1.555 in2 PASS - Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement (8.7.2.2) sma = min(2 x h, 18 in) = 18 in PASS - Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d = h - cnom - O..bot - 0y,1bot! 2 = 14.063 in Depth of compression block a = Asy.bm.prov x fy / (0.85 x fc x Lx) = 0.608 in Neutral axis factor 31 = 0.83 Depth to neutral axis c = a / p1 = 0.737 in Strain in tensile reinforcement (8.3.3.1) ct = 0.003 x d / c - 0.003 = 0.05426 PASS - Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn = Asy.botpm, X fy X (d - a / 2) = 127.955 kip_ft Flexural strength reduction factor of = min(max(0.65 + (Et - 0.002) x (250 / 3), 0.65), 0.9) = 0.900 Design moment capacity oMn = v x Mn = 115.159 kip_ft M..y.mnx / �Mn = 0.140 PASS - Design moment capacity exceeds ultimate moment load One-way shear design, y direction Ultimate shear force Depth to reinforcement Shear strength reduction factor Nominal shear capacity (Eq. 22.5.5.1) Design shear capacity Two-way shear design at column 1 Depth to reinforcement Shear perimeter length (22.6.4) Shear perimeter width (22.6.4) Shear perimeter (22.6.4) Shear area Surcharge loaded area Ultimate bearing pressure at center of shear area Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Vu.y = 6.323 kips d, = h - Cnom - ..bat - o bot / 2 = 14.063 in �v = 0.75 Vn=2x1<xq(fcxl psi) xL.xd,=90.561 kips OW = 0v x Vn = 67.921 kips V..y l OW = 0.093 PASS - Design shear capacity exceeds ultimate shear load j d,2 = 14.375 in 1, = 18.375 in lyp = 18.375 in bo = 2 x (1.1 + &2) + 2 x (ly1 + d,2) = 73.500 in Ap = Ix,penm x ly,perim = 337.641 in2 Asur = Ap - Ixt x ly1 = 321.641 in2 gnp.evg = 2.708 ksf Fup = yo x FDA + yD x Ap x Fsm - cup., x Ap = 32.634 kips vug = max(Fep / (bo x dv2),0 psi) = 30.887 psi p=lyl/Ix1=1.00 q =40 V.P. = (2 + 4 / p) x k x >f(fc x 1 psi) = 402.492 psi vcpb = (,, x dv2 / ba + 2) x X x J(fc x 1 psi) = 658.956 psi w,=4x Xx q(fcx1 psi) =268.328 psi vcp = min(vcpe,vopb,vcpc) = 268.328 psi Ov = 0.75 363 r a Project Job Ref. 365 Tedds Section Sheet no./rev. 1 Cale. by Date Chk'd by Date App d by Date Z 4/30/2020 FOUNDATION ANALYSIS & DESIGN (AC1318) In accordance with AC1318-14 FOOTING ANALYSIS Length of foundation L. = 4 ft Width of foundation L, = 4 ft Foundation area A = L.. Ly = 16 ftz Depth of foundation h = 24 in Depth of soil over foundation hail = 0 in Density of concrete yconc = 150.0 Ib/ft3 1.488 ksf 1.488 ksf Column no.1 details Length of column 1.1 = 4.00 in Width of column 1,1 = 4.00 in position in x-axis x1 = 24.00 in position in y-axis y1 = 24.00 in Soil properties Gross allowable bearing pressure ganow Gr..s = 2 ksf Density of soil Y..ii = 120.0 Ib/ft3 Angle of internal friction �b = 30.0 deg Design base friction angle gbb = 30.0 deg Coefficient of base friction tan(gbb) = 0.577 Self weight Fm = h x ywn. = 300 psf 1.488 ksf 1.488 ksf Tedds calculation version 3.2.08 365 A.wTekld Project Job Ref. 367 Tedds Section Sheet no./rev. 3 Calc. by Date Chk'd by Oate App'd by Date z 4/30/2020 Load combinations per ASCE 7.10 1AD (0.098) 1.21D + 1.61- + 0.51-r (0.084) 1.21D + 1.01- + 1.61-r (0.084) (1.2 + 0.2 x Sos)D + 1.01 + 0.2S + 1.0E (0.099) (0.9 - 0.2 x Sos)D + 1.0E (0.049) Combination 14 results: (1.2 + 0.2 x SDs)D + 1.01- + 0.2S + 1.0E Forces on foundation Ultimate force in z-axis Moments on foundation Ultimate moment in x-axis, about x is 0 Ultimate moment in y-axis, about y is 0 Eccentricity of base reaction Eccentricity of base reaction in x-axis Eccentricity of base reaction in y-axis Pad base pressures Minimum ultimate base pressure Maximum ultimate base pressure 0 Fuz = yD x A x Fsm + yo x FDz1 = 33.7 kips Mu. =yDxAx Fsmx Lx/2+yDx(Fort xXi) =67.4 kip_ft Muy = yD x A x Fam x Ly / 2 + yD x (FDzi x y+) = 67.4 kip_ft eux = Mux / Fuz - Lx / 2 = 0 in euy = Muy / Fuz - Ly / 2 = 0 in qui=Fuzx(1-6xeux/Lx-6xeuy/Ly) /(Lx xLy) =2.107ksf qu2=Fuzx(1-6xeux/Lx+6xeuy/Ly) /(Lx xLy)=2.107ksf qua=Fuzx(1+6xeux/Lx-6xeuy/Ly) /(Lx xLy) =2.107ksf qua = Fuz x (1 + 6 x eux / Lx + 6 x euy / Ly) / (Lx x Ly) = 2.107 ksf qumtn = min(qui,qu2,clo,clA) = 2.107 ksf quma. = max(go,qu2,qua,qu4) = 2.107 ksf Moment diagram, x axis (kip_ft) is Moment design, x direction, positive moment Ultimate bending moment Mu......= 11.305 kip_ft Tension reinforcement provided 4 No.5 bottom bars (13.7 in c/c) 367 #FTekId Project Job Ref. 369 Tedds Section Sheet no./rev. 5 Calc. by Date Chk'd by Date App'd by Date Z 4/30/2020 Tension reinforcement provided 4 No.5 bottom bars (13.7 in c/o) Area of tension reinforcement provided A.y.b.t.prov = 1.24 in2 Minimum area of reinforcement (8.6.1.1) Au.mm = 0.0018 x L. x h = 2.074 in2 FAIL - Minimum area of reinforcement required exceeds area of reinforcement provided Maximum spacing of reinforcement (8.7.2.2) smex = min(2 x h, 18 in) = 18 in PASS - Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d = h - crpm - 0.1ct - 0y.bm / 2 = 20.062 in Depth of compression block a = Asy.butpruv x fy / (0.85 x fc x L.) = 0.405 in Neutral axis factor pi = 0.83 Depth to neutral axis c = a / R' = 0.491 in Strain in tensile reinforcement (8.3.3.1) ct = 0.003 x d / c - 0.003 = 0.11953 PASS - Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn = Asy.brGpm x fy x (d - a / 2) = 123.131 kip_ft Flexural strength reduction factor Of = min(max(0.65 + (Et - 0.002) x (250 / 3), 0.65), 0.9) = 0.900 Design moment capacity �Mn = Of x Mr = 110.818 kip_ft Mu.y.mrx / OW = 0.102 PASS - Design moment capacity exceeds ultimate moment load One-way shear design, y direction Ultimate shear force Depth to reinforcement Shear strength reduction factor Nominal shear capacity (Eq. 22.5.5.1) Design shear capacity Two-way shear design at column 1 Depth to reinforcement Shear perimeter length (22.6.4) Shear perimeter width (22.6.4) Shear perimeter (22.6.4) Shear area Surcharge loaded area Ultimate bearing pressure at center of shear area Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Vu.y = 1.086 kips dv = min(h - Crum - O..but - 0y.bot / 2,h - crrm - oy.mp / 2) = 20.062 in �v = 0.75 Vr=2xluxli(fcx 1 psi) x Lx x dv = 129.2 kips OW = �v x Vn = 96.9 kips V., / ovn = 0.011 PASS - Design shear capacity exceeds ultimate shear load I d12 = 20.375 in Ixp = 24.375 in lyp = 24.375 in bu = 2 x (Ixt + dv2) + 2 x (lyt + dv2) = 97.500 in Ap = Ix,panm x ly,,[rn = 594.141 in2 Asur = Ap - Ixt x lyt = 578.141 in2 qup..v9 = 2.107 ksf Fup = yD x FDn + yD x Ap x Fsm - cup., x Ap = 19.969 kips vug = max(Fup / (be x dv2),0 psi) = 10.052 psi (3=lyt/1.,=1.00 ap =40 vrpu = (2 + 4 / p) x a, x 4(fr x 1 psi) = 402.492 psi Vcpb = (w x dv2 / be + 2) x )v x q(fc x 1 psi) = 694.901 psi vcpc = 4 x X x q(fr x 1 psi) = 268.328 psi vrp = min(Vcp.,vrpb,vrpc) = 268.328 psi �v = 0.75 369 Teklaf Project Job Ref. 371 Tedds Section Sheet no./rev. 1 Call by Date Chk'd by Date App'd by Date Z 4/30/2020 FOUNDATION ANALYSIS & DESIGN (AC1318) In accordance with AC1318-14 FOOTING ANALYSIS Length of foundation L. = 3 ft Width of foundation Lr = 3 It Foundation area A = L. x Ly = 9 ft2 Depth of foundation h = 18 in Depth of soil over foundation h.a = 0 in Density of concrete ycon. = 150.0 Ill 1.892 ksf 1.892 ksf Column no.1 details Length of column 1.1 = 4.00 in Width of column l,i = 4.00 in position in x-axis - x1 = 18.00 in position in y-axis y1 = 18.00 in Soil properties Gross allowable bearing pressure ciallow_Gmas = 2 ksf Density of soil roll = 120.0 ll Angle of internal friction Ob = 30.0 deg Design base friction angle $bb = 30.0 deg Coefficient of base friction tel = 0.577 Self weight Fern = h x ynnnc = 225 psf 1.892 ksf 1.892 ksf Tedds calculation version 3.2.08 371 AV TO lei Project Job Ref. 373 Tedds Section Sheet no./rev. 3 Calc. by Date Chk'd by Date App'd by Date z 4/30/2020 Load combinations per ASCE 7-10 1.4D (0.077) 1.21D + 1.61- + 0.51-r (0.066) 1.21D + 1.01- + 1.61-r (0.066) (1.2 + 0.2 x SDs)D + 1.01- + 0.2S + 1.0E (0.078) (0.9 - 0.2 x SDs)D + 1.0E (0.039) Combination 14 results: (1.2 + 0.2 x SDs)D + 1.01- + 0.2S + 1.0E Forces on foundation Ultimate force in z-axis Fuz = yD x A x Fsm + yD x FDzl = 24.1 kips Moments on foundation Ultimate moment in x-axis, about x is 0 M. = yo x A x Fsm x Lx/2 + 7D x (FDzt x xt) = 36.2 kip_ft Ultimate moment in y-axis, about y is 0 Mvy = yD x A x Fsva x Ly / 2 + yo x (FDz1 x y+) = 36.2 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux = Mux / Fuz - Lx / 2 = 0 in Eccentricity of base reaction in y-axis evy = Moy / Fuz - Ly / 2 = 0 in Pad base pressures qut= Fuz x(1-6xeux /Lx-6xevy/Ly) /(L.,Ly)=2.679ksf qU2= Fuz x(1-6xeux /Lx+6xeu,/Ly)/(Lx x Ly)=2.679 ksf qU3 = Fuz x (1 + 6 x eux / Lx - 6 x e.y / Ly) / (Lx x Ly) = 2.679 ksf qu4 = Fuz x (1 + 6 x eux / Lx + 6 x euy / Ly) / (Lx x Ly) = 2.679 ksf Minimum ultimate base pressure qumm = min(got,go2,qo%qA) = 2.679 ksf Maximum ultimate base pressure gomsx = max(qut,g0,qu3,gU4) = 2.679 ksf Shear diagram, x axis (kips) Moment diagram, x axis (kip_ft) s 0 0 ....... m1 ,,a 47 Moment design, x direction, positive moment Ultimate bending moment Mv.x.max = 6.294 kip_ft Tension reinforcement provided 4 No.5 bottom bars (9.7 in c/c) Area of tension reinforcement provided Asx.bot.prov = 1.24 in2 373 A.FTekId Project Job Ref. 375 Tedds Section Sheet no./rev. 5 Cale. by Date Chk'd by Date App'd by Date Z 4/30/2020 Area of tension reinforcement provided Aay.bul.pruv = 1.24 in2 Minimum area of reinforcement (8.6.1.1) Asmn = 0.0018 x L. x In = 1.166 in2 PASS - Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement (8.7.2.2) smax = min(2 x h, 18 in) = 18 in PASS - Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d = h - Crum - O.bm - 0y.bm / 2 = 14.063 in Depth of compression block a = Aay.bot.pmv x fy / (0.85 x fe x Lx) = 0.540 in Neutral axis factor p1 = 0.83 Depth to neutral axis c = a / p1 = 0.655 in Strain in tensile reinforcement (8.3.3.1) et = 0.003 x d / c - 0.003 = 0.06142 PASS - Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn = Asy.bot.prev x fy x (d - a / 2) = 85.513 kip_ft Flexural strength reduction factor �f = min(max(0.65 + (ct - 0.002) x (250 / 3), 0.65), 0.9) = 0.900 Design moment capacity �Mn = Of x Mn = 76.961 kip_ft Wy.max / 0Mn = 0.082 ' PASS - Design moment capacity exceeds ultimate moment load One-way shear design, y direction Ultimate shear force Depth to reinforcement Shear strength reduction factor Nominal shear capacity (Eq. 22.5.5.1) Design shear capacity Two-way shear design at column 1 Depth to reinforcement Shear perimeter length (22.6.4) Shear perimeter width (22.6.4) Shear perimeter (22.6.4) Shear area Surcharge loaded area Ultimate bearing pressure at center of shear area Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Vu.y = 1.143 kips dv = In - ceum - ol.bot - 01.bm / 2 = 14.063 in �v = 0.75 Vn=2x7rxq(fox1 psi)xLxxdv=67.921 kips OVn = ov x Vo = 50.94 kips Vu.y / OVa = 0.022 PASS - Design shear capacity exceeds ultimate shear load dv2 = 14.375 in Ixp = 18.375 in Iyp = 18.375 in bo = 2 x (Ixi + dv2) + 2 x (ly1 + dv2) = 73.500 in Ap ,perim x ly,perim = 337.641 in2 Asur = Ap - Ix1 x Iy1 = 321.641 in2 qun.avg = 2.679 ksf Fun = yD x FD:1 + yD x An x Fave - qup.avg x Ap = 15.709 kips vug = max(Fup / (bo x dv2),0 psi) = 14.868 psi - 0=ly,/Ix1=1.00 ca =40 vppa = (2 + 4 / p) x 7, x 4(fu x 1 psi) = 402.492 psi vppb = (up x dv2 / be + 2) x A, x 4(fc x 1 psi) = 658.956 psi vepo = 4 x X x'J(fp x 1 psi) = 268.328 psi vop = min(vopa,vepb,vope) = 268.328 psi Ov = 0.75 v. = vup = 268.328 psi 375 AV TOW' Project Job Ref. 377 Tedds Section Sheet no./rev. 1 Calc. by Date Chk'd by Date App'd by Date Z 4/30/2020 FOUNDATION ANALYSIS & DESIGN (ACI318) In accordance with ACI318-14 FOOTING ANALYSIS Length of foundation L. = 6 ft Width of foundation Ly = 6 ft Foundation area A = L. x Ly = 36 ft2 Depth of foundation h = 24 in Depth of soil over foundation h..ii = 0 in Density of concrete yc... = 150.0 Ib/ft3 ikB011MI 1.883 ksf Column no.1 details Length of column 1.1 = 4.00 in Width of column ly1 = 4.00 in position in x-axis x1 = 36.00 in position in y-axis y1 = 36.00 in Soil properties Gross allowable bearing pressure gai. Gros. = 2 ksf Density of soil r a = 120.0 Ib/ft3 Angle of internal friction On = 30.0 deg Design base friction angle gbb = 30.0 deg Coefficient of base friction tan(gbb) = 0.577 Self weight Fsm = h x y.r. = 300 psf 1.883 ksf 1.883 ksf Tedds calculation version 3.2.08 377 a Project Job Ref. 379 Tedds Section Sheet no./rev. 3 Calc. by Date Chk'd by Date App'd by Date z 4/30/2020 Load combinations per ASCE 7.10 1 AD (0.177) 1.2D+1.61-+0.51-r(0.151) 1.21) + 1.01- + 1.61-r (0.151) (1.2 + 0.2 x SDS)D + 1.01- + 0.2S + 1.0E (0.179) (0.9 - 0.2 x SDS)D + 1.0E (0.089) Combination 14 results: (1.2 + 0.2 x SDS)D + 1.01- + 0.2S + 1.0E Forces on foundation Ultimate force in z-axis Moments on foundation Ultimate moment in x-axis, about x is 0 Ultimate moment in y-axis, about y is 0 Eccentricity of base reaction Eccentricity of base reaction in x-axis Eccentricity of base reaction in y-axis Pad base pressures Minimum ultimate base pressure Maximum ultimate base pressure Fuz = yD x A x Fswi + yD x FDz1 = 96.0 kips Mux = yD x A x Fsm x Lx / 2 + yD x (FDzi x xi) = 288.1 kip_ft Muy = yD x A x Fsm x Ly / 2 + yD x (FDz1 x yi) = 288.1 kip_ft eux=Mu./Fuz-Lx/2=0 in euy = Muy / Fuz - Ly / 2 = 0 in qui=Fuzx(1-6xeux/Lx-6xeuy/Ly) /(L.xLy) =2.667ksf qu2=Fuzx(1-6xeux/Lx+6xeuy/Ly) /(Lx xLy) =2.667ksf qua=Fuzx(1+6xeux/Lx-6xeuy/Ly) /(Lxx Ly) 2.667 ksf qua = Fuz x (1 + 6 x eux / Lx + 6 x euy / Ly) / (Lx x Ly) = 2.667 ksf qumm = min(qu1,qu2,qu3^4) = 2.667 ksf qumax = max(qu1,qu2,q0,qu4) = 2.667 ksf Shear diagram, x axis (kips) 40.4 t r; gly I 0 _m E v � I .I 4 c -0.4 Moment diagram, x axis (kip_ft) 64.0 0 0 m 60.5 Moment design, x direction, positive moment Ultimate bending moment Mu.x.mex = 54.002 kip_ft Tension reinforcement provided 11 No.5 bottom bars (6.5 in c/c) 379 v Te d Project Job Rat. 381 Tedds Section Sheet no./rev. 5 Cale. by Date Chk'd by Date App'd by Date Z 4/30/2020 Tension reinforcement provided 11 No.5 bottom bars (6.5 in c/c) Area of tension reinforcement provided As,.bm.Iro� = 3.41 in2 Minimum area of reinforcement (8.6.1.1) As.min = 0.0018 x Lx x h = 3.11 in2 PASS - Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement (8.7.2.2) Depth to tension reinforcement Depth of compression block Neutral axis factor Depth to neutral axis Strain in tensile reinforcement (8.3.3.1) smax = min(2 x h, 18 in) = 18 in PASS - Maximum permissible reinforcement spacing exceeds actual spacing d = h - Cnoin - Ox.bot - 01.bot / 2 = 20.062 in a = Asy.but.pmv x fy / (0.85 x fo x Lx) = 0.743 in pt = 0.83 c = a / pi = 0.901 in st = 0.003 x d / c - 0.003 = 0.06384 PASS - Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn = Asy.botprov x fy x (d - a / 2) = 335.732 kip_ft Flexural strength reduction factor �f = min(max(0.65 + (st - 0.002) x (250 / 3), 0.65), 0.9) = 0.900 Design moment capacity �Mn = Of x Mn = 302.159 kip_ft W,.mex / OMn = 0.179 PASS - Design moment capacity exceeds ultimate moment load One-way shear design, y direction Ultimate shear force Depth to reinforcement Shear strength reduction factor Nominal shear capacity (Eq. 22.5.5.1) Design shear capacity Two-way shear design at column 1 Depth to reinforcement Shear perimeter length (22.6.4) Shear perimeter width (22.6.4) Shear perimeter (22.6.4) Shear area Surcharge loaded area Ultimate bearing pressure at center of shear area Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Vn,y = 15.626 kips dv = h - Cnom - 0.bot - Oy.bol / 2 = 20.062 In 0v = 0.75 Vn=2xlvxV(fcx 1 psi) xLxxdv=193.8kips OW = �v x V. = 145.35 kips Vo.y / oVn = 0.108 PASS - Design shear capacity exceeds ultimate shear load dv2 = 20.375 in 1, = 24.375 in lyp = 24.375 in bn = 2 x (Ixt + dv2) + 2 x (lyt + dv2) = 97.500 in Ap = Ix,penm x ly,perim = 594.141 in2 Aour = Ap - Ixt x lyt = 578.141 in2 qup.svg = 2.667 ksf Fup = yD x FDm + yD x Ap x Fsm - qup.avg x Ap = 71.472 kips vug = max(Fup / (bo x dv2),0 psi) = 35.978 psi p = lyt / Ixi = 1.00 =40 vnpp = (2 + 4 / p) x 1v x d(f. x 1 psi) = 402.492 psi Vopb = (w x dv2 / bo + 2) x x q(fo x 1 psi) = 694.901 psi vopc = 4 x a, x 4(fs x 1 psi) = 268.328 psi vop = min(Vopo,Vopb,vopo) = 268.328 psi �v = 0.75 381 WTekld Project Job Ret. 383 Tedds Section Sheet no./rev. 1 Calc. by Date Chk'd by Date App'd by Date Z 5/1/2020 FOUNDATION ANALYSIS & DESIGN (ACI318) In accordance with ACI318-14 FOOTING ANALYSIS Length of foundation L. = 7.5 ft Width of foundation Ly = 7.5 ft Foundation area A = Lx x Ly = 56.25 ft2 Depth of foundation h = 24 in Depth of soil over foundation hsoa = 0 in Density of concrete yooro = 150.0 Ib/ft3 1.751 ksf 1.751 ksf Column no.1 details Length of column Width of column position in x-axis position in y-axis Soil properties Gross allowable bearing pressure Density of soil Angle of internal friction Design base friction angle Coefficient of base friction Ix1 = 12.00 in ly1 = 12.00 in x1 = 45.00 in y1 = 45.00 in gaimw Gross = 2.667 ksf ra =120.0 Ib/ft3 ob = 30.0 deg . gbb = 30.0 deg tan(gbb) = 0.577 1.935 ksf 1.935 ksf Tedds calculation version 3.2.08 383 ® zf Project Job Ref. 385 Tedds Section Sheet no./rev. 3 Calc. by Date Chk'd by Date App'd by Date z 5/1/2020 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis Eccentricity of base reaction in y-axis Pad base pressures Minimum base pressure Maximum base pressure Allowable bearing capacity Allowable bearing capacity FOOTING DESIGN (AC1318) In accordance with AC1318.14 Material details Compressive strength of concrete Yield strength of reinforcement Cover to reinforcement Concrete type Concrete modification factor Column type Analysis and design of concrete footing Load combinations per ASCE 7-10 1.4D (0.149) 1.2D + 1.61- + 0.51-r (0.227) 1.21D + 1.01- + 1.61-r (0.209) (1.2 + 0.2 x SDs)D + 1.01- + 0.25 + 1.0E (0.236) (0.9 - 0.2 x SDs)D + 1.0E (0,103) ed.=Md./Fd=-L./2=0.749 in edy=May/Fdx-Ly/2=0in q1=Fd=x(1-6xedx/L.-6xedy/Ly) /(L.xLy)=1.751ksf q2 = Fd: x (1 - 6 x edx / Lx + 6 x edy / Ly) / (Lx x Ly) = 1.751 ksf q3=Fd.x(1+6xedx/L.-6xad, /Ly)/(Lx xLy)=1.935ksf q4=Fd:x(1+6xedx/Lx+6xedy/Ly) /(L.xLy) =1.935ksf groin = min(g1,g2,q3,q4) = 1.751 ksf ci a. = max(g1,g2,q3,q4) = 1.935 ksf q,d,ow = clall.w_Gross = 2.667 ksf q.. / clan.. = 0.726 PASS - Allowable bearing capacity exceeds design base pressure f. = 4500 psi fy = 60000 psi Cnom = 3 In Normal weight X = 1.00 Concrete Combination 14 results: (1.2 + 0.2 x SDs)D + 1.01- + 0.25 + 1.0E Forces on foundation Ultimate force in x-axis Fox = yE x FE.1 = 6.2 kips Ultimate force in z-axis Fux = yD x A x Fs.4 + yD X FDz1 + yL x FL41 + yE x FEz1 = 138.0 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mo. = yD x A x Fsm x Lx / 2 + yD x (FDz1 X X1) + yL x (Fu1 X x1) + yE x (FE¢i x x1+Fe.1 x h) = 530.0 kip_ft Ultimate moment in y-axis, about y is 0 Muy = yD x A x Fs,d x Ly / 2 + yD x (FD.1 x Y1) + yL x (FLz1 x Y1) + yE x (FEzt x y1) = 517.6 kip_ft 385 AV Ga Project Job Ref. 387 Tedds Section Sheet no./rev. 5 Calc. by Date Chk-d by Date App'U by Date Z 5/1/2020 One-way shear design, x direction Ultimate shear force Depth to reinforcement Shear strength reduction factor Nominal shear capacity (Eq. 22.5.5.1) Design shear capacity W.,mex / OMn = 0.250 PASS - Design moment capacity exceeds ultimate moment load W. = 25.655 kips dv = min(h - cnom - Oybot - Ox.bot /2,h - cnom - O.mp / 2) = 20.062 in �v = 0.75 Vo = 2 x R x 4(fo x 1 psi) x Lv x dx = 242.25 kips OVn = ov x V. = 181.688 kips W./OVn=0.141 PASS - Design shear capacity exceeds ultimate shear load Shear diagram, y axis (kips) Moment diagram, y axis (kip_ft) 804 0 0 eF m.v. 107 Moment design, ydirection, positive moment Ultimate bending moment Wy.max = 80.372 kip_ft Tension reinforcement provided 12 No.5 bottom bars (7.5 in c/c) Area of tension reinforcement provided Asy.bot.pmv = 3.72 in Minimum area of reinforcement (8.6.1.1) As.min = 0.0018 x Lx x h = 3.888 in FAIL - Minimum area of reinforcement required exceeds area of reinforcement provided Maximum spacing of reinforcement (8.7.2.2) smex = min(2 x h, 18 in) = 18 in PASS - Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement Depth of compression block Neutral axis factor Depth to neutral axis Strain in tensile reinforcement (8.3.3.1) Nominal moment capacity Flexural strength reduction factor Design moment capacity d = h - Cnom - 0x.bot - 0y.bot / 2 = 20.062 in a = Asynot.p,ov x fy / (0.85 x fo x Lx) = 0.648 in pt = 0.83 c=a/Rt=0.786in ct = 0.003 x d / c - 0.003 = 0.07358 PASS - Tensile strain exceeds minimum required, 0.004 Mn = Asy,bot.pmv x fy x (d - a / 2) = 367.133 kip_ft �f = min(max(0.65 + (Et - 0.002) x (250 / 3), 0.65), 0.9) = 0,900 �Mn = Of x Mn = 330.419 kip_ft 387 . d Project Job Ref. 389 Tedds Section Sheet no./rev. 7 Calc. by Date Chk'd by Date App'd by Date Z 5/1/2020 y-12 NoS bdlan bars (7.6ln tle) 12 Nostop here (]S in Gc) RE �y9= ag sum go m feR ae �. a 2.a 1.0 RE r Q : �. NM�a'666 s,a x = e cg e 12 Na.S bollan tars (] Sin Gc) 12 %.5 tap bars (7.5 in Gs) 389 ® TRW Tedds Project Job Ref. 391 Section Sheet no./rev. 2 Cale. by Date Chk'd by Date App'd by Date z 5/1/2020 Column no.1 loads Dead load in z FOz1 = 51.5 kips Live load in z FLz1 = 27.9 kips Live roof load in z FLrz1 = 7.1 kips Footing analysis for soil and stability Load combinations per ASCE 7-10 1.OD (0.608) 1.01D + 1.OL (0.856) 1.01D + 1.01-r (0.671) 1.01D + 0.751- + 0.751r (0.841) (1.0 + 0.14 x SDS)D + 0.7E (0.700) (1.0 + 0.10 x SDS)D + 0.75L + 0.755 + 0.525E (0.859) (0.6 - 0.14 x SDS)D + 0.7E (0.273) Combination 14 results: (1.0 + 0.10 x SDs)D + 0.75L + 0.75S + 0.525E Forces on foundation Force in z-axis Fez = 70 x A x F,a4 + y0 x FDz1 + yL x F�1 = 96.7 kips Moments on foundation Moment in x-axis, about x is 0 Mdx = y0 x A x Fain x Lx / 2 + YD x (FDz1 x x1) + yL x (Fui x x1) = 362.5 kip_ft Moment in y-axis, about y is 0 May = y0 x A x Fsm x Ly / 2 + yD x (FDz1 x Y1) + yr x (Fyz1 x y1) = 362.5 kip_ft Uplift verification Vertical force Paz = 96.676 kips PASS - Foundation is not subject to uplift Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis ed. = Max / Fdz - Lx / 2 = 0 in Eccentricity of base reaction in y-axis edy = May / Fdz - Ly / 2 = 0 in Pad base pressures q1=Fdzx(1-6xedx/Lx-6xedy/Ly)/(LxxLy)=1.719ksf q2=Fd:x(1-6xedx/Lx+6xedy/Ly)/(L.xLy)=1.719ksf q3=Fdzx(1+6xedx/Lx-6xedy/Ly)/(L..Ly)=1.719ksf q4=Fdzx(1+6xed%/Lx+6xedy/Ly)/(LxxLy)=1.719ksf Minimum base pressure q.in = min(g1,g2,q3,q4) = 1.719 ksf Maximum base pressure gmax = max(g1,g2,q3,q4) = 1.719 ksf Allowable bearing capacity Allowable bearing capacity qm.o = gauow_G,.s. = 2 ksf q.. / ca. = 0.859 PASS - Allowable bearing capacity exceeds design base pressure FOOTING DESIGN (AC1318) In accordance with AC1318-14 391 OFTeklai Project Job Ref. 393 Tedds Section Sheet no./rev. 4 Calc. by Date Chk'd by Date App'd by Date 2 5/1/2020 Moment diagram, x axis (kip_ft) r7 A 0 0 ....w .: _ a $, a � fix 103.1 Moment design, x direction, positive moment Ultimate bending moment M..x.mex = 77.427 kip_ft Tension reinforcement provided 12 No.5 bottom bars (7.5 in c/c) Area of tension reinforcement provided Asx.bot.pmv = 3.72 in2 Minimum area of reinforcement (8.6.1.1) kmm = 0.0018 x Ly x h = 3.888 in2 FAIL - Minimum area of reinforcement required exceeds area of reinforcement provided Maximum spacing of reinforcement (8.7.2.2) sm. = min(2 x h, 18 in) = 18 in PASS - Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement Depth of compression block Neutral axis factor Depth to neutral axis Strain in tensile reinforcement (8.3.3.1) Nominal moment capacity Flexural strength reduction factor Design moment capacity One-way shear design, x direction Ultimate shear force Depth to reinforcement Shear strength reduction factor Nominal shear capacity (Eq. 22.5.5.1) Design shear capacity d = h - Cnom - �x.bot / 2 = 20.687 in a = Asx.bot.pmv x fy / (0.85 x fo x Ly) = 0.648 in pt = 0.83 c=a/pt=0.786in ct = 0.003 x d / c - 0.003 = 0.07597 PASS - Tensile strain exceeds minimum required, 0.004 Mn = Asx.bot.prov x fy x (d - a / 2) = 378.758 kip It �f = min(max(0.65 + (Et - 0.002) x (250 / 3), 0.65), 0.9) = 0.900 0Mn = �f x Mn = 340.882 kip_ft Max.max / 0Mn = 0.227 PASS - Design moment capacity exceeds ultimate moment load Wx = 23.137 kips dv = min(h - Cr.. - �x.bct / 2,h - Cnom - ox.top / 2) = 20.687 in ov = 0.75 Vn = 2 x ?u x 4(fc x 1 psi) x Ly x dv = 249.797 kips �Vn = �v x V. = 187.348 kips Wp / OVn = 0.123 PASS - Design shear capacity exceeds ultimate shear load Shear diagram, y axis (kips) 55 393 r AV Te d Project Job Per. 395 Tedds Section Sheet no./rev. 6 Calc. by Date Chk'd by Date App'd by Date Z 5/1/2020 Ultimate bearing pressure at center of shear area cup., = 2.315 ksf Ultimate shear load Fup = yD x FDz1 + yr x Fu1 + yLr x FLrz1 + yD x Ap x Fsva - qupavg x Ap = 95.728 kips Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Design shear stress capacity (8.5.1.1(d)) 12 No.S top bars (7..5 in Uc) vug = max(Fup / (bo x dv2),0 psi) = 36.280 psi p=ly1/Ix1=1.00 w =40 Vcpa = (2 + 4 / p) x a, x 4(fu x 1 psi) = 402.492 psi Vcpb = (w x dv2 / bo + 2) x X x q(f. x 1 psi) = 556.341 psi v.p. = 4 x T, x q(fc x 1 psi) = 268.328 psi vcp = min(Vupa,Vcpb,vcpc) = 268.328 psi Ov = 0.75 Vn = vnp = 268.328 psi �Vn = Ov x vn = 201.246 psi Vug/OW=0.180 PASS - Design shear stress capacity exceeds ultimate shear stress load bars (7.5 in c/c) s (7.5 in Gc) 395 397 CRECT30X30 0 0 X X 0 0 H Fn W w U U CRECT30X30 Member Ca s Loads: DL PreComp - PreComposite Dead Load Results for LC 1. Service Dead FOUNDATION SK-2 POOL FOUNDATION POOL.rn 397 Company 399 Designer Job Number Checked By: �a nT.•cr.+eucoa'-AIY Model Name (Global) Model Settings M Slab Mesh Yes Floor Live Load Code RISAFloor Version 14.0.0 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\POOL.rfl] 399 Page 1 Company Designer 401 111RISAJob Number Checked By: FK Model Name Concrete Properties I K.1 P rkcn r-, n,.n AL. Th.— M r rl.-44WO FnNel i —"- ai— C —ir Qk— G — 1 Conc450ONW 366-6 1680 A .6 .15 4.5 60 60 '•d6r,635(10NW-, J,' 3409,1"'1482- ' 15 15 —1 3 ConG4000NWT 3644 1584 .15 .6 .145 1 4 11 60 60 4--- Conq3000LW', L, 2085', j J5 ' -- - 11 � ".1 '11 3 - 60 60 5 Conc3500L.W 2252 979 15 1 .6 .11 3.5 .75 60 60 -C -W` - 11 60,: General Design Strip Parameters RC Slab Rebar Parameters Label Ton Bar Bottom Bar Max TnnRnr.0nar.1n Min TnnRRr Max RntRnr.RnAr.i Min RntRnr.Rnnr.i Rnmrhml 1 N-S Rebar #5 #5 18 18 3 1 1 3'Uniform) a .R� N/A N/A - — N/A '. -- - 3- N/A �d N/A Slab General Properties Label Reinforce Design Direction (de ) Material Thicknesstnl Diaphr F J-Rigid Definitionll---- Two Way N/AI Conc450ONW i2 Serni-k6l [ -2:-:j',: id 1: -A Two - -NIA I. conc4sooNw- - Slab Loads Stabs: POOL (Slab) Label Definition Thicjkne-ss n Material I r F t r S1 Rigid Definition 12 LConC4500NW Rigid 25 Slabs: FOUNDATION Label Definition Thickness[n] Matedal T e Icr Factor F— No Data to Print Column Concrete Design Parameters: POOL (Slab) Label Lu-y_qftl-- Lu-z"ft KV Ka Cm-yY Cm-zz sway z sway ler Factor L— No Data to Print ... Column Concrete Design Parameters: FOUNDATION Label L u-vvrftl Lu-zzfffl Kw Kzz Cm-VV Cm-= y sway z sway lcr Factor i CSELiT- 3 RISAFloor Version 14.0.0 [SAProjects\20\20055 -4 Geneve -Badvar\Caics\2020-04-12\POOL.rfiI 40IPage 3 Company Designer 403 Job Number Checked By: Model Name Line Loads: POOL (Slab) o w.:, r _:w 1_� r,_:_. �­ r,-_ I I 1 -1 �­ n__. 1_1 „__. , , n. — , , r— 11 3 N _ . _ .9 9 ___ .. __.. __....._.. __ . LL-Non - _may;... 3 N2 N1 .9 .9 LL-Non 4° N N3 9 9 J LL-Non Line Loads: FOUNDATION Start Point End Point Start Pre... End PreD...Start Post..End Post, -.-Start LL[k End LLrk/fQ LL Type St Dyn Load[k/�_End Dyn Load[.-. _ No Data to Print ... Combinations I ahal Rnl Cat Fa Caf Fa Ca} Fa Ca} Fa Cat Fart Ca} Fac} Rat Fac} ra} Far} ra} Far} ra} Farf ! 1 'Service Dead Yes! DL 1 2 3 Sey[c Dead`+:: Strength Dead Yes Yes 'QL DL :°'1 1.4 LL i__� 1 LLS 1 C ° 4 StengthDeaes D1'1.2° LL 16 LLS 1:6.. 5 LL 'IYes, LL 1 Floors 1 POOL (Slab) (Slab) 6 Concrete Slab POOL 1 �MOnlent0 FOUNDATION = 0 Floor Beam° POOL 1 Mamer>toO Beam Desi_pn for Concrete: POOL (Slab) Label Site licit Vmax(k] Vn[kl Mmaldk=ft] k-ft Max Start... Max End... Min Start... Min End R... No Data to Print ... Beam Design for Concrete: FOUNDATION I ah.1 Six Fvnrri} \/mavr4l \/nry AAm avr4_wi KAnn,_ffl RAm. ShH AAA.. CnA RAin Cho RAin CnA D 1 M1 CRECT30... No' 3.864 105.403 .215 3886 70_025 69.583 18.059 i 3 M° M3 CREC CRECT30... o No 57.203 1878i7 148.78, -150.167 381.86 92333 . 68.871 °.18.265 9-:215 28015 ==2 460164.' 68.803 17.793 ' 17.764 4 f 4 :..' CR C73o.•� ° o . 62s581 154.469 -218.157 : 8 ,86 . 41'i753, 91 405 24 809 ``24 659 ._ Beam Code Summary for Concrete: POOL (Slab) Label Sim Expicit Material B in ... Loc[ftl LC Deft Ch... L [S] Cat Shear LocrftlLC No Data to Print ... Beam Code Summary for Concrete: FOUNDATION I oh.1 cix FvninB AAMn I M—Ainn I nnrwt I r nnw r6 1 ..nrwl rn1 C6nn. 1 ....rwl r 1 M1 CRECT.. No Conc450ONW .391 7.75 4 036 0 LL .492 110.979I 4 3 MZ M3 CRECTl.Nb°o40{tW631°.184 CRECT.. No Conc450ONW .437 7.75 1 4 .036 3o2 0 p�+� LL .579 �3.683 42., _ 513 i 3.562 ! 4 4 4 _. M4' CRECT No Conc450_ONW .' , 665 17,813 4 „e _056 _.. 9.5• DL+LL ,54 15.438 i 4,- Version 14.0.0 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\POOL.rfiI 403 Page 5 Company Designer 405 IIIRISAJob Number Checked By: Model Name Column Forces/Moments, Dead & Other Categories: Moment V-y (Top) ('.nlijmn 0 1 ft Nn Flmr I PhPI r.nnMinnt Vlnv Ras. P..,fin Kh.v Ras. P.., III P,.rV ni nI r)i I rkl 019!V1 r)lq&l OIA&I 1 CS1 1 FOUNDA...--O 1�9-26.113 5 63.861 �84.751� 0 0- 0 0 'OUN 4101,444A-p ' 1 F 0,0 -25.725 i 63.639 �84.219� 0 0 0 0 C --J-:-FOUNQA-..j"j5,5LO 1, AJ:747--, 66 7T -8 26 �-- o - - 1,, n - Column Forces/Moments, Dead & Other Categories : Moment z-z (Bot) column 'S...Ltt No. Floor Label Uoordinat. K 4exl3ase Reactio ... Max Base Rsec...rDLPre k DL 01-1 [k] 1 CS1 � 1 I'FOUNDA... � 0,19 148.696 11 4 ;49.887 66.97 0 i 0' 0 3 X "CS L 2 C§_ 1 FOUNDA�-7-fi,�J FOUNDA... 0,0 42.765 5 -49.89 -66.9..! �a �j 0 -0,, 0 0 4:� J FQUNDk�- - W- �- 8331ILA, *15- r Column Forces/Moments, Dead & Other Categories : Moment y-y (Bot) rnh— Q I P IN[- Mi— I -k-I RA— 0— D- +;- KA D 0 MI 0,1,1 MI n.1 nI 4 n.1 1. nn.l nI qn.1 nI A n.1 I CS1 I FOUNDA... 0,19 -26.113 5 -31.93 -- -42.3..0. 0 0 0 QS2 -'UNDA-� 15,511191 ,; 2- 1- A .8 1 0 0" - Gc: 3 CS3 I FOUNDA... i 0,0 1 -25.725 1 5 1-31.819142.1 ... 0 0 0 --i,-—A -31'82 �Z O d Column Forces/Moments, Floor Live Load: Axial Force q I P hin Pi— i nh.1 r—Min Gc Auni6le Ar I I Dalr rre Ki—D-A.— i i ri,i i i m t.. i i o D- ki--D-A i i om i i CS1 I FOUNDA... 0,19 j 71.984 1 0 1 0 3 2 � CS3 1 FOUNDA... i -5-191 0 0 73 443'-- 73.92 :-:--f- I 1 :----XQ94 'I 36.794 '0 o 1 0 1 0 0 - 0 - -4-c--JCS,V"-I I fc - IFQUND,�,u. 1� -1 2 - ] 96.743 1, 1� -I =0 Column Forces/Moments, Floor Live Load: Shear z-z P.H.,ihi.A, I I iinil.. iicD. Ki—D-A iiQl it CS1 FOUNDA.. . 0,19 71.984 1 15.668 0 1 0 1 0-- —i 00 CS3 1 FOUNDA..., 0,0 73.92 1 15.435 0 0 5,6 -1� 44V�--- il :JL- 1, 0 Column ForcesNoments, Floor Live Load: Shear y-y column b—Lift 0. Floor a a oo in ... Reducible Ar.. LL Reduce NQnReduce LLIK] LL[ u... a... NonRecIL...LLW�'... i CS1 1 FOUNDA... 0,19 71.984 1 1 1 25.�625 - 0 1 0 0 9z — �"_ �K:7j�_ 2,1, 3 CS3 1 1 FOUNDA... 1 0,0 73.92 1 -25.659 1 0 1 0 0 1, 0' Column ForcesNoments, Floor Live Load: Moment z-z (Top) P.,I,,,ihi.A, I I PM11,= Kinnpnr,,­iin,i iri,ifi, iiQDn hi—DnA iicl it 1 CS1 1 FOUNDA... 0,19 71.984 1 1 A�"F A.15.509 , 75,443 ---85415, �-87:398, 0 3 CS3 1 FOUNDA..." 0 0 73.92 1 85.531 0 1 0 0 RISAFloor Version 14.0.0 [SAProjects\20\20055 -4 Geneve - Badvar\Caics\2020-04-12\POOL.rfi] 405Page 7 Company Designer 407 hIRISAJob Number Checked By: a.•s;+..�.::;<;:,Rcee,-nw Model Name Concrete Column Bending Reinforcement: POOL (Slab) Column Sh ae Span Perim Bars No Data to Print ... Concrete Column Bending Reinforcement: FOUNDATION Column Shape Span Perim Bars 1 CS1 L1 CRND30 1 18 #6 CS2',L1 , °• ° .I =CRNQO 3 CS3 L1 CRND30 1 18 #6 Concrete Column Shear Reinforcement: POOL (Slab) Column Span Region 1 Region 2 Reaion 3 Region 4 I No Data to Print ... Concrete Column Shear Reinforcement: FOUNDATION Column Snan Reaion 1 Reninn 9 Reninn 3 Reninn d 1 CS1 L1 1 4 #5 12in GS2 3 4 i CS3 L1 CS.4`L1 1 1. 4 #5 12in 4#5Co)12in: Concrete Wall Reinforcement: POOL (Slab) Wall Region Thickness h Hor Bar Size Vert Bar Size 1 WP1 R1 12 _ #5 16inoc of #5@16inoc(�_� 2 W0 _ R1- 2 #5@�15inoc.+',ef ' #;A '26inou' 3 WP3 R1 12 05 16in oc of #5@ 16in oc of d r•,` .;,..` WP4 '. R1'' 12 #5rCil161n:oc{ef) ` `t #56,46rioe:tef)- .; Concrete Wall Reinforcement: FOUNDATION Wall Rcninn Thicknccerinl Wn, P., Civ \/oa R„ Ci— �WP1 R1 12 �` #5 16inoc of #5@16moc of i 2 WP2 R1 1 12 #50'1r oc�ef� m 5 161nod:df 3 WP3 R1 12 #5 16inoc of #5 16inoc1ff0 WP4: R1 ' 12 45 '16 ri oc of #5 16in oc +eff _.. Wall Forces, Dead and Other: POOL (Slab) Wall Si I ncfffl Fnd I ncrftl I ennlhfffl t,Aar Ras< hh. Racc ni Ik1 Pm ni rki n1 1 r41 ni 9M ni 4rtrl ni AM 1 WP1 019. ! 15.5,19 15.5 97.866 4 46.766 36.329 0 0 0 0 ° 0 0, .;' .,19. ` 1"47 27A". s. 4 • .:4s63...'°47.283 - ` ' 0.° °� ° ° '� 3 W P3 0 0 15.5,0 ` 15.5 106.291 4 48.787 36.85 0 1 0 0 0 4`° ` WPC 1 b 5 0;° i i 5,'1'7.5° 9 7.5° ' ° 155.28 �` ' 4°; .6716:563, ..e' . ` Q: , . 0 0- ; Wall Forces, Dead and Other: FOUNDATION Wall St Loc ftl End Loc] Length ft] Max Base...Max Base... DLK Pre DLfkl No Data to Print OL1.[k]_ OL21�c] OL1k� 3OL4�C]_ ... RISAFIoor Version 14.0.0 [S:\Projects\20\20055 -4 Geneve - Badvar\Calcs\2020-04-12\POOL.rfiI 407 Page 9 Company 409 Designer Job Number Checked By: Model Name Strip Reinforcing: POOL (Slab) (Continued) Strip Reinforcing: FOUNDATION L� Regipn Location UC Top —Top —Bars Lenathfftl Gov De UC Bot Bot Bars Leng�—] Gov De ... UC ShearGov De... No Data to Print ... 409 411 Loads: ELX+Z Load X Plus Z 1 N4 SK-1 POOL SEISMIC POOL.rn WRISACompany Designer 413 Job Number Checked By: Model Name (Global) Model Settings, Continued Yes R Z 1.081 in Concrete Properties Label E fksil G Flksil Nu Them OF DpnqitAk/ft f r.lk sif I nmhrin Flex Steelf Shp.w.14P.P. 1 Conc4500NW 3865 168O A 15 4.5 1 1 60 1 60 --2 "'C' 66050OUff" 34,09 "6a Conr,4000NW 3644 1584 .15 1 .6 .145 4 1 60 11 60 -3 4:- Obftc:300OLW 6: A-1,: 5 Conc350OLW 2252 979 :15 .6 .11 3 Con c4 00 QLW I--2240 60, LZ :% Joint Coordinates and Temperatures F1 F2 RISA-31D Version 17.0.4 [SAProjects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\POOL.rfiI 413 Page 2 Company 415 WRISA Designer Job Number Checked By: Model Name Joint Loads and Enforced Displacements (BLC 12 : Partial Z Wind Load 1) (Continued) Joint Label L Direction Ma ni>�eak k-ft1 in r k*s^2/ftk*s^2*ft 1 N18 L Z 1 1.432 Joint Loads and Enforced Displacements (BLC 13 : Partial Z Wind Load 2) _ Joint Label LDM Direction M nitude k k-ft in rad k*s^2/ft k*s^2*ft N19 L Z 1.432. Joint Loads and Enforced Displacements (BLC 14 : Earthquake Load X) Joint Label LDM Direction Mao nitude (k k-ft),Ain,red), S 2/ft k*s^2*ftH_, 1 N20 L __jX 3.686 1 Joint Loads and Enforced Displacements (BLC 15 : Earthquake Load X Plus Z Eccentr) Joint Label ... LDM Direction M nite_de[((k k-ft),_(in rad) (k*s^2/ft k* ^s 2*ftll*ftll 1 1 N21 L X 3.686 Joint Loads and Enforced Displacements (BLC 16 : Earthquake LoadX Minus ZEccent) Joint Label LDM Direction Meanitudef(k k-ft). (in rad),_(k*s^2/ft k*s^2*ft�] 1 j N22 L X I 3.686 Joint Loads and Enforced Displacements (BLC 17 : Earthquake Load Z) Joint Label LDM Direction Magnitude[( k-Rl, j_,r3d) _(k*s^2/ft k*s^2*R)1 1 N20 L Z 3.686 Joint Loads and Enforced Displacements (BLC 18 : Earthquake Load Plus X Eccentr) Joint Label L D,M Direction Ma nitude k k-ft in r d k*s^2/ft k*s^2*ft 1 N23 L Z 3.686 Joint Loads and Enforced Displacements (BLC 19 : Earthquake Load Minus X Eccent) Joint Label L D M D'r tion M nitude k k-ft in rad k*s^2/ft k*s^ *ft 1 N24 L Z 3.686 Member Distributed Loads Member Label Direction Start MagnitudeRlit F._End Ma, nitude[k/ftF Start Location[ft.W End Location[ft%] L __ No Data to Print ... Member Area Loads JointA Joint Joint Joint Direction Distribution Magnitudekr sfl No Data to Print ... Basic Load Cases BLC Descrintinn Catennry X ('raWv V ('m%Afv 7 C mvifv .Inint Pnint Distnhidarl AraalMe GllrfanP.f 1 Dead Load DL 1 30 4 Z 1 sve Load 77 j g Live Load Special (public assemb 4. ° R-pbf I Ve Load ° ° RLL ; RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Ca[cs\2020-04-12\POOL.rfiI 415 Page 4 Company Designer 417 IRISA Job Number : Checked By: ue,vm"I`emnihr Model Name Load Combinations (Continued) RISA-31D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\POOL.rflI 417 Page 6 Company 419 Designer Job Number Checked By:_ Fcte7K,;"WFL'! Model Name Envelope Maximum Member Section Forces (Continued) Envelope Concrete Beam Design Results nncm her Shonc I Ir U. 1 nrifil 1 it i t i it AAo 1 n rftl 1 Ir 1 r Rhcer I nrmi I Ir i t Phi*nAm T Phi*KAn7 Phi*\/nvrkl 1 F2 M1 !CRECT3... .023 I14.2081 16 i .042 2.745 5 .029 5.813 16 287.465 343.674 111.591 j_ .13.9 ,3563 6, :` . °.128 5.74, i 5 287,4fi5 43.6Z4. 11(591 _I 3 F2 M3 CRECT3... .018 14.208i 23 039 11.948 5 .039 ! 9.688 11 287.465 343.674 79.052 4; F2° M4 CREC '.1,188' .'i5 1 .041`: 15,438 5 036 1'3.458 . �6 = 287;465 : 43:6?�� 052 Envelope Concrete Column Design Results n.J..-- 0L....... 1 Ir RA . --I.I ..1 . n CA..... . r I ....ral n:.. n6: ..--I o.. n, n.1.... n. wl \A..-dL wl v....n 1 xi,,i 1 CS1 L1'CRND30 1 .093 3.75 5 1 .064 5 3.75 V .65 ...y 2435.412 ..... ..... .... _.. _. 615.717170.2...1177.2... .2 CS2 LICRND3p .111 375 5 111 5'i 3,75' .65 MO7951.. '. `805-64,11 .2;.1�702. 3 CS3 L1CRND301.097 3.75 5 .071 5 3.75 .65 234777T 665.709r702._170.z. GS4 -L1 `CRND3p 2093.41'3t 7$4:D67170,,.17� 2:I Wall Panel ACl 318-14. Concrete Code Checks (In Plane) INali Panel Pcninn AAev 1 Ir 1 r Checr I Ir I r Pn*nhirkl Mn*nhilk _fFl \/n*nhifkl 1 WP1 R1 .035 5 .012 64 NC 3408.677 1553.248 2. WP2. . A A23.. 5 R11 .. a4 5 10.75� ` NC '.3 ` 678,:�76 3 WP3 R1 .025 5 .011 77 4654.532 1240.83 553.248 4 _SIVP4 i R1- - aSS 55 .0112 73- . - . NC ` ` `3126.056_ - 537.438 Wall Panel ACI 318-14. Concrete Code Checks (Out Plane) \Noll Poncl Pcninn U.I Ir, I r Shcor 1 it I r Pn*nhirk/Hl nAn*nhilk _H/fFl \/n*nhwwft1 r 1 WP1 R1 I .106 Ext 74 .024 5 NC 12.162 11.973 � WR2 ° : R1° - p 2 lnt °. °,- 54 . °.' ` ,01t:;, 64 ;' � 'N °. ;12389; ..11: 1a ° 3 WP3 R1 OS �Ext . 5 .01 _ 61 NC 12.162 _ 11.942--j 4` WP 1 77. ° NC 1f696, ,. 11963 ,j RISA-3D Version 17.0.4 [S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\POOL.rflI 419 Page 8 Project Name/Number : rw 421 Use menu item Settings > Printing & Title Block Title RW1A 8ft Page: 2 to set these five lines of information Dsgnr: TJB Date: 19 APR 2020 for your program. Description.... This Wall in File: S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\nw.RPX Cantilevered Retaining Wall Code: CBC 2019,ACI 318-14,TMS 402-16 Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) : 0.2326 in2/ft (4/3)' As : 0.3102 in2/ft Min Stem T&S Reinf Area 1.665 in2 200bd/fy : 200(12)(6.1875)/60000 : 0.2475 in2/ft Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft 0.0018bh : 0.0018(12)(8) : 0.1728 in2/ft Horizontal Reinforcing Options : ------=----- One layer of: Two layers of: Required Area : 0.2475 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area : 0.372 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area : 0.8382 in2/ft #6@ 27.50 in #6@ 55.00 in Footing Data Toe Width = 2.75ft Heel Width = 1.00 Total Footing Width = 3.75 Footing Thickness = 12.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 2.00 It fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf Min. As % = 0.0018 Cover @ Top 2.00 @ Btm: 3.00 in Footing Design Results 7gE. Hard Factored Pressure = 1,034 870 psf Mu': Upward = 45,091 49 ft-# Mu': Downward = 14,702 468 ft-# Mu: Design = 2,532 419 ft-# Actual 1-Way Shear = 12.35 11.11 psi Allow 1-Way Shear = 75.00 40.00 psi Toe Reinforcing = # 5 @ 10.00 in Heel Reinforcing = None Spec'd Key Reinforcing = None Spec'd Footing Torsion, Tu = 0.00 ft-Ibs Footing Allow. Torsion, phi Tu = 0.00 ft-Ibs If torsion exceeds allowable, provide supplemental design forfooting torsion. Other Acceptable Sizes & Spacings Toe: #4@ 9.25 in, #5@ 14.35 in, #6@ 20.37 in, #7@ 27.77 in, #8@ 36.57 in, #9@ 46 Heel: phiMn = phi'S'lambda'sgrt(fc)'Sm Key: No key defined Min footing T&S reinf Area Min footing T&S reinf Area per foot If one layer of horizontal bars: #4@ 9.26 in #5@ 14.35 in #6@ 20.37 in 0.97 in2 0.26 in2 /it If two layers of horizontal bars: #4@ 18.52 in #5@ 28.70 in #6@ 40.74 in 421 Project Name/Number: rw 423 _ . Use menu item Settings > Printing & Title Block Title RW1A lift seismic Page: 1 to set these five lines of information Dsgnr: TJB Date: 19 APR 2020 for your program. Description.... This Wall in File: S:\Projects\2M20055 - 4 Geneve - BadvaACalcs\2020-04-12\rw.RPX RetainPr0(c) 1987-2019, Build 11.20.03.31 License: KW-0605608o Cantilevered Retaining Wall Code: CBC 2019,AC1318-14,TMS 402-16 Criteria ' Soil Data Retained Height = 8.00 it Allow Soil Bearing = 2,666.0 psf Wall height above soil = 0.67 ft Equivalent Fluid Pressure Method Active Heel Pressure = 45.0 psf/ft Slope Behind Wall = 0.00 - Height of Soil over Toe = 12.00 in = Water height over heel = 0.0 ft Passive Pressure = 400.0 psf/ft Soil Density, Heel = 120.00 pcf Soil Density, Toe = 0.00 pcf FootingIlSoil Friction = 0.300 Soil height to ignore for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel - 0.0 psf Lateral Load = 0.0 #/ft Adjacent Footing Load = 0.0 lbs Used To Resist Sliding & Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 ...Height to Bottom = 0.00 It Eccentricity = 0.00 in Used for Sliding & Overturning Load Type = Wind (W) Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem (Service Level) Footing Type Line Load Base Above/Below Soil _ 0.0 ft Axial Dead Load = 320.0 Ibs Wind on Exposed Stem = 0.0 psf at Back of Wall Axial Live Load = 480.0 Ibs (Service Level) Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Earth Pressure Seismic Load Method : Inverted Triangular Total Strength -Level Seismic Load..... = 661.500 Ibs Load at top of Inverted Triangular Distribution ...... = 147.000 psf Total Service -Level Seismic Load..... = 463.050 Ibs (Strength) Design Summary -� Wall Stability Ratios Overturning = 1.13 Ratio < Slab Resists All Sliding I Total Bearing Load = 3,325 be ...resultant ecc. = 11.52 in Soil Pressure @ Toe = 1,658 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 2,666 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,321 psf ACI Factored @ Heel = 0 psf Footing Shear @ Toe = 24.6 psi OK Footing Shear @ Heel = 13.5 psi OK Allowable = 75.0 psi Sliding Calcs Lateral Sliding Force = 2,285.6 Ibs Vertical component of active lateral soil pressure IS considered in the calculation of soil bearing pressures. Load Factors--""-" Building Code CBC 2019,ACI Dead Load 1.200 Live Load 1.600 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000 Stem Construction Bottom Stem OK Design Height Above Fill; ft= 0.00 Wall Material Above "Hit" = Concrete 1.51 Design Method = LRFD Thickness = 8.00 Reber Size = # 5 Reber Spacing = 10.00 Reber Placed at = Edge Design Data fb/FB + fa/Fa = 0.982 Total Force @ Section Service Level Ibs = Strength Level Ibs= 2,957.3 Moment.... Actual Service Level ft-#= Strength Level ft-#= 9,454.2 Moment..... Allowable = 9,623.1 Shear..... Actual Service Level psi= Strength Level psi= 39.8 Shear..... Allowable psi= 75.0 Anet(Masonry) in2= Rebar Depth'd' in= 6.19 Masonry Data fm psi= Fs psi= Solid Grouting = Modular Ratio'n' _ Wall Weight psf = 100.0 Short Term Factor = Equiv. Solid Thick. _ Masonry Block Type = Medium Masonry Design Method = ASD Concrete Data fc psi = 2,500.0 Fy psi = 60,000.0 Weight _RFD 423 Project Name/Number : rw Use menu item Settings> Printing & Title Block Title RW1A 8ft seismic to set these five lines of information Dsgnr. TJB for your program. Description.... This Wall in File: S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\m.RPX 425 Page: 3 Date: 19 APR 2020 Lkense :-liw-o`soscoeo' Cantilevered Retaining Wall Code: CBC 2019,ACI 318-14,TMS 402-16 License To: BURKE STRUCTURAL ENGINEERS. PC of Overturnina & Resistina Forces & Moments Force Distance Moment Item Ibs ft ft-# HL Act Pres (so water tbl) 1,822.5 3.00 5,467.5 HL Act Pres (be water tbl) Hydrostatic Force Buoyant Force = Surcharge over Heel = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Seismic Earth Load = 463.1 6.00 2,778.3 Total = 2,285.6 O.T.M. = 8,245.8 Resisting/Overturning Ratio = 1.13 Vertical Loads used for Soil Pressure = 3,325.5 Ibs If seismic is included, the OTM and sliding ratios maybe 1.1 per section 1807.2.3 of IBC. Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Force Distance Moment Ibs It ft-# Soil Over HL (so. water tbl) 320.0 3.83 1,226.7 Soil Over HL (bel. water tbl) 3.83 1,226.7 W atre Table Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem= 800.0 3.33 1,066.7 " Axial Live Load on Stem = 480.0 3.33 1,600.0 Soil Over Toe = 1.50 Surcharge Over Toe = Stem Weight(s) = 867.0 3.33 2,890.0 Earth @ Stem Transitions= Footing Weight = 600.0 2.00 1,200.0 Key Weight = 2.50 Vert. Component = 738.5 4.00 2,953.8 Total = 2,845.5 Ibs R.M.= 9,337.2 * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. Tilt Horizontal Deflection at Too of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only) 0.100 in The above calculation is not valid if the heel soil bearin res.. re exceeds that of the toe because the wall would then tend to rotate into the retaineclagL 425 Project Name/Number : rw Use menu item Settings > Printing & Title Block Title RW1 B 11ft to set these five lines of information Dsgnr: TJB for your program. Description.... This Wall in File: S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\rw.RPX RetainPro (c) 1987-2019, Build 11.20.03.31 License: KW-06056080 Cantilevered Retaining Wall License To: BURKE STRUCTURAL ENGINEERS, PC Concrete Stem Rebar Area Details 1 2nd Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) : 0.1262 in2/ft (413) * As: 0.1683 in2/ft 2001bd/fy : 200(12)(8.1875)/60000 : 0,3275 in2/ft 0.0018bh : 0.0018(12)(10) : 0.216 in2/ft Required Area, 0.216 in2/ft Provided Area : 0.2325 in2/ft Maximum Area: 1.1092 in2/ft Bottom Stem As (based on applied moment) (4/3) * As: 200bd/fy : 200(12)(8.1875)/60000 0.0018bh : 0.0018(12)(10) : Required Area Provided Area Maximum Area 427 Page: 2 Date: 19 APR 2020 Code: CBC 2019,ACI 318-14,TMS 402-16 Min Stem T&S Reinf Area 1.841 in2 Min Stem T&S Reinf Area per ft of stem Height: 0,240 in2/ft Horizontal Reinforcing Options : One layer of: Two layers of: #4@ 10.00 in #4@ 20.00 in #5@ 15.50 in #5@ 31.00 in #6@ 22.00 in #6@ 44.00 in Vertical Reinforcing Horizontal Reinforcing 0.4429 in2/ft 0.5905 in2/ft Min Stem T&S Reinf Area 0.960 in2 0.3275 in2/ft Min Stem T&S Reinf Area per it of stem Height: 0.240 in2/ft 0.216 in2/ft Horizontal Reinforcing Options : One layer of: Two layers of: 0.4429 in2/ft #4@ 10.00 in #4@ 20.00 in 0.465 in2/ft #5@ 15.50 in #5@ 31.00 in 1.1092 in2/ft #6@ 22.00 in #6@ 44.00 in Footing Data Toe Width = 5.00 ft Heel Width = 1.00 Total Footing Width = 6.00 Footing Thickness = 12.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 2.00 ft fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf Min. As % = 0.0018 Cover @ Top 2.00 @ Btm = 3.00 in Footing Design Results mmi i Toe Heel Factored Pressure = 827 384 psi Mu': Upward = 105,626 5 ft-# Mu': Downward = 48,600 354 ft-# Mu: Design = 4,752 349 ft-# Actual 1-Way Shear = 12.49 18.49 psi Allow 1-Way Shear = 75.00 40.00 psi Toe Reinforcing = # 5 @ 8.00 in Heel Reinforcing = None Spec'd Key Reinforcing = None Spec'd Footing Torsion, Tu = 0.00 ft-Ibs Footing Allow. Torsion, phi Tu = 0.00 ft-Ibs If torsion exceeds allowable, provide supplemental design for footing torsion. Other Acceptable Sizes & Spacings Toe: #4@ 9.25 in, #5@ 14.35in, #6@ 20.37 in, #7@ 27.77 in, #8@ 36.57 in, #9@ 46 Heel: phiMn = phi'5'lam1bda'sgrt(fc)'Sm Key: No key defined Min footing T&S rein' Area Min footing T&S reinf Area per foot If one layer of horizontal bars: #4@ 9.26 in #5@ 14.35 in #6@ 20.37 in 1.56 in2 0.26 in2 6t If two layers of horizontal bars: #4@ 18.52 in #5@ 28.70 in #6@ 40.74 in 427 Project Name/Number; rw Use menu item Settings> Printing & Title Block Title RW1B 11ft SEISMIC to set these five lines of information Dsgnr: TJB for your program. Description.... This Wall in File: S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\m.RPX 429 Page: 1 Date: 19 APR 2020 RClClllrlU tGf 1-JO/-LUIi, oullu 11.GU.Ua.i1 License: KW-0e056080 _Cantilevered Retaining Wall Code: CBC2019,AC1318-14,TMS402-16 Retained Height = 11.00 ft Wall height above soil = 0.67 ft Slope Behind Wall = 0.00 Height of Soil over Toe = 12.00 in Water height over heel = 0.0 ft Allow Soil Bearing = 2,000.0 psf Equivalent Fluid Pressure Method Active Heel Pressure = 36.0 psf/ft Passive Pressure = 400.0 psf/ft Soil Density, Heel = 120.00 pcf Soil Density, Toe = 0.00 pcf FootingIlSoil Friction = 0.300 Soil height to ignore for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Surcharge Over Heel - 0.0 psf Lateral Load = 0.0 #/ft Used To Resist Sliding & Overturning ...Height to Top = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 it Used for Sliding & Overturning Load Type = Wind (W) Axial Load Applied to Stem (Service Level) Axial Dead Load = 0.0 Ibs Wind on Exposed Stem = 0.0 psf Axial Live Load = 0.0 Ibs (Service Level) Adjacent Footing Load Adjacent Footing Load = 0.0 Ibs Footing Width = 0.00 ft Eccentricity = 0.00 in Wall to Fig CL Dist = 0.00 ft Footing Type Line Load Base Above/Below Soil = 0.0 ft at Back of Wall Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Earth Pressure Seismic Load Method : Inverted Triangular Total Strength -Level Seismic Load.... . Load at top of Inverted Triangular Distribution ...... = 187.000 psf Total Service -Level Seismic Load.... . (Strength) Design Summary Stem Construction WEE A Design Height Above Ftg ft= Wall Stability Ratios Wall Material Above "Ht" _ Overturning = 1.16 Ratio < 1.51 Design Method = Slab Resists All Sliding 1 Thickness = Total Bearing Load = 3,806 Ibs ...resultant ecc. = 23.84 in Soil Pressure @ Toe = 1,696 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 2,000 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,374 psf ACI Factored @ Heel = 0 psf Footing Shear @ Toe = 19.7 psi OK Footing Shear @ Heel = 18.8 psi OK Allowable = 75.0 psi Sliding Calcs Lateral Sliding Force = 3,377.4 Ibs Reber Size = Reber Spacing = Reber Placed at = Design Data fb/FB+fa/Fa = Total Force @ Section Service Level Ibs = Strength Level Ibs= Moment.... Actual Service Level ft-#= Strength Level ft-#= Moment..... Allowable ft-#= Shear..... Actual Service Level psi= Strength Level psi= Shear..... Allowable psi = Anet(Masonry) in2= Reber Depth'd' in= Masonry Data fm psi= Fs psi= Vertical component of active lateral soil pressure IS Solid Grouting = considered in the calculation of soil bearing pressures. Modular Ratio'n' _ Load Factors - Building Code Dead Load Live Load Earth, H Wind, W Seismic, E CBC 2019,ACI 1,200 1.600 1.600 1.000 1.000 2nd Bottom Stem OK 4.00 Concrete LRFD 10.00 # 5 14.00 Edge Stem OK 0.00 Concrete LRFD 10.00 # 6 7.00 Edge 0.741 0.902 2,338.4 4,599.0 6,983.5 20,634.2 9,415.0 22,860.3 23.8 50.3 75.0 75.0 8.19 7.63 Wall Weight psi = 125.0 Short Term Factor = Equiv. Solid Thick. _ Masonry Block Type = Medium Weight Masonry Design Method = ASD 125.0 Concrete Data fc psi= 2,500.0 2,500.0 Fy psi = 60,000.0 60,000.0 = 1,122.000 Ibs 785.400 Ibs Project Name/Number : rw 431 Use menu item Settings> Printing & Title Block Title RW1B lift SEISMIC Page: 3 to set these five lines of information Dsgnr: TJB Date: 19 APR 2020 for your program. Description.... This Wall in File: S:\Projects\20\20055 -4 Geneve - Badvar\CalcM2020-04-12\rw.RPX RetalnPro (c) 1987-2019, Build 11.20.03.31 License: KW-06056080 Cantilevered Retaining Wall Code: CBC 2019,AC1 318-14,TMS 402-16 License To: BURKE STRUCTURAL ENGINEERS, PC Summary of Overturnina & Resistino Forces & Moments 1 Force Distance Moment Item fibs ft ft-# HL Act Pres (ab water tbl) 2,592.0 4.00 10,368.0 HL Act Pres (be water tbl) Hydrostatic Force Buoyant Force = Surcharge over Heel = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Seismic Earth Load = 785.4 8.00 6,283.2 Total = 3,377.4 O.T.M. = 16,651.2 Resisting/Overturning Ratio = 1.16 Vertical Loads used for Soil Pressure = 3,805.7 Ibs If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC. Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Force Distance Moment Ibs ft ft-# Soil Over HL (alb. water IN) 220.0 5.92 1,301.7 Soil Over HL (bel. water IN) 5.92 1,301.7 Weirs Table Sloped Soil Over Heel Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = * Axial Live Load on Stem = Soil Over Toe = 2.50 Surcharge Over Toe = Stem Weight(s) = 1,458.8 5.42 7,901.6 Earth @ Stem Transitions= Footing Weight = 900.0 3.00 2,700.0 Key Weight = 2.50 Vert. Component - _ 1,227.0_ 6.00 7,361.9 Total = 3,805.7 Ibs R.M = 19,265.1 * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pot Horizontal Deft @ Top of Wall (approximate only) 0.092 in Jbe-aL.RYe calcI�tJ.41'i.l..A.QS..Y.c�ll fl.-110.1.S.9tl..b_�30i1g.!?1�S�vLe.ggge2ds that of the toe, because the wall would then tend to rotate into the retained soil. 431 Project Name/Number; rw Use menu item Seftings> Printing & Title Block Title RW1C lift to set these five lines of information Dsgnr: TJB for your program. Description.... This Wall in File: S:\Projects\2M20055 - 4 Geneve - Badvar\Calcs\2020-04-12\m.RPX 433 Page: 2 Date: 19 APR 2020 License: KW-06056080 _Cantilevered Retaining Wail Code: CBC 2019,ACI 318-14,TMS 402-16 Concrete Stem Rebar Area Details MENNEEMENEEMMINNO 2nd Stem Vertical Reinforcing As (based on applied moment) : 0.0378 in2/ft (4/3) `As : 0.0504 in2/ft 200bd/fy : 200(12)(6.1875)/60000 : 0.2475 in2/ft 0.0018bh : 0.0018(12)(8) : 0.1728 in2/ft Required Area : 0.1728 in2/ft Provided Area : 0,2657 in2/ft Maximum Area : 0.8382 in2/ft Horizontal Reinforcing Min Stem T&S Reinf Area 0.897 in2 Min Stem T&S Reinf Area per ft of stem Height : 0.192 in2/ft Horizontal Reinforcing Options : One layer of: Two layers of: #4@ 12.50 in #4@ 25.00 in #5@ 19.38 in #5@ 38.75 in #6@ 27.50 in #6@ 55.00 in Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) : 0.2443 in2/ft (4/3)' As : 0.3257 in2/ft Min Stem T&S Reinf Area 0.768 in2 200bd/fy : 200(12)(6.1875)/60000 : 0.2475 in2/ft Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft 0.0018bh : 0.0018(12)(8) : 0.1728 in2/ft Horizontal Reinforcing Options : One layer of: Two layers of: Required Area : 0.2475 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area : 0.2657 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0,8382 in2/ft #6@ 27.50 in #6@ 55.00 in Footing Data Toe Width = 3.50 ft Heel Width = 1.00 Total Footing Width = 4.50 Footing Thickness = 12.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 2.00 ft fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf Min. As % = 0.0018 Cover @ Top 2.00 @ Btm= 3.00 in Footing Design Results TOO Heel Factored Pressure = 745 434 psf Mu': Upward = 48,835 25 ft-# Mu': Downward = 23,814 451 ft-# Mu: Design = 2,085 426 ft-# Actual 1-Way Shear = 7.57 12.11 psi Allow 1-Way Shear = 75.00 40.00 psi Toe Reinforcing = # 5 @ 14.00 in Heel Reinforcing = None Spec'd Key Reinforcing = None Spec'd Footing Torsion, Tu = 0.00 ft-Ibs Footing Allow. Torsion, phi Tu = 0.00 ft-Ibs If torsion exceeds allowable, provide supplemental design for footing torsion. Other Acceptable Sizes & Spacings Toe: #4@ 9.25 in, #5@ 14.35 in, #6@ 20.37 in, #7@ 27.77 in, #8@ 36.57 in, #9@ 46 Heel: phiMn = phf5'lambda'sgrt(fc)'Sm Key: No key defined Min footing T&S reinf Area Min footing T&S reinf Area per foot If one layer of horizontal bars: #4@ 9.26 in #5@ 14.35 in #6@ 20.37 in 1.17 in2 0.26 in2 A If two layers of horizontal bars: #4@ 18.52 in #5@ 28.70 in #6@ 40.74 in 433 Project NamelNumber : m 435 Use menu item Settings > Printing & Title Block Title RW1C 8ft SEISMIC Page: 1 to set these five lines of information Dsgnr: TJB Date: 19 APR 2020 for your program. Description.... This Wall in File: S:\Projects\2M20055 -4 Geneve - Badvar\Calcs\2020-04-12\rw.RPX i� Asa: liw-oeossoeo' Cantilevered Retaining Wall !cense To: BURKE STRUCTURAL ENGINEERS, PC Code: CBC 2019,ACI 318-14,TMS 402-16 Criteria ` Soil Data Retained Height = 8.00 ft Allow Soil Bearing = 2,000.0 psf Wall height above soil = 0.67 ft Equivalent Fluid Pressure Method Active Heel Pressure - 36.0 psf/ft Slope Behind Wall = 0.00 Height of Soil over Toe = 12.00 in = Water height over heel = 0.0 ft Passive Pressure = 400.0 psf/ft Soil Density, Heel = 120.00 pcf Soil Density, Toe = 0.00 pcf FootingIlSoil Friction = 0.300 Soil height to ignore for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 0.0 #/ft Adjacent Footing Load = 0.0 Ibs Used To Resist Sliding & Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding & Overturning Load Type = Wind (W) Wall to Ftg CL Dist = 0.00 it LAxial Load Applied to Stem a (Service Level) Footing Type Line Load Base Above/Below Soil _ 0.0 ft Axial Dead Load = 0.0 Ibs Wind on Exposed Stem = 0.0 psf at Back of Wall Axial Live Load = 0.0 lbs (Service Level) Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Earth Pressure Seismic Load SEEMMMMEMMEMMM Method : Inverted Triangular Total Strength -Level Seismic Load..... = 612.000 Ibs Load at top of Inverted Triangular Distribution ...... = 136.000 psf Total Service -Level Seismic Load..... = 428.400 Ibs (Strength) Design Summary ' Stem Construction end Bottom Stem OK Stem OK Design Height Above Fig ft= 4.00 0.00 Wall Stability Ratios Wall Material Above "Hit" = Concrete Concrete Overturning = 1.34 Ratio < 1.5! Design Method = LRFD _RFD Slab Resists All Sliding ! Thickness = 8.00 8.00 Reber Size = # 5 # 5 Total Bearing Load = 2,552 Ibs Reber Spacing = 12.00 12.00 ...resultant ecc. = 11.60 in Reber Placed at n-.;- . nora = Edge Edge Soil Pressure @ Toe = 967 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 2,000 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 11354 psf ACI Factored @ Heel = 0 psf Footing Shear @ Toe = 13.4 psi OK Footing Shear @ Heel = 12.9 psi OK Allowable = 75.0 psi Sliding Calcs Lateral Sliding Force = 1,886.4 Ibs fb/FB+fa/Fa = 0.189 0.982 Total Force @ Section Service Level Ibs = Strength Level Ibs = 883.9 2,447.6 Moment.... Actual Service Level ft-#= Strength Level ft-#= 1,541.2 7,977.7 Moment..... Allowable ft-#= 8,121.3 8,121.3 Shear..... Actual Service Level psi = Strength Level psi = 11.9 33.0 Shear..... Allowable psi = 75.0 75.0 Anet (Masonry) in2 = Reber Depth 'd' in = 6.19 6.19 Masonry Data Fm psi= Fs psi= Vertical component of active lateral soil pressure IS Solid Grouting = considered in the calculation of soil bearing pressures. Modular Ratio'n' _ Wall Weight psi = 100.0 100.0 Load Factors Short Term Factor = Building Code CBC 2019,ACI Equiv. Solid Thick. _ Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method = ASD Earth, H 1.600 Concrete Data 435 Wind, W 1.000 fc psi = 2,500.0 2,500.0 Seismic,E 1.000 Fy psi = 60,000.0 60,000.0 Project Name/Number : rw - Use menu item Settings > Printing & Title Block Title RW1C 811: SEISMIC to set these five lines of information Dsgnr: TJB for your program. Description.... This Wall in File: S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\nv.RPX RetainPro(c) 1987-2019, Build 11.20.03.31 License: KW-06056080 _Cantilevered Retaining Wall of Overturnina & Force Distance Moment Item Ibs It ft-# HL Act Pres (ab water tbl) 1,458.0 3.00 4,374.0 HL Act Pres (be water IN) Hydrostatic Force Buoyant Force = Surcharge over Heel = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Seismic Earth Load = 428.4 6.00 2,570.4 Total = 1,886.4 O.T.M. = 6,944.4 Resisting/Overturning Ratio = 1.34 Vertical Loads used for Soil Pressure = 2,552.2 Has 437 Page: 3 Date: 19 APR 2020 Code: CBC 2019,ACI 318-14,TMS 402-16 Force Distance Moment Ibs it ft-# Soil Over HL (ab. water IN) 320.0 4.33 1,386.7 Soil Over HL (be]. water tbl) 4.33 1,386.7 Watre Table Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = • Axial Live Load on Stem = Soil Over Toe = 1.75 Surcharge Over Toe = Stem Weight(s) = 867.0 3.83 3,323.5 Earth @ Stem Transitions= Footing Weight = 675.0 2.25 1,518.8 Key Weight = 2.50 Vert. Component - 690.2 4.50 3,105.8 Total = 2,552.2 Ibs R.M.= 9,334.7 • Axial live load NOT included in total displayed, or used for overturning If seismic is included, the OTM and sliding ratios resistance, but is included for soil pressure calculation. may be 1.1 per section 1807.2.3 of IBC. Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Dell @ Top of Wall (approximate only) 0.052 in The above calcula$ig.Ei.5 O,p,Lyalid if the heel soil bearing pressure exceeds that of the toe because the wall would then tend to ratate into the retained soil. 437 Project Name/Number : rw 439 Use menu item Settings > Printing & Title Block Title RW1D Eft Page: 2 to set these five lines of information Dsgnr: TJB Date: 19 APR 2020 for your program. Description.... This Wall in File: S:\Projects\2M20055 - 4 Geneve - Badvar\Calcs\2020-04-12\rw.RPX �„ r,.� ...,. sense: Cantilevered Retaining Wall Code: CBC 2019,ACI 318-14,TMS 402-16 To: B .icense To URKRKE STRUCTURAL ENGINEERS, PC Concrete Stem Reber Area Details 1 Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) : 0.1112 in2/ft _ (4/3)' As: 0.1483 in2/ft Min Stem T&S Reinf Area 1.281 in2 200bd/fy : 200(12)(6.1875)/60000 : 0.2475 in2/ft Min Stem T&S Reinf Area per it of stem Height : 0.192 in2/ft 0.0018bh 0.0018(12)(8) : 0.1728 in2/ft Horizontal Reinforcing Options : ___________= One layer of: Two layers of: Required Area: 0.1728 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area : 0.2657 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.8382 in2/ft #6@ 27.50 in #6@ 55.00 in Footing Data Toe Width = 2.00 ft Heel Width = 1.00 Total Footing Width = 3.00 Footing Thickness = 12.00 in Key Width = 12.00 in Key Depth = 7.00 in Key Distance from Toe = 0.00 ft Fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pef Min. As % = 0.0018 Cover @ Top 2.00 @ Btm = 3.00 in Footing Design Results Toe Heel Factored Pressure = 1,350 29 psf Mu': Upward = 25,358 4 ft-# Mu': Downward = 7,776 290 ft-# Mu: Design = 1,465 285 ft-# Actual 1-Way Shear = 8.79 8.63 psi Allow 1-Way Shear = 75.00 40.00 psi Toe Reinforcing = # 5 @ 14.00 in Heel Reinforcing = None Spec'd Key Reinforcing = # 5 @ 14.35 in Footing Torsion, Tu = 0.00 ft-Ibs Footing Allow. Torsion, phi Tu = 0.00 ft-Ibs If torsion exceeds allowable, provide supplemental design for footing torsion. Other Acceptable Sizes & Spacings Toe: #4@ 9.25 in, #5@ 14.35 in, #6@ 20.37 in, #7@ 27.77 in, #8@ 36.57 in, #9@ 46 Heel: phiMn = phi'5'lambda'sgrt(fc)'Sm Key: #4@ 9.25 in, #5@ 14.35 in, #6@ 18 in, #7@ 18 in, #8@ 18 Min footing T&S reinf Area Min footing T&S reinf Area per foot If one layer of horizontal bars: #4@ 9.26 in #5@ 14.35 in #6@ 20.37 in 0.78 in2 0.26 in2 A If two layers of horizontal bars: #4@ 18.52 in #5@ 28.70 in #6@ 40.74 in 439 Project Name/Number : rw 441 Use menu item Settings > Printing & Title Block Title RW1 E 4ft Page: 1 to set these five lines of information Dsgnr: TJB Date: 19 APR 2020 for your program. Description.... This Wall in File: S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\rw.RPX RetainPro (c) 1987-2019, Build 11.20.03.31 License: KW-06056080 Cantilevered Retaining Wall Code: CBC 2019,ACI 318-14,TMS 402-16 License To: BURKE STRUCTURAL ENGINEERS, PC j Criteria Soil Data Retained Height = 4.00 It Allow Soil Bearing = 2,000.0 psf Wall height above soil = 0.67 It Equivalent Fluid Pressure Method Active Heel Pressure - = 36.0 psf/ft Slope Behind Wall = 0.00 Height of Soil over Toe = 12.00 in = Water height over heel = 0.0 ft Passive Pressure = 400.0 psf/ft Soil Density, Heel = 120.00 pcf Soil Density, Toe = 0.00 pcf FootingilSoil Friction = 0.300 Soil height to ignore for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load- Surcharge Over Heel = 100.0 psf Lateral Load = 0.0 #/ft Adjacent Footing Load = 0.0 lbs NOT Used To Resist Sliding & Overturning ...Height to Top = 0.00 It Footing Width = 0.00 It Surcharge Over Toe = 0.0 ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding & Overturning Load Type = Wervice Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem (Service Level) Footing Type Line Load Axial Dead Load = 0.0 Ibs Wind on Exposed Stem = 0.0 psf Base Above/Below Soil at Back of Wall 0.0 ft Axial Live Load = 0.0 Ibs (Service Level) Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Design Summary ' Stem Construction Design Height Above Ftg Wall Stability Ratios Overturning = 1.72 OK Sliding = 1.59 OK Total Bearing Load = 965 Ibs ...resultant ecc. = 8.56 in Soil Pressure @ Toe = 1,563 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 2,000 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,263 psf ACI Factored @ Heel = 0 psf Footing Shear @ Toe = 7.4 psi OK Footing Shear @ Heel = 5.4 psi OK Allowable = 75.0 psi Sliding Calcs Lateral Sliding Force = 600.0 Ibs less 100% Passive Force = - 600.0 Ibs less 100% Friction Force = - 353.3 Ibs Added Force Req'd = 0.0 Ibs OK ....for 1.5 Stability = 0.0 Ibs OK Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing Load Factors Building Code CBC 2019,ACI Dead Load 1.200 Live Load 1.600 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000 Wall Material Above "Ht" Design Method Thickness Reber Size Rebar Spacing Reber Placed at Design Data fb/FB + fa/Fa Total Force @ Section Service Level Strength Level Moment.... Actual Service Level Strength Level Moment..... Allowable Shear..... Actual Service Level Strength Level Shear..... Allowable Anet (Masonry) Reber Depth 'd' Masonry Data I'm Fs Solid Grouting Modular Ratio'n' Wall Weight Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data fc Fy Bottom Stem OK ft = 0.00 = Concrete -RFD LRFD 8.00 # 5 = 14.00 = Edge 0.142 Ibs = Ibs= 652.8 ft#= ft-#= 998.4 = 7,023.6 psi = psi = 8.8 psi = 75.0 1n2 = in= 6.19 psi = psi = psf= 100.0 = Medium Weight = ASO psi= 2,500.0 psi= 60,000.0 441 Project Name/Number: rw 443 .. Use menu item Settings > Printing & Title Block Title RWIIE Oft Page: 3 to set these five lines of information Dsgnr: TJB Date: 19 APR 2020 for your program. Description.... This Wall in File: S:\Projects\20\20055 - 4 Geneve - Badvar\Calcs\2020-04-12\ne.RPX RetainPro (c( 1987-2019, Build 11.20.03.31 License: KW-06056080 _Cantilevered Retaining Wall Code: CEIC2019,AC1318-14,TMS402-16 Item HL Act Pres (ab water tbl) HL Act Pres (be water tbl) Hydrostatic Force Buoyant Force = Surcharge over Heel = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Force Distance Moment Ibs ft ft-# 450.0 1.67 750.0 150.0 2.50 375.0 Total = 600.0 O.T.M. = 1.125.0 Resisting/Overturning Ratio = 1.72 Vertical Loads used for Soil Pressure = 964.5 Ibs Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Force Distance Moment Ibs ft ft-# Soil Over HL (alb. water tbl) 160.0 2.08 333.3 Soil Over HL (bel. water tbl) 2.08 333.3 Watre Table Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = ' Axial Live Load on Stem = Soil Over Toe = 0.63 Surcharge Over Toe = Stem Weights) = 467.0 1.58 739.4 Earth @ Stem Transitions= Footing Weighl = 337.5 1.13 379.7 Key Weight = 0.50 Vert. Component - 213.0 2.25 479.3 Total = 1,177.5 Ibs R.M.= 1,931.7 • Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Deft @ Top of Wall (approximate only) 0.090 in The above calculation is not valid if the heel soil hearing pressure exceeds that of the toe. because the wall would then tend to rotate into the retained soil. 443 �J 445 N7 ( N8 d z4.101k a B1 N9 N10 5 r 6i 'T 2 N5 i N0 Loads: LC 10,(1+0.105Sds)D+0.75L+0.75'0.7pEXh Results for LC 1, D ELEVATOR PAD SK-1 elevator.fnd 445 Company Designer 447 hIRISAJob Number Checked By: Model Name Point Coordinates (Continued) Soil Definitions L@bel Su rade Moduluslk ^3 Allowable Bearing[ksf]_ Depth Pro ertes Default? 1 Default 100 2 None Yes RISAFoundation Version 12.0.1 [S:\...\20\20055 - 4 Geneve - Badvar\Calcs\2020-06-25\elevator.fndb47 Page 2 Company Designer 449 hIP.ISAJob Number Checked By: Model Name Line Loads and Moments (Cat 2 : LL) Start Point End Point Direction Start MannitlldP.rl(/ft k-ft/ftl Furl Mannitudark/ft k-ft/fFl 1 N4J N2 Y 28 28 3 1 N 1 N Y 31 -.31 Line Loads and Moments (Cat 6 : RLL) Start Point End Point Direction Start Me nitudeRM k-ft/ft] End Magnitude k/ftk-ft/ft]_� 1i N4 I N2 i Y i -.38 1 -.38 Load Categories Catenory Point I nark I ne I nerds Ara. I nark 1 DL 3 4 •LL°--- 3 RLL 2 1 4, 5 ELZ 7 Load Combinations __ Label ... Service .. ... _....,. C... Fa... - ' - a... ... a... ... a... ... a... ... a.... ,.: _ a...... a... a' ' r1 D Y.. Yes DL 1 Y-. .'Yes . € ..,DL 1 3 D+RLL Y.. Yes DL 1 RLL 1 %-A .� `-D+O 75L+0,75}��� ,Y ;-' Ya§ DL 1 ?LL,75RL "s 75 — 5 D+L+RLL Y., Yes DL I 1 1 LL 1 1RLL 1 6 ° = L+RLL L_7 8= {1+0.14Sda)D+0:7pEXh Y. tes 1•:. DL1`] . a EDU,97 ,;: :.., 9 (1+0.14Sds)D-0.7 EXh p Y.. Yes 1 .... i-.91 j 7A55tl Yes '':-A ,L ? e ) s.. 11 (1+0.105Sds)D+0.75L Y . Yes I... DL 1 .. LL .75 E .6.. 12 0 6-0 ,}Sd}D+n.7pE Y ; 011 ° ` - 13 (0.6-0.14Sds)D-0.7pEXhY.. Yes 1.... DL.44 ELX-.911 =L4. •(1+0;1AStls)D+�7pE�ti Y.. Yes 1 DL).... ] - ELZ, 15 (1+0.14Sds)D 0.7pEZh Y.. Yes 1 .i. DL 1.... ELZ-.91 j5 {1+A1p5S4s)D+p.75L+ y„ ',Yes 1,.EDL1... L .75" WA 17 (1+0.105Sds)D+0.75L ..Y.. Yes 1­)i. DL 1-.. LL1.75 ELZ-.6.. DL•44 19 (0.6-0.14Sds)D-0.7pEZh!Y..j 1.... �DLL449; ELZ-.91 21 1AD Y. DL1.4 2 :2D+1,6L+0,5f2LL°Y..°° DL1.2iLL'1:6RL" 5 - 23 1.2D+0.5L+1.6RLL Y­ DL 1.2 LLI .5 RLL1.6! 24_°, 25 (1.2+0.2Sds)D+L+2.5E..: DL LL 1 ELX2.5 .2 °. DL,1,.. LL 1 E -4•6 i - 1 27 (0.9-0.2Sds)D+2.5EXh DLi.684 ELX2.5i 28 D 9-0a2Stls D 15EXh L. p68 " ELX 25 29 (1.2+0.2Sds)D+L+2 E.. DL1- �. LL 1 ELZ2.5i _ �0K1..21�,Sds)p+i�x . DL1 :: LL` 31 (0.9-0.2Sds)D+2.5EZh DL.68 iELZ2,5 32 ° {0.9 O'u2SrJs)6 2.3h, , DL ,684, _ RISAFoundation Version 12.0.1 [S:\...\20\20055 - 4 Geneve - Badvar\Calcs\2020-06-25\elevator.fndh49 Page 4 Company Designer 451 hIRISAJob Number Checked By: waTs:;:,,;Fxc,;+ssn<r Model Name Beam Section Forces (By Combination) (Continued) RISAFoundation Version 12.0.1 [S:\...\20\20055 - 4 Geneve - Badvar\Calcs\2020-06-25\elevator.fndh51 Page 6 Beam: B1 Shape: CRECT26X24 Stress Block: Rectangular Material: Conc4500NW Length: 18.5 ft Start: N9 End: N10 Code Check: 0.837 (bending) Report Based On 97 Sections 17.177 at 16.573 ft ve E j A k Vz k E Vy k -5.099 at 16.573 ft e 49.943 at 18.5 ft i Mz k-ft I T k-ft My k-ft i E E 159.288 at 18.5 ft Beam Design does not consider axial, weak axis 'M' Moments, nor weak axis 'V' Forces. AC/ 318-14 Code Check Top Bending Check 0.262 (LC 18) Location 18.5 ft Gov Mu Top 49.943 k-ft phi*Mn Top 190.342 k-ft Tension Bar Fy 60 ksi Shear Bar Fy 60 ksi F'c 4.5 ksi Flex. Rebar Set ASTM A615 Shear Reber Set ASTM A615 Flex. Bars 4 #6 , 4 #6 Span Information Span Span Length (ft) 1 0-18.5 Soil Bearing Span Pressure (ksf) 1 .753 Bot Bending Check 0.837 (LC 19) Location 18.5 ft Gov Mu Bot -159.288 k-ft phi*Mn Bot 190.342 k-ft Concrete Weight .15 k/ftA3 X 1 E Concrete 3845 ksi Min 1 Bar Dia Spec. No ]-Face Dist. (in) J-Face Dist. (in) 0 0 Allowable (ksf) Point 2 N10 Shear Check Location Gov Vu phi*Vn 453 0.321 (y) (LC 19) 16.573 ft 17.177 k 53.431 k Legs/Stirrup 2 LIC .376 RISAFoundation Version 12.0.1 [S:\... \20\20055 - 4 Geneve - Badvar\Calcs\2020-06-25\elevator.fnd Page 1 455 Company 457 ;`i)esigner ,Job Number Model Name Checked By: Strip: DS2 Max Top bar Spac.: 18 in Stress Block: Rectangular Material: Conc4500NW Min Top bar Spac.: 3 in Rebar Orientation: 0 Strip Width: 114 in Max Bot bar Spac.: 18 in Rebar Spacing Inc: 2 in Total Cuts: 50 Min Bot bar Spac.: 3 in Design Rule: Typical Vz Mz 56.601 at 7.143 ft -36.9 at 4.857 ft 81.22 at 4.571 ft -250.928 at 4.571 ft ACI 318-14 Code Check Top Bending Check 0.126 Gov Mu Top 81.22 k-ft phi*Mn Top 642.395 k-ft Governing Cut DS2-X17 Governing LC 18 Bot Bending Check 0.408 Gov Mu Bot -250.928 k-ft phi*Mn Bot 614.783 k-ft Governing Cut DS2-X17 Governing LC 19 Tension Bar Fy 60 ksi Concrete Weight .15 k/ftA3 Shear Bar Fy 60 ksi X 1 F'c 4.5 ksi E_Concrete 3845 ksi Flex. Rebar Set ASTM A615 Rho Bot Prvd 0.00237 Prvd Bot Bar Spac. #5@6in Bending Steel Reqd/Prvd, Units: inA2) Top Top Bot Bot Cut Label As Reqd As Prvd As Reqd As Prvd DS2-X17 .764 6.136 2.476 6.136 Rho Regd(T/S) 0.00180 k k-ft 1 Way Shear Check 0.217 Gov Vu 56.601 k phi*Vn 260.249 k Governing Cut DS2-X33 Governing LC 19 Top Cover 2 in Bottom Cover 3 in Rho Top Prvd 0.00227 Prvd Top Bar Spac. #5@6in Rho Reqd(Flex) 0.00180 Rho Prvd(Gross) 0.00414 RISAFoundation Version 12.0.1 [S:\... \20\20055 - 4 Geneve - Badvar\Calcs\2020-06-25\elevator.fnd Page 1